

Java Idioms: Code Blocks and Control Flow
Arno Haase

Arno Haase Consulting
Arno.Haase@Haase-Consulting.com

Arno.Haase@acm.org

1 Abstract

It is sometimes desirable to treat a piece of code as an object in order to parameterize an
operation, thus abstracting and encapsulating control flow and making it reusable. This
paper introduces two idioms that use anonymous local inheritance to implement this
behavior.

It begins by explaining the concept of code blocks as objects that represent pieces of code
and know the context of the method they are created in. Based on this concept, the
idioms are presented: ANONYMOUS COMMAND using delegation to achieve flexibility and
ANONYMOUS TEMPLATE METHOD employing inheritance.

The paper concludes with a practical discussion of how to use the idioms and when to
choose which of them.

2 Code Blocks

At their core many design patterns are about introducing flexibility at a specific point in
order to hide implementation details and provide a design that limits the scope of
changes to the application. Typically they require the creation of new types to introduce
this flexibility, one type for each concrete context in which the pattern is used.

Creating a full-grown type, however, introduces additional complexity and adds
conscious effort to the implementation. So, by removing complexity and duplication,
new complexity is added, and the advantages of the situation with the pattern must be
weighed against those of the one without it.

For example, polymorphism can in principle be used instead of switch statements
[Fowler99]. This can significantly reduce the complexity of the using code because it
encapsulates the selection of behavior. However, this comes at a price: for every different
case a type needs to be defined. The effort and complexity associated with the creation of
types makes this approach inapplicable for sufficiently small scopes: obviously, most if
statements are not candidates for replacement with polymorphism.

The point of equilibrium, the minimum complexity to make a pattern applicable,
depends strongly on the effort and complexity associated with creating a new type. For
many situations, it is sufficient to have an object that just contains a sequence of
statements and allows them to be passed around and executed.

For example, code that uses JDBC to access a relational database must first acquire a
database connection and a statement object, then access the database and finally release
the resources in an exception safe way. The acquisition and release of the database
resources is the same for most code accessing the database, so it can be factored out. But
then the specific code operating on the database needs for example to be objectified and
passed as a parameter to the abstracted algorithm.

The specific database operation is often only a single Java statement, for example the
execution of an UPDATE. Still, a new type needs to be created, even if it contains only
this single Java statement. Obviously in this case the overhead incurred by creating a new
type is significant compared to the contents of the type.

So in order for patterns to be helpful in reducing complexity in a small context, it is
necessary to have a way of creating objects that fulfils the following requirements:

• local. In the source code the type definition must be close to the code using it so
that a human needs no context switches to understand the code.

• aware of the surrounding scope. If an object is created with the sole purpose of
containing a sequence of statements, then there must be an easy way for these
statements to communicate with the surrounding code, accessing local variables
and being able to return data without much overhead.

• easy to create. There must not be much typing overhead associated with the
definition of a type.

This kind of local, cheap objects containing just a sequence of statements is the concept
of code blocks.

Code blocks are an abstract concept that is not fully supported in the Java programming
language. Anonymous local classes, however, have many of their desirable properties.

• local. First of all, they are local in the sense that a type definition can be
embedded in code so that a human reader can see it together with the using code
without the need for a context switch.

• aware of surrounding scope. Anonymous local classes are also to some degree aware
of the surrounding scope: code in an anonymous local class can access the final
local variables of the containing method though the non-final variables are
invisible to it.

The creation of anonymous local classes is, however, associated with almost as much
overhead as the creation of named types, requiring a class body as well as full method
declaration. Still, anonymous local classes are the best support that Java has for the
concept, and therefore in this paper a method overridden in an anonymous local class
will be called a code block.

3 The Idioms

The object-oriented paradigm – and Java as one of its representatives – supports two

fundamental ways of reusing code, delegation and inheritance. This paper introduces two
idioms for abstracting control flow that utilize these ways of reuse: ANONYMOUS
COMMAND using delegation and ANONYMOUS TEMPLATE METHOD using inheritance.

They both solve the same problem, but their different implementation make them
applicable in slightly different situations which will be described below. This is reflected
identical problem statements with different forces.

The following table summarizes the problem they solve and the solutions they offer.

Idiom Problem Solution

ANONYMOUS
COMMAND

How do you make the common
part of a sequence of statements
reusable if it includes parts that
are specific for the local context
in which it is executed?

The specific and the common
code should be decoupled to
allow the logging of operations or
undo functionality.

Provide a class that
implements an algorithm
which delegates specific variant
activities to command objects
that are passed as parameters.
To execute this algorithm in a
local context, create
anonymous local command
classes for these variant aspects
and pass them to the
algorithm.

ANONYMOUS
TEMPLATE
METHOD

How do you make the common
part of a sequence of statements
reusable if it includes parts that
are specific for the local context
in which it is executed?

The specific and the common
code should be coupled to enable
a refinement hierarchy of
common code sequences where
one uses and supplements the
other.

Provide a superclass
implementing the control flow
and calling hook methods for
the specific parts. To execute
this control structure in a local
context, derive an anonymous
local class from the superclass,
overriding some or all of the
hooks.

The following diagram shows the idioms and their relationships.

<<Concept>>
Code Block

Anonymous
Template Method

Anonymous
Command

is a concrete
implementation of

Can be refined with

After the idioms are described, a detailed example is used to discuss their applicability in
practice.

4 ANONYMOUS COMMAND

Thumbnail
Problem Solution

How do you make the common part of a
sequence of statements reusable if it
includes parts that are specific for the
local context in which it is executed?

The specific and the common code
should be decoupled to the allow logging
of operations or undo functionality.

Provide a class that implements an
algorithm which delegates specific variant
activities to command objects that are
passed as parameters. To execute this
algorithm in a local context, create
anonymous local command classes for these
variant aspects and pass them to the
algorithm.

Example
The acquisition and release of resources before and after an operation is a common
control flow. For a transaction, the result could look something like this simplified code
fragment:

// Example of a sequence of operations that is executed

// around the specific code

try {

 Transaction transaction = new Transaction ();

 // perform operations in the transaction context

 // no exception occurred, so everything is OK

 transaction.commit ();

}

catch (Exception exc) {

 transaction.rollback ();

}

The code providing the context in which the specific operation must be executed is
common to all usages of a transaction. It can be moved into a method of its own that
takes the specific part as a parameter, making it reusable:

/** contains the sequence of statement common to all transactions*/

public class SimpleTransaction {

 /** is called to actually execute a transaction. The parameter

 * contains the code that is executed in the transaction.*/

 public void execute (TxOperation operation) {

 try {

 Transaction transaction = new Transaction ();

 // execute the code block in the transactional context

 operation.perform (transaction);

 transaction.commit ();

 }

 catch (Exception exc) {

 transaction.rollback ();

 }

 }

}

/** used as code block for SimpleTransaction */

public interface TxOperation {

 public void perform (Transaction tx) throws Exception;

}

Client code can then implement the TxOperation interface as an anonymous local
class and pass the specific code to the transaction in this object.

// client code executing a transation using anonymous local

// inheritance

new SimpleTransaction ().execute (new TxOperation () {

 public void perform (Transaction tx) throws Exception {

 // the actual operations for the transaction go here

 }

});

The resulting code is more focused and less cluttered because the details of transaction
handling are hidden. It is also makes it easier to avoid introducing errors or handling
transactions inconsistently because all clients share the implementation of the actual
transaction handling.

Problem
In software systems there tend to be common sequences of statements that are used in
several places, like acquiring a resource, performing an operation on it and then releasing
it again.

This sort of commonality makes it desirable to factor out and reuse the common part.
Otherwise these common code sequences are difficult to change consistently and error
prone to implement, even if the common parts are simple. Rather they all share the “bad
smell” that is attached to code duplication in general.

In spite of this, parts of the sequence are often very specific for a local context, such as
the actual operation on a resource or object, so that it is difficult to extract the common
code into an abstraction of its own. For example, the context sensitive part of the code
sequence often needs to be located close to its calling client so as to improve human
readability. Moreover, the specific code often needs to communicate with its client, for
example to access local client data or to throw exceptions in a specific to the particular
client.

So how do you abstract a common sequence of statements in a reusable way so that using
code can provide part of the sequence individually?

The following forces influence the situation:

• Since common sequences of statements frequently occur at a fairly small
granularity a solution should require little typing overhead in order to be feasible
for short common code parts.

• Often there is the same specific code in several places. This makes it desirable to
reuse an implementation of specific code.

• The common part can belong to another component than the client, making it
highly desirable to decouple the client from the common part.

• The common part may want to provide additional functionality that needs to keep
track of the local parts, like keeping a history, performing logging or providing a
cascaded undo operation.

Solution
Create a class containing the recurring control flow, the algorithm. Also provide an
interface – the command – that captures the abstraction of the code block needed to
parameterize the control flow.

/** represents a common sequence of statements that needs to be

 * parameterized with an instance of Command in order to be

 * executed.*/

public class Algorithm {

 /** contains the actual common code. The parameter contains

 * the specific part of the code that needs to be supplied

 * by a client. */

 public void execute (final Command cmd) {

 // initialization that must always be performed goes here

 cmd.perform(); // call the code that was passed in

 // common code again

 }

 /** needs to be implemented by clients to provide the algorithm

 * with specific code. */

 public static interface Command {

 public void perform ();

 }

}

Then, in each context anonymously derive a local class from this interface and pass it to
the object.

// provide the algorithm with specific code and execute it

new Algorithm().execute (new Algorithm.Command () {

 public void perform () {

 // this is where the specific code is provided

 }

});

This hides the details of the algorithm and provides a higher-level abstraction for the
using code. It helps to focus on the intent of the code rather than the details of how that
is achieved because the common algorithm is represented only by the class implementing
it, providing an idiomatic context for the local code.

The following diagram shows the dynamics of the idiom, in particular explicitly
displaying the code block’s access to the surrounding method’s state.

The algorithm’s execute method executes the common code sequence, calling the
command for the specific part. The command can then access local variables of the
surrounding method to receive or return data. When the command is finished executing,
the algorithm executes the second part of the common code.

The concept of encapsulating code in an object and passing it to another part of the
system for execution is also at the core of the COMMAND pattern as described in
[GHJV95]. The use of code blocks to implement the commands, however, makes
ANONYMOUS COMMAND applicable for factoring out common sequences of statements.

Implementation
There are a lot of issues to consider when implementing ANONYMOUS COMMAND.

Passing data into the code block. The method signature of the code block reflects the
structure of the underlying algorithm; e.g. a code block for an ATOMIC ITERATOR is
typically declared to receive a java.lang.Object as its sole parameter. But in order to
execute the operation on an element, the code block sometimes needs to access additional
data. Since anonymous local classes can access all final variables in the scope of the
surrounding method, store all such data that must be accessible from the code block in

: Object : Algorithm : Command

execute
perform

access local data, ...

final local variables of the surrounding method:

// must be final to be visible for the anonymous local class

final ActionEvent evt = new ActionEvent (....);

// apply the operation to all listeners

new AtomicIterator (allListeners).doForEach (

 new Operation () {

 public void executeOn (Object obj) {

 ((ActionListener) obj).actionPerformed (evt);

 }

 });

Return values. The surrounding method often needs to know the results of the execution
of an anonymous command – for example if it performs a read operation – making it
necessary for that data to be passed from the code block to the surrounding method.
There are several ways this can be achieved.

• Return data using a return value. If returning a value fits conceptually with the
algorithm performed on the code block, then the introduction of a return value
into the code block’s signature is a good way of returning data because it makes the
flow of data explicit. It means that the algorithm must take care of the returned
results, possibly collecting them, and finally returning them itself.

• Collecting Parameter. A variation of this that works if a code block is executed several
times is to use the COLLECTING PARAMETER pattern, passing a collection as a
parameter to each code block and letting it add its results.

• Save data in an attribute. This works only in the special case that there is a
corresponding attribute in the surrounding class. Accessing the surrounding
object’s state can lead to unpleasant subtleties in a multithreaded context, though.
Nonetheless, if it does fit it is an easy and good solution.

• Store data in a final holder. If none of the above approaches work well – and that
is the usual case – a final variable in the surrounding method can be used to
hold the results and make them accessible outside the code block. A final
variable cannot be changed, so an additional level of indirection is needed, making
use of the HOLDER pattern. This approach is the most flexible but also the most
cumbersome. An implementation looks like this:

Collection coll;

....

// the holder must be final to be accessible from the code block

final IntHolder holder = new IntHolder ();

new AtomicIterator (coll).doForEach (new Operation () {

 public void executeOn (Object obj) {

 // store the result in the holder

 holder.value += (obj.toString()).length();

 }

});

System.out.println (“Summarized length of strings: “ +

 holder.value);

with a class IntHolder

/** provides an additional level of indirection to store an

 * int value */

public class IntHolder {

 public int value;

}

Exceptions. It is part of Java’s specification that (checked) exceptions must be either caught
or declared, which usually is a strength of the language because it makes exception
handling more transparent. For code blocks, however, this introduces a complication: it
must be decided early which exceptions an algorithm and its command interface declare
to throw.

This reduces the scope in which an algorithm is usable. Consider an ATOMIC ITERATOR:
if the operation is declared to throw nothing, the ATOMIC ITERATOR cannot be used in a
transactional context where an exception triggers a rollback operation; if the operation is
declared to throw an exception, the implementation is impractical to use in the general
case.

There is no single simple solution to this dilemma. There are, however, several
alternatives with specific strengths and weaknesses.

• If a checked exception is supposed to be thrown by a code block and propagated by
the algorithm then this exception needs to be declared both in the command
interface and the algorithm’s execute method. If the exception is conceptually
related to the algorithm then this can work well.

Often, however, the exception is unrelated to the algorithm and specific to the
context of the surrounding method. If this is the case, the only option is to
duplicate the algorithm for every combination of checked exceptions that needs to
be propagated; this reduces the benefits of ANONYMOUS COMMAND because it
introduces new code duplication. Still, if there are only few different sets of
exceptions that are needed then this is an option.

Declaring the algorithm to throw a generic Exception does not work well because
this forces all clients to handle generic exceptions, whether they can actually occur
in the context or not.

• This problem can be avoided by restricting code blocks to throwing subclasses of
RuntimeException. This means that the compiler cannot ensure that all
exceptions are taken care of but it separates the algorithm from the concern of
propagating exceptions that are unrelated to it.

This approach makes the use of ANONYMOUS COMMAND more convenient. If the

system usually uses checked exceptions to indicate certain conditions, however, this
causes a mismatch if such a condition occurs inside a code block.

• As a compromise, EXCEPTION TUNNELING can be used: the code block is declared
to throw a generic exception which the algorithm wraps in an unchecked exception.
This allows client code to ignore exception handling if it is not needed and to
unwrap – and then handle or rethrow – the actual exception as best fits its needs.

Simplicity. For the use of code blocks to parameterize algorithms to work in practice, it is
essential to keep their use as simple as possible. Providing unneeded flexibility that
complicates the code using an algorithm adds complexity and therefore reduces the
applicability.

Default Implementations. Common commands can be provided in the form of default
implementations. These can be complete – with or without configurability in the
constructor – or partial, requiring one or more methods to be overridden. The latter case
is an application of ANONYMOUS TEMPLATE METHOD, described below. If a default
implementation is stateless, it is even possible to make a single instance globally
accessible, further simplifying its use.

Stepwise Refinement. Client code using ANONYMOUS COMMAND needs to introduce some
syntactic overhead, but that is at a fairly manageable level.

The idiom can be used in a nested fashion to factor out common code within
commands, but doing so naively forces client code to explicitly represent the entire
hierarchy of abstractions. The following example from the domain of relational database
access shows client code, leaving out the exception handling:

// BAD CODE: This Code is overly complicated. Alternatives follow

// ConnectionHandler contains the common code to handle database

// connections, StatementCommand is a default command implementation

// that creates a database statement and provides this to a nested

// command.

new ConnectionHandler().execute (

 new StatementCommand (new StatementHandlingCommand ()

 {

 public void doForStatement (Statement stmt) {

 stmt.executeUpdate ("DELETE * FROM employee;");

 }

});

This code is complicated to understand because all nested abstractions are explicitly
present.

There are two alternatives. Firstly, the StatementCommand could be implemented using
ANONYMOUS TEMPLATE METHOD so that the second level of abstraction is hidden to the
client. Secondly, a StatementHandler class could be written that takes a
StatementHandlingCommand and uses a ConnectionHandler to perform its
operation.

Constructor parameter. Some flexibility can be achieved by passing a parameter to the
constructor, based on which a decision about the algorithm is made. This reduces the
flexibility, but it also reduces the external complexity.

Static execute method. The instantiation of the algorithm can be avoided by providing a
static execute method. This slightly improves the performance because one less
object needs to be created but reduces the flexibility because the algorithm is forced to be
stateless.

Several code blocks. If an algorithm needs several code blocks, they can be grouped into one
command interface or split into several; this decision should be made taking into
account cohesion and reusability considerations.

Scope of the command interface. The command interface can be either an inner type of the
algorithm or a top level type of its own. The first option explicitly connects the two
types, whereas reuse of default implementations across several algorithms favors the latter.

Callbacks. The code block has full access to the surrounding object. But care needs to be
taken when the surrounding object is actually accessed from the code block because there
is no implicit guarantee that the containing method has left the object in a consistent,
valid state before executing the code block. Accessing the object state from a code block is
a callback operation by nature, sharing some of the subtle issues of multithreading.

Editor macros. ANONYMOUS COMMAND is very useful for providing functionality that has
system-wide use or is even reusable as part of a library, for example executing code in a
transactional context. In such a situation an editor macro makes the use of ANONYMOUS
COMMAND much more convenient because much of the typing overhead (instantiating
the algorithm and the interface, writing the method signature, calling the execute
method) is identical for all places where ANONYMOUS COMMAND is used.

Making an editor macro available together with the algorithm can significantly improve
the acceptance of the idiom in a team.

Consequences
The ANONYMOUS COMMAND idiom has the following benefits:

• The resulting code is written at a higher level of abstraction, allowing for code that
is easier for human readers to understand.

• Code duplication is avoided, allowing changes and fixes to be applied at a single
place and reducing the potential for erroneous copy and paste programming.

• Not only algorithms but also code blocks can be reused, even across several
algorithms. If one algorithm takes several code blocks, defaults for these can be
used independently of one another. Several clients can share specific code at the
class or even at the object level.

• The communication of the code block with the surrounding code becomes more
explicit. This is often helpful for assessing the quality of the general design and
pointing out opportunities for refactoring.

• The specific local code provided by clients is strongly decoupled from the common
code because they are separate objects and share no code. This allows the common
part to reside in a separate component with a clean and simple interface.

• Several or all clients can share the same handler object. Actually any multiplicity of
handlers is possible, for example using the SINGLETON pattern or a pool. This is
particularly helpful if the handler is expensive to create or represents a limited
resource. The other extreme of having one handler per local context, however,
makes sense for handler objects that are cheap to create. The essential point is that
ANONYMOUS COMMAND cleanly decouples local context and handler so that any
multiplicity can be implemented.

• Commands are passed to the handler as separate objects, so the handler can store
them in a straightforward way in order to provide additional functionality. Usually
this only makes sense if there is one global handler instance for all clients so that
there is one place to keep the commands. Examples of such functionality are the
keeping of a history, performing logging or providing cascaded undo functionality.

ANONYMOUS COMMAND has liabilities as well:

• The use of ANONYMOUS COMMAND introduces additional complexity to the
communication of the code block with the surrounding code. This is especially true
if complex data needs to be returned or specific exceptions thrown from the code
block.

• Once the command interface has been introduced and is widely used, it cannot be
changed without affecting many parts of the system.

• The command code is embedded in the client code, making it difficult to test and
debug separately. There is also no separate hierarchy of command classes that can
be verified a priori to make sure all commands behave correctly. That makes it
easier for a command to be intentionally or accidentally implemented in such a
way that it corrupts the state of the command handler or compromises system
security. Such a faulty command can have non-local consequences that are hard to
reproduce and track to their source.

• ANONYMOUS COMMAND cannot be used across process boundaries. The common
part is cleanly separated from the client code so that a command object could in
principle be passed from a client in one process to a handler in another. This
distribution, however, would prevent the command from accessing the local
context of the calling method. If the handler is in another process than the client,
only the classical COMMAND pattern can be used.

• Creating anonymous local classes requires syntactic overhead, which limits this
idiom’s applicability for very short code sequences; the syntactic overhead has a
tendency to hide the actual content of the code block. As the idiomatic use of
ANONYMOUS COMMAND becomes habitual, however, the syntactic overhead
becomes less distracting, and its obfuscating effect diminishes.

• Using ANONYMOUS COMMAND causes a slight performance penalty because it

requires the creation of one additional object for each command that is passed to
the algorithm.

Known Uses
The nature of this idiom is so fundamental that it is used in most large Java systems. For
example, the Java core library uses it to implement the security API. The interface
java.security.PrivilegedAction is used to pass operations to the
doPrivileged methods of java.security.AccessController. Client code
often uses anonymous local classes to implement the operations.

There are also two other idioms that are often implemented using ANONYMOUS
COMMAND:

• ATOMIC ITERATOR provides a method that applies an operation to all elements of a
collection in an atomic way. The operation to be applied is often implemented as
an ANONYMOUS COMMAND. The JGL collection library is implemented in this way.

• EXECUTE AROUND METHOD executes an operation in a specific context, performing
operations before and after it, for example acquiring and releasing a resource that is
needed by the operation. This idiom is also often implemented to accept the
operation as an ANONYMOUS COMMAND.

5 ANONYMOUS TEMPLATE METHOD

Thumbnail
Problem Solution

How do you make the common part of a
sequence of statements reusable if it includes parts
that are specific for the local context in which it is
executed?

The specific and the common code should be
coupled to enable a refinement hierarchy of
common code sequences where one uses and
supplements the other.

Provide a superclass implementing
the control flow and calling hook
methods for the specific parts. To
execute this control structure in a
local context, derive an anonymous
local class from the superclass,
overriding some or all of the
hooks.

Example
The transaction example from ANONYMOUS COMMAND can also be implemented using
inheritance.

The following code fragment shows typical transaction handling as it is often needed
throughout an application:

try {

 Transaction transaction = new Transaction ();

 // perform operations in the transaction context

 // no exception occurred, so everything is OK

 transaction.commit ();

}

catch (Exception exc) {

 transaction.rollback ();

}

Most of this code sequence is common to all transactions. This common part can be
moved into a superclass that looks like this:

/** implements a template method that manages the transaction and

 * calls a hook method to execute the actual code.*/

public abstract class SimpleTransaction2 {

 public final void execute () {

 try {

 Transaction transaction = new Transaction ();

 // call the hook method in which subclasses

 // provide specific code

 perform (transaction);

 transaction.commit ();

 }

 catch (Exception exc) {

 transaction.rollback ();

 }

 }

 // override with the transactional application code

 protected abstract void perform (Transaction tx);

}

This superclass allows the execution of code in a transactional context by creating an
anonymous local subclass and overriding the hook method.

// override the hook method in an anonymous local class

new SimpleTransaction2() {

 // this method is called as a hook from the execute method

 public void perform (Transaction tx) {

 }

}.execute ();

This hides the details of transaction handling, and only the local code that is executed
inside the transaction remains.

Problem
In software systems there tend to be common sequences of statements that are used in
several places, like acquiring a resource, performing an operation on it and then releasing
it again.

This sort of commonality makes it desirable to factor out and reuse the common part.
Otherwise these common code sequences are difficult to change consistently and error
prone to implement, even if the common parts are simple. Rather, they all share the “bad
smell” that is attached to code duplication in general.

In spite of this, parts of the sequence are often very specific for a local context, such as
the actual operation on a resource or object, so that it is difficult to extract the common
code into an abstraction of its own. For example, the context sensitive part of the code
sequence often needs to be located close to its calling client so as to improve human
readability. Moreover, the specific code often needs to communicate with its client, for
example to access local client data or to throw exceptions in a specific to the particular
client.

So how do you abstract a common sequence of statements in a reusable way so that using
code can provide part of the sequence individually?

The following forces influence the situation:

• Since common sequences of statements frequently occur at a fairly small
granularity a solution should require little typing overhead in order to be feasible
for short common code parts.

• Often there is the same specific code in several places. This makes it desirable to
reuse an implementation of specific code.

• Often there are points in the sequence for which some clients use a default
implementations while other clients need to provide specific code. These different
needs are best served by allowing clients to ignore some points of variability
entirely and execute the default behavior implicitly. This couples the common code
and the clients.

• Often there is a hierarchy of reusable common code sequences, one using and
supplementing the other in order to provide more refined functionality. An
example of this is the access of a relational database with JDBC: the most general
common code sequence just acquires and releases a database connection and
performs exception handling, but in many places another code sequence that also
acquires and releases a Statement object is needed as well. Such a hierarchy blurs
the distinction between the responsibilities of the common part and the client code
by coupling the two.

Solution
Create an abstract superclass containing a public method that contains the common code
– the template method – calling hook methods where configurable behavior is needed.

public abstract class DemoTemplate {

 public final void execute () {

 // this method contains the common sequence of statements in

 // a reusable way. At points where variability is needed hook

 // methods are called so that subclasses can determine the

 // behavior.

 doSpecific1 ();

 doSpecific2 ();

 }

 protected abstract void doSpecific1 ();

 protected abstract void doSpecific2 ();

}

In each place where the common behavior is needed, derive an anonymous class from
this superclass, overriding the hooks, and call the public method on its instance.

new DemoTemplate() {

 protected void doSpecific1 () {

 // The body of this method is an actual code block that is

 // passed by the client to the operation in the execute method

 // of the superclass

 }

 protected void doSpecific2 () {

 // The body of this method is another code block

 }

}.execute ();

This idiomatic kind of anonymous local inheritance provides a higher-level abstraction
for code using it because it contains the common part of the code sequence in a class and
gives it a name that can be used to talk about it.

The anonymous local inheritance introduces some syntactic overhead in the code using
the abstracted control flow, but this is unlikely to be significantly bigger than the amount
of code that is abstracted into the superclass.

The following sequence diagram illustrates the order of events, explicitly showing the
possible access of the anonymously overridden methods to the containing object’s state.

The template method (“execute”) executes the common part of the code. When it
reaches a point where clients can provide specific code, it calls one of the hook methods
that the client could have overridden. Since the overridden hook method is part of an
anonymous local class, it can access local variables of the containing method.

ANONYMOUS TEMPLATE METHOD shares the structure with the TEMPLATE METHOD
pattern as described in [GHJV95]: a superclass implements an algorithm that calls hook
methods at points for variability, and subclasses provide specific behavior by overriding
the hook methods.

The context of ANONYMOUS TEMPLATE METHOD is, however, much more specific, and
the anonymous local inheritance introduces the callbacks into the surrounding method
to the dynamics of the idiom.

Implementation
There are a lot of issues to consider when implementing ANONYMOUS TEMPLATE
METHOD. Some of them are related to anonymous local inheritance and are therefore
shared with ANONYMOUS COMMAND, but others are specific for ANONYMOUS TEMPLATE
METHOD.

Passing data into the code block. The method signature of the code block reflects the
structure of the underlying algorithm; for example, a code block for an Atomic Iterator is

: Object :Template
Method

execute

access local data, ...
doSpecific1

access local data, ...
doSpecific2

typically declared to receive a java.lang.Object as sole parameter. But in order to
execute the operation on an element, the code block sometimes needs to access additional
data. This can be achieved by storing the data in final local variables as described in
more detail for ANONYMOUS COMMAND.

Return values. The surrounding method often needs to know the results of the execution
of an anonymous command – for example if it performs a read operation – making it
necessary for data to be passed from the code block to the surrounding method. This can
be achieved by using a return value – implementing the COLLECTING PARAMETER pattern
– or by storing data in an attribute or a final holder variable. These alternatives are
described in more detail for ANONYMOUS COMMAND.

Exceptions. Java requires checked exceptions to be either caught or declared which in the
general case makes it difficult to pass them from a code block to the surrounding
method. There are three approaches that are discussed in more detail for Anonymous
Command: either the algorithm is duplicated for every combination of checked
exceptions that is needed or code blocks are restricted to throw only unchecked
exceptions or EXCEPTION TUNNELING is used as a compromise.

Simplicity. For the use of code blocks to parameterize algorithms to work in practice, it is
essential to keep their use as simple as possible. Providing unneeded flexibility that
complicates the code that uses an algorithm adds complexity and therefore reduces the
applicability.

Use of qualifiers. The template method should be final to make explicit that it is not to
be overridden. The superclass should be made abstract, even if all hook methods
have default implementations.

Visibility. The template method should be the superclass’ only public method. It is the
only method that is supposed to be called by a client. The hook methods should be
protected.

Default implementations. ANONYMOUS TEMPLATE METHOD makes it easy to make one or
more code blocks optional by providing default implementations for the hook methods.
This is a convenient way of providing additional points of flexibility without forcing
every user into the increased complexity.

Stepwise refinement using inheritance. Sometimes there are several levels of abstractions for
which stepwise refinement of the implementations is needed. This can be modeled well
by using an inheritance hierarchy of ANONYMOUS TEMPLATE METHOD classes, each
implementing some of its superclass’ hooks and calling new hooks. Derived TEMPLATE
METHOD classes can make their implementations of hook methods final to make
explicit which hooks are supposed to be overridden on them.

Providing an ANONYMOUS TEMPLATE METHOD as a command. If Anonymous Command
is used to provide a configurable algorithm, an ANONYMOUS TEMPLATE METHOD
implementing the Command interface can be used to provide a variable reusable
command. An example of this is contained in section 6 “The Idioms in Practice”.

Constructor parameter. Some flexibility can be achieved by passing a parameter to the

constructor which influences the algorithm’s behavior. This reduces the flexibility, but it
also reduces the external complexity.

Callbacks. The code block has full access to the surrounding object. But care needs to be
taken when the surrounding object is actually accessed from the code block because there
is no implicit guarantee that the containing method has left the object in a consistent,
valid state before executing the code block. Accessing the object state from a code block is
in the nature of a callback, sharing some of the subtle issues of multithreading.

Editor macros. Much of the syntactic overhead in a client using ANONYMOUS TEMPLATE
METHOD is identical for every usage. Providing an editor macro together with the
superclass makes it easier to use and can improve acceptance in a team.

Consequences
The ANONYMOUS TEMPLATE METHOD idiom has the following benefits:

• The resulting code is written at a higher level of abstraction, allowing for code that
is easier to understand by human readers.

• Code duplication is avoided, allowing changes and fixes to be applied at a single
place and reducing the potential for erroneous copy and paste programming.

• The communication of the code block with the surrounding code becomes more
explicit. This is often helpful for assessing the quality of the general design and
highlighting opportunities for refactoring.

• The superclass can provide a default implementation for hook methods, allowing
clients to either provide their own implementations or entirely ignore the fact that
there is a potential point of variability. This optional variability significantly
reduces the complexity of the client code that uses the default implementation.

• A hierarchy of reusable code sequences where one uses and supplements the code of
the other can be implemented using an inheritance hierarchy of ANONYMOUS
TEMPLATE METHODs. This allows client code to use the abstraction which best fits
its needs and ignore the hierarchy.

ANONYMOUS TEMPLATE METHOD also imposes some liabilities:

• The use of ANONYMOUS TEMPLATE METHOD introduces additional complexity to
the communication of the code block with the surrounding code. This is especially
true if complex data needs to be returned or specific exceptions thrown from the
code block.

• Once the hook methods have been introduced and are widely used, their signature
cannot be changed without affecting many parts of the system.

• The code block implementations are embedded in the client code, making them
difficult to test and debug separately. That makes it easier for a code block to be
intentionally or accidentally implemented in such a way that it corrupts the state of
the command handler or compromises system security. Such a faulty command can
have non-local consequences that are hard to reproduce and track to their source.

• The common code sequence and the local specific code provided by the client and
the handler code reside in the same object, coupling the two; the specific code is
not objectified but only methodified. This prevents the use of a global pool of
handler objects.

• Creating anonymous local classes requires syntactic overhead, which limits this
idiom’s applicability for very short code sequences; the syntactic overhead has a
tendency to hide the actual content of the code block. As the idiomatic use of
ANONYMOUS TEMPLATE METHOD becomes habitual, however, the syntactic
overhead becomes less distracting, and its obfuscating effect diminishes.

• Using ANONYMOUS TEMPLATE METHOD causes a slight performance penalty
because it requires the creation of an object whenever it is used.

Known Uses
The nature of this idiom is so fundamental that it is used in most large Java systems.
Specifically, two other idioms that are widely used are often implemented using it:

• ATOMIC ITERATOR provides a method that applies an operation to all elements of a
collection in an atomic way. The operation to be applied is often provided as an
ANONYMOUS TEMPLATE METHOD.

• EXECUTE AROUND METHOD executes an operation in a specific context, performing
operations before and after it, for example acquiring and releasing a resource that is
needed by the operation. Again, the idiom is often implemented to take the
operation as an ANONYMOUS TEMPLATE METHOD.

Another frequent use of ANONYMOUS TEMPLATE METHOD is to create a parameterizable
default command for ANONYMOUS COMMAND.

A hierarchy of ANONYMOUS TEMPLATE METHODs was used in the PDE application, a
globally distributed business planning application. The server code that receives a call
from a client needs to initialize several resources and to provide exception handling code.
There are several kinds of calls that form a specialization hierarchy, one level using and
supplementing the common code of the other. This hierarchy of calls is represented by
an inheritance hierarchy of ANONYMOUS TEMPLATE METHODs.

6 Other Patterns

ANONYMOUS COMMAND and ANONYMOUS TEMPLATE METHOD are related to a number
of other patterns and idioms in various ways.

They share the structure of COMMAND and TEMPLATE METHOD [GHJV95]. The
ANONYMOUS versions described in this paper, however, set this structure in the context of
anonymous local inheritance, coupling the code blocks to the surrounding method and
introducing callbacks to their dynamics.

EXECUTE AROUND METHOD and ATOMIC ITERATOR (closely related to ENUMERATION
METHOD [Beck97]) are idioms that rely on code blocks and are therefore implemented

using one of the ANONYMOUS idioms described in this paper.

The COLLECTING PARAMETER pattern described in [Beck97] can be used to return data
from a code block to the surrounding method, especially if the algorithm executes the
code block repeatedly.

And finally EXCEPTION TUNNELING can be used to propagate a checked exception from a
code block to the surrounding method without having to declare it.

The following table summarizes these patterns.

Name Problem Solution

COLLECTING
PARAMETER
[Beck97]

How do you return a
collection that is the
collaborative result of several
method calls?

Add a parameter to all the methods
that collects the result.

COMMAND
[GHJV95]

How can you parameterize
clients with different requests?

Encapsulate a request as an object
and pass this object to a client.

ENUMERATION
METHOD
[Beck97]

How do you perform iteration
over a collection in an atomic
way?

Implement a method that executes a
block for each element of the
collection.

EXCEPTION
TUNNELING

How do you propagate a
checked exception without
declaring it? This is
particularly an issue if the
exception needs to be
propagated through code that
is used in more than one
context.

Wrap the checked exception in an
unchecked exception and throw
that. At a point where the checked
exception can be meaningfully
handled or propagated, catch the
unchecked exception and rethrow
or handle the inner exception.

EXECUTE
AROUND
METHOD
[Beck97]

How do you abstract a pair of
actions that need to be
performed before and after a
sequence of statements?

Pass a code block containing the
sequence of statements to a method
that performs the first action, then
executes the block, and finally
performs the second action.

TEMPLATE
METHOD
[GHJV95]

How can you provide a family
of algorithms, allowing certain
steps to be redefined?

Define the skeleton of an algorithm
in an operation, deferring some
steps to subclasses.

7 Conclusion

This paper discussed the use of anonymous local inheritance to implement the concept
of code blocks.

It introduced two idioms that reify a recurring sequence of statements and allow it to be
parameterized using anonymous local inheritance, one using inheritance and one using

delegation. Both ANONYMOUS COMMAND and ANONYMOUS TEMPLATE METHOD allow
code to be written at a higher level of abstraction, reducing complexity and avoiding code
duplication.

Both idioms solve the same problem, but they resolve different forces and have different
benefits and liabilities.

Different abstractions. The abstractions created by the two are slightly different.
ANONYMOUS COMMAND focuses more on the code block being passed to the algorithm
whereas ANONYMOUS TEMPLATE METHOD emphasizes the parameterized algorithm. There
is no functional relevance attached to this distinction but it can be used to help human
readers understand the code.

Coupling. ANONYMOUS COMMAND uses a handler object that is distinct from the
command objects that are passed to it by client code, resulting in high degree of
decoupling between the client code and the handler. Commands and the handler have
clearly distinct responsibilities. This separation allows the use of one global handler that
can even store a history of executed objects to implement logging or multiple undo.

In ANONYMOUS TEMPLATE METHOD the common code sequence and the code blocks
provided by clients reside in the same object, creating a stronger coupling between them.
This tighter coupling makes it easier to implement a refinement hierarchy of code
sequences where one uses and supplements the other. Such a hierarchy can be represented
by an inheritance hierarchy of ANONYMOUS TEMPLATE METHODs very naturally.

As a system evolves, the two idioms are often used together. Typically, ANONYMOUS
COMMAND is introduced first to provide a context for local client specific code. Then
later it turns out that there are groups of commands that again have common code. This
second level of commonality can conveniently be implemented by providing an
ANONYMOUS TEMPLATE METHOD superclass that implements the command interface.
This provides the benefits of decoupling at the highest level while allowing clients to
choose from a hierarchy of partially implemented default commands.

Defaults. Both idioms allow default code blocks to be provided, but they do so in
different ways. If an algorithm is to be parameterized in several places, the idioms have
specific benefits and liabilities.

ANONYMOUS COMMAND allows default command implementations to be used for several
algorithms as long as the command interface remains the same. It is also possible to
provide several default commands for each point of variability and combine them
independently. But it confronts every client with every point of variability, not allowing
for implicit defaults.

ANONYMOUS TEMPLATE METHOD on the other hand allows a client to implicitly use a
default implementation of a code block, not forcing it to address the point in any way.
Several subclasses can be created to provide different defaults, but in the case of several
hook methods the defaults cannot be combined independently.

8 Acknowledgements

I would like to thank my shepherd Frank Buschmann for the thorough and helpful
feedback he gave. He helped me greatly to improve this paper. I would also like to thank
Jan Hermanns, Markus Lauer, Kevlin Henney, Bernd Gründling and Pascal Costanza for
the fruitful discussions and input they provided.

9 References

[Beck97] Kent Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1997

[Fowler99] Martin Fowler, Refactoring. Improving the Design of Existing Code, Addison-
Wesley, 1999

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley, 1995

[Henney99] Kevlin Henney, Patterns inside out, presented at Application Development 1999

[Henney00] Kevlin Henney, C++ Patterns – Executing around Sequences, presented at
EuroPloP 2000

