
From Problems to Programs
A Pattern Language to Go from Problem Requirements to Solution Schemas in

Elementary Programming *

José Manuel Burgos-Ortiz
Javier Galve-Francés Julio García-Martín

{jmburgos,jgalve,juliog}@fi.upm.es

Universidad Politécnica de Madrid**

Motivation

The From Problems to Programs pattern language is an intent to formalize to a certain
extent, via patterns, the programming process to go from the problem to the program. It
outlines a common instructional framework to categorize, specify and solve the
problems commonly taught in an introductory programming course. The language helps
those educators interested on an organization of information for teaching a
programming course which puts primary interest on the structure of and relationships
between a problem, a program and a solution schema. The language can also help to see
how formal specification concepts are related with programming.

In the usual “syntax-driven” approach to programming instruction, problems are
introduced as examples needed to explain a syntactic feature and solutions are presented
as completed programs that solve the problems. Thus this collection of unrelated
problems and last-version programs is the material that students handle to solve new
problems. This course organization does not promote knowledge integration [2] as it
does not show how problems are related to each other, neither how problems are related
to programming language constructs [6] nor how is the “continuum” to go from the
problem to the program along the programming process. A very small deal of attention
is given to the skills that an expert programmer handles to develop a program [7],
starting from the problem as goals and going to the solution through intermediate
abstractions -differently named as canned solutions, schemas [4] or plans [7]- to
represent program solutions.

Some authors have underlined a fact observed in research about knowledge acquisition:
a good organization of knowledge is the key for the effectiveness of instruction. A
taxonomy of problems lets stablish families of problems, very useful to find solutions to
new problems by searching analogies with previously solved ones. The pattern language
From Problems to Programs relies on a proposed taxonomy of problems. This
taxonomy lets talk about the “chunks” of programming knowledge as abstract solution
schemas that are based on the classification of the problem at the analysis stage. The
language provides a guide to go from a problem statement to a solution schema, starting

* This work has been partially supported by the Spanish project F.G.UPM-43700000190.
** Department of LSIIS, Technical University of Madrid, Boadilla del Monte, 28660 Madrid, Spain.
Copyright ? 2000, J.M.Burgos, J. Galve and J.García. Permission is granted to copy for the EuroPloP 2000 Conference. All other rights
reserved.

from a first formulation of the problem and going layer by layer along the development
process, refining the formulation until one of the solution schemas is reached.

This pattern language offers educators a way to explore the effectiveness of a pattern-
based approach into the elementary programming instruction, making use of patterns
during the whole development process. This pattern language tries to be a speculation in
use of patterns to search for comprehensive models for instructional practice, models
that should be very useful for course design and for the development of new
instructional tools. Of course, the taxonomy proposed is not unique, canonical or
complete, but, as Soloway says in [6]: “finding exceptions and developing new
structures to accommodate the inconsistencies is a powerful learning technique” and
“becoming aware that abstractions admit of exceptions is precisely the kind of problem
solving skill that one wants to encourage”.

An Overview of the Patterns

The patterns form three groups, one for each of the first stages of the programming
process: two for problem analysis (Classification and Specification patterns) and one for
program synthesis (Solution patterns):

- Classification Patterns: A set of patterns for the requirements analysis stage used
to classify programming problems. These patterns provide the first aid to analyze
the problem by fixing an organized description of data and problem. The patterns
are:

1. Data Description: How to describe the data involved in a problem.
2. Problem Description: How to describe the problem for a full understanding of it.
3. Categorized Problem : How to classify the problem in the taxonomy.

- Formal Specification Patterns: A set of patterns to get formal specifications for
problems previously classified.. They provide a rigorous description of the problem,
using notation based on logic and mathematics. The specification describes the data
and problem operations in an abstract manner, without any stipulations about how
these should be implemented. Problems are described as functions, using
PRE/POST semantics.

4. Formal Specification: How to describe the program behaviour precisely in a
formal way.

5. Quantification Specification: How to describe the behaviour of a Quantification
problem precisely in a formal way.

- Solution Patterns: A set of patterns to design solutions for problems previously
specified. They allow the transformation of specifications (informal or formal)
defining the effect of a program (i.e. the meaning of the problem) into an
algorithmic notation (similar to a formal programming language) which defines how
this effect is achieved in a procedural programming language but omitting finer
details.

6. Case-Analysis: How to write a solution for a Case-Analysis problem.

7. Iterative Accumulation Quantification: How to write an iterative solution for an
Accumulation Quantification problem.

8. Iterative Search Quantification: How to write an iterative solution for a Search
Quantification problem.

9. Iterative Extremal Quantification: How to write an iterative solution for an
Extremal Quantification problem.

10. Iterative Construction Quantification : How to write an iterative solution for a
Construction Quantification problem.

The use of the Specification patterns is optional. They can be bypassed, going straightly
from the Classification to the Solution group: there is no need to specify a problem in
order to find a solution to it. The Solution patterns connects with the patterns of the
Elementary Patterns Group [8], which provide the necessary details to implement the
solutions. In order to go from the solution patterns to the elementary patterns, a step of
interptetation is necessary and to go reversely from the elementary stuff to the solution
patterns, a step of abstraction should be taken.

Structure of From Problems to Programs

1. Data Description 2. Problem Description

4. Formal Specification

3. Categorized Problem

5. Quantification Specification

7. Accumulation 8. Search 9. Extremal 10. Construct.ion6. Case A.

Elementary Patterns

 Classification Patterns

 Specification Patterns

 Solution Patterns

R
E

Q
U

IR
E

M
E

N
T

S
A

N
A

L
Y

SI
S

 D
E

SI
G

N
FO

R
M

A
L

 S
PE

C
IF

IC
A

T
IO

N

How to Use The Patterns

Starting from the statement of the problem, it is defined (as a function) with a premise
(precondition), and a goal (postcondition) with the Problem Description pattern. The
premise is often known as precondition and the goal as postcondition. The data involved
in the problem - inputs and outputs - must be described as well as their respective
domains (with the Data Description pattern). Once we have the set of inputs, outputs,
premise and goal, we can classify the problem into the taxonomy by using the
Categorized Problem pattern. As English can be ambiguous, the specification may rely
(but not necessarily) on a formal specification language. The Formal Specification
pattern helps in doing this. With the problem categorized, the specific solution schema
for that category can be used, applying one of the solution patterns: Case-Analysis, or
one of the Iterative Quantification patterns: Accumulation, Search, Extremal or
Construction.

The Patterns

1 Data Description

(Also Known as: Data Specification.)

You want to write a program that solves a problem described as a requirements
statement written -or spoken- in English. By using Problem Description you are
describing what to do with the “things” you find in the problem. Now you want to
describe those “things”, that we name as data objects or simply problem data.

The problem statement provides an imprecise, ambiguous and often incomplete
description of the data involved in the problem. It is initially put forward (written or
spoken) by somebody who may have not considered the problem deeply enough and/or
may have not a sufficient appreciation of computer programming to be aware of the
absolute exactness needed. The data may be complex and there may be many mixed
details about different data. Some constraints on the data are imposed by the problem.

Therefore seek for all the data domains to which the problem data belong. Every data
object belongs to a generic category of data, data type or data domain (since a type is a
set of values, both terms will be used indistinctly) and there may be many data objects
that belong to the same data type. Choose good names to identify the data domains. The
data structure (representation details of a data object in a program) have not to be
considered at this analysis stage. Give an informal description of data domains as texts
(written in English) enclosed in quotation marks, including, if there is any, the
restrictions.

Use the usual predefined domain names (Natural, Integer, Real, Char, Boolean, etc…).
Define complex data as aggregations of data (heterogeneous items), collections of data
(homogeneous items) or combinations of both. Use explicitly in the data description the
statements “Aggregation of ..” and “Collection of ..”. Use the “= ...” expression to
define data domains by renaming, if necessary. The data types may be hierarchies of
other data types. Detect these hierarchies and reflect them mentioning the names of the
types on which more complex types are based. These hierarchies will guide the design
of the program.

Suppose the problem statement: “Given a collection of regular polygons, return a
collection of their areas”. The data of this problem can be modelled as:

TPoint = “Aggregation of two objects of the type Real”
TPolygon = “Collection of at least three objects of the type TPoint”
TPolygons = “Collection of objects of the type TPolygon”
TArea = Real
TAreas = “Collection of objects of the type TArea”

Now the data in your problem have been described and when you have your problem
described as well, you will be in a position to categorize it.

2 Problem Description

(Also Known as: Specification, Problem Specification, Understanding the Problem,
Understanding the Program’s Purpose.)

You want to write a program that solves a problem described as a requirements
statement written -or spoken- in English. You want to describe what to do with the
“things” you find in your problem.

The problem statement provides an imprecise, ambiguous and often incomplete
description of the problem. It is initially put forward (written or spoken) by somebody
who may have not considered the problem deeply enough and/or may have not a
sufficient appreciation of computer programming to be aware of the absolute exactness
needed. The problem statement may be complex with many mixed details and may even
be composed of several problem statements. The problem data may impose some
restrictions on the problem about its definition scope (i.e., the values of the data for
which it is defined) that have to be assumed before solving it.

Conceptually, a program is equivalent to a function in mathematics. The set of all
possible input and output items to and from the program is respectively equivalent to
the input and output domain of the function.

Therefore give the program a meaningful name and re-write the problem statement (and
the subsequent subproblems) as a function using the PRE/POST or contract model,
attaching previously the data domain descriptions D and R obtained from the Data
Description pattern, as follows:

D = “Input domain description”
R = “Output domain description”
FUNCTION AProblem: (x : D) -> (y : R)
PRE: “Precondition description”
POST: “Postcondition description”
FUNCTION ASubProblem: ..

...

Give meaningful names to the input data (x) and output data (y). These variables are
also known as program´s parameters. Write informal statements to describe the
problem’s pre- and post-condition (the preconditions are assumptions made about the
input data; they describe the values for which the problem is not defined. The post-
condition describes the intended meaning of the problem, as a relationship between the
input data and the output data). Use “true” as the pre-condition for a problem with no
constraints and when several different pre-conditions are found, combine them using the
“and” logic operator. When the problem statement is too complex, do not describe its
post-condition in only one hit: split the problem into simpler sub-problems (piecemeal
description), then apply the Categorized Problem pattern to each of the sub-problems in
isolation and, finally, combine their post-conditions. Attach the description of the
subproblems at the main problem’s description.

Suppose the problem statement: “Given a collection of non-empty strings, check if at
least one of them includes, in its upper case letters, a given upper case letter”.
Applying the Data Description pattern, the problem data are:

TString = “Collection of Char”

TStringCollection = “Collection of TString”

There is a subproblem described as: “Check if an upper case letter is present at least
once in the upper case letters of a non-empty string” and modelled as follows:

FUNCTION IsPresent: (c : Char) x (string : TString) -> (isPresent : Bool)
PRE: “string is not empty” and “c is an upper case letter”
POST: isPresent = “c is present in the upper case letters of string”

The main problem can be described now as: “Given a collection of non-empty strings
and an upper case letter c, check if IsPresent (c, string)”, and modelled as:

FUNCTION IsStringPresent: (c : Char)x(collection: TStringCollection)-> (result: Bool)
PRE: “All strings in collection are non-empty strings”and “c is an upper case letter”
POST: result=“There is a string in collection such that IsPresent(c,string)”

Now your problem has been described and when you have your data described as well,
you will be in a position to categorize it.

3 Categorized Problem

You have both a problem and a data description for your problem statement.

A problem description from the scratch is hard and may yield a bad description. Most of
the problems are related in some way to other problems by some kind of affinities that
may not appear on the surface and should be found out.

Therefore consider using the POST section in the Problem Description pattern and
classify the problem by pigeonholing it in one of the categories listed on the table
below. It may be helpful to rewrite it using the most similar terms. Attach the category
name at the end of the POST description, in brackets.

Category POST Functionality
Direct Solution The result is a simple expression or is obtained from a

previously solved problem or is a composition of them.
-

Case Analysis The result takes different values depending on input data. -

Sum Sum an expression applied on every item in a collection.
Times Multiply an expression applied on every item in a collection.
Count Calculate how many items in a collection verify a property.

Accumulation

Exists Check if at least one item in a collection verifies a property.
Search Search for an item in a collection that verifies a property.
ForAll Check if each item in a collection verifies a property.

Search

Max Calculate the maximum value of an expression in a collection of
items.

Min Calculate the minimum value of an expression in a collection of
items.

Extremal

Q
ua

nt
if

ic
at

io
n

Map Construct a new collection as the result of applying an expression
to each element of a collection.

Construction

If the collection of data is determined by a condition that the input data have to verify,
the problem formulation will be, for instance, for the Sum quantification something like

“Sum an expression applied on every item in a collection that verifies a property”. The
property is known as the filter.

If the problem does not match one of the above categories, then reformulate the
description (the POST section) in a different way.

Suppose the problem statement: “Check if an upper case letter is present at least once
in the upper case letters of a non-empty string” modelled as:

FUNCTION IsPresent: (c : Char) x (string : TString) -> (isPresent : Bool)
PRE: “string is not empty” and “c is an upper case letter”
POST: isPresent =“c is present in the upper case letters of string”

The problem belongs to the Exists category, because its POST description is equivalent
to

“Check if at least one character in the upper case letters of string verifies that is
equal to c”.

So that it can be refined to

 FUNCTION IsPresent: (c : Char) x (string : TString)-> (isPresent : Bool)
PRE: “string is not empty” and “c is an upper case letter”
POST: isPresent = “Check if at least one character in the characters of string

such that are upper case letters verifies that is equal to c”
(Exists)

Consider another problem statement: “Determine how many times a character c is
present in a string”. It can be straightly matched with the Count category.

 FUNCTION NumberOfTimes: (c : Char) x (string : TString) -> (numberOfTimes : Nat)
 PRE: true

POST: numberOfTimes = “Determine how many times c is present in string” (Count)

Now your problem is correctly categorized and you are in a position to write a full
specification of it.

4 Formal Specification

(Also known as: Formal Problem Specification).

You have the problem described informally and categorized. The problem data are also
described. You want to write a formal specification for your problem.

An informal description of a problem may be ambiguous, incomplete and imprecise,
probably hiding some relevant details. Informal descriptions do not always aid to detect
similarities. A high level of abstraction hides relevant information for problem analysis,
but a too low level of abstraction may make the problem incomprehensible. The
problem description does not provide details about the order in which operations have to

be achieved neither about the restrictions on them. Sometimes, new problem’s
constraints appear when it is described precisely.

Therefore specify the meaning of the problem rewriting both the pre- and post-condition
as logic predicates using conventional logic and mathematical notation and attach them
to the problem description. Write the postcondition with a specific format that depends
on the category of the problem.

Specify the data using Abstract Sequences1 to model collections (i.e., Seq (Nat), Seq (
Seq (Integer))), tuples to model aggregations (TCartesianPoint = Real x Real), types
defined by enumeration (for example, TColor = black | white | grey) and union data
types (for example, TPoint = Euclid (Real x Real) | Polar (Real x Tangle)). If the data
have more characteristics than can be deduced from the type, write them explicitly after
the type definition as a type invariant. Examples:

TPoint = Real x Real
TPolygon = Seq (TPoint)
INV (pol : TPolygon) = Length (pol) >= 3
TString = Seq (Char)
TstringCollection = Seq (TString)

If you have a Direct Solution problem, write the post-condition as y = Exp (x), where
Exp is a composition of primitive operations and previously solved functions that goes
from D to R:

FUNCTION Aproblem: (x : D) -> (y : R)
PRE: Precondition (x)
POST: y = Exp (x)

If you have a Case-Analysis problem, write the post-condition as follows:

 POST:
 Case1 (x) -> y = Exp1 (x) /\
 ...
 CaseN (x) -> y = ExpN (x)

where Casei is a predicate that takes the input data (x) and checks a condition; Expi is a
function that goes from D to R. Ensure that the problem domain is covered by all the
cases (i.e. Case1 (x) \/ ... \/ CaseN (x) = Precondition (x)) and that there is no
case overlapping (i.e. Case1 (x) /\ ... /\ CaseN (x) = false).

If you have a problem categorized as a Quantification problem, see Quantification
Specification.

Detect new preconditions from the restrictions imposed by any of the operations used in
the postcondition, and attach them to the preconditions defined so far.

Now you have a specification for your problem and you are in a position to be guided in
the solution design process.

1 The Abstract Sequence operations are described in the Appendix A.

5 Quantification Specification

(Also Known as: Quantifier Specification.)

You have a problem categorized as Quantification problem: the result is computed from
a traversal over a data domain..You want to write a formal specification for your
problem.

There is a specific quantifier for each different kind of computation issued from the
traversal of the data domain and each has a different specification. All the quantification
specifications have a common structure and it is independent of the data.

Therefore write your problem post-condition as a quantification:

FUNCTION AProblem: (x : D) -> (y : R)
PRE: Precondition (x)
POST: y = Q i <- TD | Fil (x,i) . Exp (x,i)

where:
- Quantifier (Q) is a symbol or a name that represents a quantification.
- Traversal Variable (i) is a variable bound by the quantifier that takes values

in TD.
- Traversal Domain (TD) is an abstract sequence that represents the data.
- Quantification Expression (Exp) is the expression to compute for each item

of TD.
- Quantification Filter (Fil) is the property that each item of TD has to verify.

It is optional: in some quantifications, it is subsumed in the expression.

that provides the following meaning to Aproblem:

“Assuming that the input data verify Precondition, the output data are obtained by
computing repeatedly Exp on the elements of the domain TD that satisfy Filt and
combining them with the operator bound by the quantifier.”

Choose a good name for the traversal variable and an appropriate traversal domain for
the problem. Abstract the collection of items of input data (x) as an abstract sequence
(Appendix A) .

Suppose the refined problem description:

 FUNCTION IsPresent: (c : Char) x (string : TString)-> (isPresent : Bool)
PRE: “string is not empty” and “c is an upper case letter”
POST: isPresent = “Check if at least one character in the characters of string such

that are upper case letters verifies that is equal to c”
(Exists)

It can be specified as

FUNCTION IsPresent: (c : Char) x (string : TString)-> (isPresent : Bool)
PRE: “string is not empty” and “c is an upper case letter”
POST: isPresent = Exists i <- [1..Length (string)] | IsUpperCase (c). string [i] = c

and subsuming the filter

FUNCTION IsPresent: (c : Char) x (string : TString)-> (isPresent : Bool)
PRE: Length (string) >= 1 /\ IsUpperCase (c)
POST: isPresent = Exists i <- [1..Length (string)] . IsUpperCase (c)/\ string [i] = c

You have a Quantification problem formally specified.

6 Case Analysis

You have used Categorized Problem and have your problem categorized as a Case
Analysis. You may have specified formally your problem.

The result of your problem has to be selected depending on two or more conditions.
Each result devolution is guarded by its own condition.

Therefore if you have not used Problem Specification to specify formally your problem,
use Function for Complex Condition [3], if necessary, and use a function Casei for each
condition and write a selection chunk of code using Patterns for Selection [1]. If you
have used Formal Specification to specify formally your problem, write a selection
chunk of code using Patterns for Selection with a branch of selection for each condition
and writing as action the result return.

Now you have a solution for your Case-Analysis problem.

7 Iterative Accumulation Quantification

(Also Known as: Accumulation Loop Schema)

You have used Categorized Problem and have categorized it as a Sum, Times or Count
Quantification problem. You have probably specified it with Quantification
Specification. In your problem, you have to accumulate a function (named Exp) applied
on every item in a collection that meets a property (named Fil). You are searching for an
iterative solution to your problem.

The type of the result is the same as the output type of the function Exp. In order to get
the result, the collection has to be fully traversed. If the collection is empty, the result of
the problem is a special value bound by the specific kind of accumulation
quantification: 0 for Sum and Count and 1 for Times. There is no precondition imposed
on the collection of data by these Quantifications. As the searched solution is iterative,
you need to use a loop to compute the result, but the kind of loop depends on the nature
of the collection of data.

Therefore if your data are a numeric interval [a, b], or they are Simple Linear [5], use
the Counted Loop pattern [5] with the following design guideline for the loop parts
outlined in it (we use as name for the traversal variable i, for the collection of data
collection and for the variable with the result value result).

Loop
Part

Numeric Interval Simple Linear

Initialization i := a i := 0

Loop
Continuation
Condition

i <= b (1) i <= (Length of collection) – 1 (1)

Loop Body if Fil (i) then
 result := result ? Exp(i)
 fi

if Fil (collection [i]) then
 result := result ?
 Exp (collection[i])
 fi

Loop Update
Statement

i := i + 1 (1) i := i + 1 (1)

Post-mortem The result is in result The result is in result

If your data are Streamed (a file of items), Linked or traversed using an Iterator Object
[5], use the Conditional Loop pattern [5] following the next design guideline for the
loop parts outlined in it (the names chosen for the traversal variable is i, for the
collection of data is collection, for the iterator object is iter and for the variable with the
result value is result, but any other names that follow the guidelines in the
MeaningfulVariable pattern [3] are valid).

Loop
Part

Streamed Linked Iterator Based

Initialization Reset (collection) p := collection iter:=collection.Iterator

Loop
Continuation
Condition

not EOF (collection) p <> NIL not iter.IsDone

Loop Body if Fil (CurrentItem (collection)) then
 result := result ?
 Exp (CurrentItem (collection))
Fi

if Fil (p^item) then
 result := result ?
 Exp(p^item)
fi

item := iter.Next;
if Fil (item) then
 result := result ?
 Exp (item)
fi

Loop Update
Statement

colection := Get (collection) p := p^.next -

Post-mortem The result is in result The result is in result The result is in result

Now you have an iterative solution for your problem.

8 Iterative Search Quantification

(Also Known as: Search Loop Schema)

You have used Categorized Problem and have categorized it as an Exists, ForAll or
LinearSearch Quantification problem. You have probably specified it with
Quantification Specification. In your problem, you have either to search whether there
exists an item in a collection of data that meets a property named Exp (Exists) or
whether there exists an item that does not meet a property (ForAll) or search for an item
that meets the property (LinearSearch). You are looking for an iterative solution to your
problem.

1 Implicit in Counted Loop in some programming languages.

The result is a boolean for the Exists and ForAll quantifications and is of the same type
as the items in the collection in the case of the LinearSearch quantification. In order to
get the result, the collection does not always need to be fully traversed. The collection
may only be empty if the problem is an Exists or a ForAll quantification. In such cases,
the result of the problem is a special value bound by the specific kind of search
quantification: false for Exists and true for ForAll. The problem may impose a filtering
condition on the collection of data.

There is no precondition imposed on the collection of data by these quantifiers. If the
problem is a LinearSearch, the collection of data has to meet as precondition not to be
empty. As the intended solution is iterative, you need to use a loop to compute the
result, but the structure of the loop depends on the nature of the collection of data and
on the specific quantification.

Therefore use a Counted Loop pattern [5] with a local boolean variable in the Loop
Continuation Condition, following different design guidelines depending on the specific
quantification and the nature of the collection of data (depending on they are a numeric
interval [a, b], or Simple Linear [5], or Streamed (a file of items), Linked or traversed
with an Iterator Object [5]).

If there is a filtering condition (filter) for the collection of data, subsume it in the
property Exp combining the filter with the property by means of the logic operator
“and”.

If your problem was categorized as an Exists problem, follow the next design guideline
for the loop parts outlined in the Conditional Loop pattern [5] (the names chosen for the
local variable is found, for the traversal variable i, for the collection of data collection
and for the variable with the result value result, but any other names that follow the
guidelines in the MeaningfulVariable pattern [3] are valid).

Loop
Part

Numeric Interval and Simple
Linear

Streamed, Linked and Iterator
Based

Initialization Numeric Interval:
 i := a;
 found := false;

Simple Linear:
 i := 0;

 found := false;

Streamed:
 Reset (collection);

 found := false;

Linked:
 p := collection;

 found := false;

Iterator Based:
 iter := collection.Iterator;

 found := false;
Loop
Continuation
Condition

Numeric Interval:
i <= b

Simple Linear:
i <= (Length of collection) – 1

Streamed:
not EOF (collection) and not found

Linked:
p <> NIL and not found

Iterator Based:
not iter.IsDone and not found

Loop Body Numeric Interval:
if Exp (i) then
 found := true

Streamed:
if Exp (CurrentItem (collection))
then

else
 i := i + 1
fi

Simple Linear:
if Exp (collection [i]) then
 found := true
else
 i := i + 1
fi

 found := true
else
 collection := Get (collection)
fi

Linked:
if Exp (p^.item) then
 found := true
else
 p := p^.next
fi

Iterator Based:
item := iter.Next;
if Exp (item) then
 found := true
fi

Loop Update
Statement

- -
Post-mortem The result is in the local variable found The result is in the local variable found

If your problem was categorized as a Search problem, the design guideline is the same
as for the Exists quantification, except the Post-mortem part, outlined as follows.

Loop
Part

Numeric Interval and Simple
Linear

Streamed, Linked and Iterator
Based

Post-mortem Numeric Interval:
The result is in the local variable i.

Simple Linear:
The result is collection [i].

Streamed:
The result is CurrentItem(collection).

Linked:
The result is p^.item.

Iterator Based:
The result is item.

If your problem was categorized as a ForAll problem, follow the same design guideline
as for the Exists quantification, using the negation of the property Exp and the computed
result will be the negation of the local variable found.

Now you have an iterative solution for your problem.

9 Iterative Extremal Quantification

(Also Known as: Max-Min Loop Schema)

You have used Categorized Problem and have categorized it as a Max, or Min
Quantification problem. You have probably specified it with Quantification
Specification. In your problem, you have to determine the maximum (Max) or minimum
(Min) value of a function (named Exp) among the items in a disordered collection. You
are searching for an iterative solution to your problem.

The type of the result is the same as the output type of the function Exp. In order to get
the result, the collection has to be fully traversed. The collection of data has to meet as
precondition not to be empty. The maximum and minimum can be calculated for any
type which defines an ordering relationship. As the searched solution is iterative, you
need to use a loop to compute the result.

Therefore use the Counted Loop pattern [5] following the next design guideline for the
loop parts outlined in it (the names chosen for the traversal variable is i, for the
collection of data is collection, for the iterator object is iter and for the variable with the
result value is result, but any other names that follow the guidelines in the
MeaningfulVariable pattern [3] are valid).

Loop
Part

Numeric Interval Simple Linear

Initialization i := a + 1;
 result := Exp (a);

i := 1;
result := Exp (collection [0])

Loop
Continuation
Condition

i <= b (1) i <= (Length of collection) – 1 (1)

Loop Body if Exp (i) >(2) result then
 result := Exp (i)
 fi

if Exp (collection [i]) > (2) result then
 result := Exp (collection[i])
 fi

Loop Update
Statement

i := i + 1 (1) i := i + 1 (1)

Post-mortem The result is in result The result is in result

Loop
Part

Streamed Linked Iterator Based

Initialization Reset (collection);
result :=
 Exp (CurrentItem(collection);
collection := Get (collection);

result :=
 Exp (collection^.item);
p := collection^.next;

iter:=collection.Iterator;

result:= Exp (item);

Loop
Continuation
Condition

not EOF (collection) p <> NIL not iter.IsDone

Loop Body if Exp(CurrentItem (collection)) > (2)

 result then
 result :=
 Exp(CurrentItem(collection))
fi

if Exp(p^item) >(2)
 result then
 result :=
 Exp(p^item))
fi

item := iter.Next;
if Exp (item) >(2)
 result then
 result := Exp item)
fi;

Loop Update
Statement

colection :=
 Get (collection)

p := p^.next -

Post-mortem The result is in result The result is in result The result is in result

Now you have an iterative solution for your problem.

10 Iterative Construction Quantification

(Also Known as: Construction Loop Schema)

You have used Categorized Problem and have categorized it as a Map Quantification
problem. You have probably specified it with Quantification Specification. In your

1 Implicit in Counted Loop in some programming languages.
2 The comparison function depends on the type of the items in the collection and on the specific quantifier. ‘>’ is for Max and ‘<’ for
Min.

problem, you have to compute the collection obtained after applying a function (named
Exp) on every item in a collection that meets a property (named Fil). You are searching
for an iterative solution to your problem.

The type of the items in the result collection are the same as the output type of the
function Exp. The number of items in the result may be, at most, the same as the
number of items in the input collection. In order to get the result, the collection has to be
fully traversed. If the collection is empty, the result is a null collection. There is no
precondition imposed on the collection of data by this quantifier. As the searched
solution is iterative, you need to use a loop to compute the result.

Therefore, use the Counted Loop pattern [5] with the following design guideline for the
loop parts outlined in it (we use as name for the traversal variable i, for the collection of
data collection and for the variable with the result value result).

Loop
Part

Numeric Interval Simple Linear

Initialization i := a;
 Initialize result;

 i := 0;
 Initialize result;

Loop
Continuation
Condition

i <= b (1) i <= (Length of collection) – 1 (1)

Loop Body if Fil (i) then
 Add Exp
 (CurrentItem(collection))
 to result
fi

if Fil (collection [i]) then
 Add Exp (collection [i])) to result
 fi

Loop Update
Statement

i := i + 1 (1) i := i + 1 (1)

Post-mortem The result is in result The result is in result

Loop
Part

Streamed Linked Iterator Based

Initialization Reset (collection);
Initialize result;

p := collection;
Initialize result

iter:=
 collection.Iterator;
Initialize result

Loop
Continuation
Condition

not EOF (collection) p <> NIL not iter.IsDone

Loop Body if Fil (CurrentItem (collection)) then
 Add Exp(CurrentItem(collection))
 to result
fi

if Fil (p^item) then
 Add Exp(p^.item)
 to result
fi

item := iter.Next;
if Fil (item) then
 Add Exp(item)
 to result
fi

Loop Update
Statement

collection := Get (collection) p := p^.next -

Post-mortem The result is in result The result is in result The result is in result

The informal actions “Initialize result” and “Add Exp()) to result” are interpreted
depending on the nature of the output collection (only Simple Linear, Streamed and
Linked are considered) according to the guidelines on the following table. If the
result collection is Simple Linear [5], use another local traversal variable (we use as
name for this variable j) to index in the result collection. In such case, the length of
the result is j – 1.

1 Implicit in Counted Loop in some programming languages.

Actions
Initialize result Add Exp() to result

Simple Linear j := 0 Update (result, j, Exp (collection[i]); (1)
j := j + 1;

Streamed Rewrite (result) Put (result,
 Exp (CurrentItem (collection)))

Linked result := NIL Insert (p^.item, result) (2)

Now you have an iterative solution for your problem.

Acknowledgements

Thanks to Joseph Bergin, this paper´s EuroPLoP’2000 shepherd, for his valuable
comments and suggestions. Also thanks to Jutta Eckstein, who shepherded an earlier
version of this language at EuroPLoP’99.

References

[1] Bergin, J. Patterns for Selection. Proceedings of the 4th European Conference on Patterns
Languages of Programming and Computing, 1999 (EuroPLoP´99).
http://csis.pace.edu/~bergin/patterns/selection.html

[2] Clancy, M.J. and Linn, M.C. Patterns and Pedagogy. Proceedings of the 30 th SIGCSE
Technical Symposium on Computer Science Education, 1999, 37-42.

[3] Gabriel, R. Simply Understood Code. http://c2.com/cgi/wiki?SimplyUnderstoodCode.
[4] Gries, D. The Science of Programming. Springer-Verlag, Texts and Monographs in

Computer Science, 1981.
[5] Proulx, V. K. Programming Patterns and Design Patterns in the Introductory Computer

Science Course, Proceedings of the 31st SIGCSE Technical Symposium on Computer
Science Education, 2000, 80-84. http://www.ccs.neu.edu/teaching/EdGroup/

[6] Soloway, E. From Problems to Programs Via Plans: The Content and Structure of
Knowledge for Introductory Lisp Programming. Journal of Educational Computing
Research, 1(2), 1985, 157-172.

[7] Soloway, E. Learning to Program = Learning to Construct Mechanisms and Explanations.
Communications of the ACM , 29, 9 (Sept. 1986), 850-858.

[8] The Elementary Patterns Home Page: http://www.cs.uni.edu/%7Ewallingf/patterns/
elementary/

1 Update (a, i, x) updates a putting x in its ith element.
2 Insertion in linked list.

Appendix A. Abstract Sequences

Concepts Meaning Concepts Meaning
 S : Seq (T) Type declaration S (a . . b) < S(i) | i <? <a . . b> >
 < > Empty sequence IsEmpty (S) S = < >
 <1, 3, 23, 0 > Sequence literal First (S) Same as S[1]
 < ‘a’ . . ‘ z’ > Sequence by interval Last (S) Same as S (Length (S))
 < x2 | x <? <1 . 10> > Sequence intensionally defined Rest (S) Same as S (2 . . Length (S))
 S [i] I-th element of S Next (S, I) Same as S [i + 1]
 Length (S) Length of S Prev (S, I) Same as S (i – 1]
 Domain (S) <1 . . Length (S) > <? , = Predicates: membership, equality

Range (S) < S(i) | i <? <1 .. Length (S)> > A ++ B Concatenate sequences A and B

Formal description and meanings for the Abstract Sequence

