
C++ Patterns
Reference Accounting

Kevlin Henney
March 2002

kevlin@curbralan.com
kevlin@acm.org

Abstract

I felt free and therefore I was free.

Jack Kerouac

Object-oriented systems represent their information and express their behavior through networks
of objects. Some objects, such as value-based objects, are strictly owned, managed, and contained
within the scope of functions or other objects. Other kinds of objects are more loosely associated,
and do not necessarily participate in simple, hierarchical relationships with their dependents. The
indirection often leads to sharing, which raises questions of constraint management. What if there
is an upper limit to the number of dependents an object should have? How can the end of a
shared object's life be constrained to coincide with the end of its last dependent?

In C++, such issues are normally presented in terms of memory management, and the solution in
terms of reference counting — normally a single reference-counting scheme, dependent on the
programmer's preference or previous exposure. In truth, there is both more to reference counting
than memory management, more to memory management than reference counting, and more to
the implementation of any reference accounting scheme than personal preference. Different
contexts give rise to different forces, and different implementations have different consequences.
Should a reference count be embedded in the shared object it accounts for, or should it be held
separately? Should a detached reference count have an explicit link the shared object or not?
Should an explicit reference count even be used to track a shared object? A fuller understanding
of the problem solved and solution proffered is needed to determine the most appropriate
design.

The patterns in this paper document idiomatic practices for managing indirection-based objects
in C++, by counting or otherwise tracking the references made to them. They are connected into a
language.

Accounting for References

One, two... one, two... three, two, three, four... three, two... one, two....

This could be a microphone sound check gone out of control. Or it could be the sound of an object
if it knew, and spoke aloud, the number of pointers aimed at it. In C++, by default, this is at best a
muffled silence: A regular object is blissfully unaware of the pointers being held in its name.
Tracking references to an object is a utility offered by many code libraries. The most common
application of this technique is to automate the deletion of a shared heap object: one, two, one,
none, gone — rather than: one, two, one, none, leak.

The use of reference counting is a common enough, advanced technique [Buschmann+1996,
Coplien+1992, Gamma+1995, Meyers1996], but is normally taught or used in one specific context,
e.g. optimizing string copying or tracking explicitly shared objects, and in only one configuration,
depending on the background of the teacher or user, e.g. embedded versus detached count. There
are, in truth, many different techniques for tracking references, and not all of them involve an
explicit count, hence the preferred use of the more accurate term reference accounting . There are
also many diverse applications, although memory management appropriately dominates
(sometimes to the point of obsession...) the mind of many a C++ programmer.

Many Motivations, Many Solutions

Reference accounting is essentially about regulated sharing: How much or how little, and what
matters and when it matters. There are three common areas in which reference accounting is
commonly applied:

? Object lifetime management for shared objects: This is normally thought of, more narrowly, as
memory management because it most often addresses the issue of how to balance a new with a
delete. The significant event in such a scenario is when the reference count drops to zero.

? Constraint management for relationships with shared objects: For instance, maximum limits on
sharing of resources, such as locking counted semaphores. The significant event in such a
scenario is normally when the reference count rises to a high-water mark, although low-water
mark scenarios are not uncommon.

? Instrumentation meta-data : The instance count for a particular class can be tracked, and such data
can be used for debugging and profiling. There is no significant event in such a scenario.

This paper is specifically concerned with the first category — that of object lifetime management
for shared objects — although the details generalize to the other areas. Within this first category
we can distinguish two common but separately motivated applications:

? HANDLE–TARGET with a shared target object: In a HANDLE–TARGET configuration the target object
is explicit and is known to the user of the handle, which is used as the principal means of
access. The most common HANDLE–TARGET pattern is PROXY, along with idiomatic variants
such as SMART POINTER.

? HANDLE–BODY with a shared body object: In a HANDLE–BODY configuration the body object is
implicit and invisible, and is unknown — or, to be precise, its existence is transparent — to the
user of the handle. Object sharing is normally introduced as an optimization.

So, in the former case the relationship and both objects are knowable and visible, and the intent is
related to presentation of the target through the handle. In the latter case the motivation is that of
representation, and so encapsulation is the driving concern. In both cases there is a handle and a
shared object. Where the details of reference accounting reside is the next design consideration.
The management is always initiated through the handle. Looking at the object configuration
spatially, there are four places that a count or link can be placed, as shown in Figure 1: in the

handle itself; in the shared object; in an additional object that conceptually lies between the
handle and the shared object; or in an object outside the immediate vicinity of the handle and
shared-object space.

Figure 1. Counting handles and a shared object, and the spaces where reference accounting mechanisms
may be placed.

For HANDLE–TARGET configurations we can discern three categories of pointer and SMART
POINTER:

? Strong pointers: A strong pointer is one that affects the lifetime of the target object. The ideal
being that when there are no more strong pointers to an object, it may be deleted safely. Such
pointers may be used in standard containers in exactly the same way that a std::auto_ptr
cannot. std::auto_ptr imposes an exclusive rather than shared ownership model on heap
objects, making it unsuitable for use in standard containers such as std::list.

? Weak pointers: A weak pointer does not affect the lifetime of a shared object. However, it is well
defined when the target object has been destroyed, delivering a null or an appropriate PROXY
alternative.

? Unmanaged pointers: Built-in pointers and non-counting SMART POINTERs can be considered to
make up a third, degenerate category. Unmanaged pointers are agnostic on the issue of
memory management, providing basic indirection capability, in the case of built-in pointers,
plus some other form of 'smartness', in the case of other SMART POINTERs.

Although reference accounting can resolve a number of constraint and memory-management
problems, the ongoing absence of free lunches means that its adoption incurs costs that may or
may not be offset by its benefits. For instance, it is possible that the development of a reference-
accounting solution may be more complex than an alternative scheme, such as the containment
and stewardship of a shared object graph by a manager object. Similarly, a reference-accounting
solution may be more intrusive, requiring significant changes to types that participate in
reference accounting. On the other hand, the alternatives may well be tedious, error prone, more
intrusive, and even more open to accident or abuse. These issues inform the adoption of reference
accounting and the careful selection of a particular configuration.

Reachability and accountability of objects lost in cycles is perhaps the most notable of these
concerns. In a HANDLE–TARGET configuration it is possible that a graph of object relationships
will contain cycles. The simplest example is a bidirectional relationship in which each participant
object keeps the other object's reference count alive, even when there are no other reachable
objects referring to either of them. This problem does not arise in a HANDLE–BODY configuration
because it is not possible to share unknowable objects, let alone arrange them in a loop. There are
a number of different approaches to cycle breaking:

Within the
Shared Object

Between the
Handle and the
Shared Object

In the HandleOutside both the
Handle and

Shared Object

? Adopt an externally imposed lifetime management scheme, rather than the co-operative and automatic
approach of reference accounting . This typically involves the introduction of a MANAGER object
[Sommerlad+1998] and a strict regime governing which other objects may hold pointers to the
shared objects under the MANAGER object's stewardship.

? Removal of cycles at the design stage. Sometimes cycles can be anticipated and an alternative
design can be found that removes the need for them. However, these can sometimes result in
more complex designs: The cycles are normally there for a reason, so removing them means that
the design must compensate by placing the otherwise lost responsibility elsewhere.

? Removal of cycles at runtime . If a cycle is anticipated it is possible to null one of the handles
responsible for keeping the cycle alive, thereby breaking the chain. However, this does require
more awareness of the lifetime of the shared objects than might have been assumed in a
reference accounted design.

? Dilution of cycles at runtime . The use of weak or unmanaged pointers can be used to break a
chain, as they do not participate in the stay-alive behavior of a reference-accounting design.

? An additional, or alternative, garbage collection mechanism. Garbage collection is not beyond being
integrated with the reference-accounting configurations described in this paper. However, it
adds an area of consideration that deserves its own separate treatment. So, whilst compatible
with the aims of this paper, garbage collection is considered beyond its scope.

The Pattern Language

The design space is a surprisingly rich one for the reference-accounting domain, with numerous
patterns contributing to the understanding and application of appropriate solutions. These
patterns may be organized into a pattern language, shown in Figure 2. In its current form the
language is biased towards lifetime management of shared heap objects, but it can also be used
more generally.

COUNTING HANDLE defines the general entry point into the language. An additional entry point,
focused specifically on optimizing representation copying, is through VALUE OBJECT. As shown in
Figure 2, the entry level is focused on the introduction of the handle, general reference-
accounting patterns follow down from COUNTING HANDLE, and for HANDLE–BODY additional
patterns are considered. The patterns rooted in EXPLICITLY COUNTED OBJECT fall under the
traditional heading of reference counting .

Figure 2. Patterns for reference accounting in C++. The arrows show the flow into and through the pattern
language. The light-colored patterns are documented in this paper.

EXPLICITLY COUNTED

OBJECT
COPY ON

WRITE
LINKED

HANDLES

IMMUTABLE

OBJECT
PROXY

SMART

POINTER
SMART

REFERENCE

EMBEDDED

COUNT
DETACHED

COUNT
LOOKED-UP

COUNT

PUBLIC

COUNTABILITY
HIDDEN PREFIX

COUNT
INDEPENDENT

COUNT
ASSOCIATING

COUNT

COUNTING

HANDLE
PROXYSMART

POINTER
HANDLE–BODY VALUE

OBJECT

Looking back to Figure 1, the patterns in the language that provide and characterize the physical
structure of a reference-accounted configuration can be related as shown in Figure 3.

Figure 3. Counting handles and a shared object, and the places where reference accounting mechanisms can
be realized.

Pattern Thumbnails

The patterns used in this paper are described here in thumbnail form in Tables 1 and 2, providing
a summary of the problem and solution for each:

? Table 1 lists the patterns documented in this paper. These patterns are responsible for
introducing a relationship between a shared object and its managing handle, and for
determining the physical configuration.

? Table 2 presents other key patterns that are used but not documented in this paper. The
references given indicate where a pattern has been formally documented as such or,
alternatively, where it has been documented as a proven, recognizable practice, possibly by a
different name.

Name Problem Solution

COUNTING HANDLE How can a shared object
allocated on the heap be
accessed simply and have
its lifetime managed
transparently, without
explicit intervention from
the shared object's users?

Introduce or nominate a
handle object through which
the user works on the shared
object. The handle
encapsulates the responsibility
for tracking references to the
shared object and for its
deletion.

EXPLICITLY
COUNTED OBJECT

How can a COUNTING
HANDLE know that it is the
last one to refer to a shared
object?

Introduce an explicit reference
count that is incremented and
decremented to track the
number of COUNTING
HANDLEs pointing at the
shared object.

Within the
Shared Object

Between the
Handle and the
Shared Object

In the HandleOutside both the
Handle and

Shared Object

LINKED
HANDLES

DETACHED
COUNT

EMBEDDED
COUNT

LOOKED-UP
COUNT

EMBEDDED COUNT How can a direct user of an
EXPLICITLY COUNTED
OBJECT know the reference
count of the shared object?

Embed the reference count in
the EXPLICITLY COUNTED
OBJECT itself.

PUBLIC
COUNTABILITY

How can both the users of a
shared object with an
EMBEDDED COUNT and the
shared object itself be
aware of the reference
count?

Make the reference counting
capability an explicit part of
the interface and
representation of the shared
object's class.

HIDDEN PREFIX
COUNT

How can an object's type be
independent of an
EMBEDDED COUNT?

On allocation, provide
additional memory for the
count in the memory
preceding the shared object.

DETACHED COUNT How can a shared object be
both an EXPLICITLY
COUNTED OBJECT and kept
independent of the
reference count?

Introduce a separate object
that is managed by the
COUNTING HANDLE to hold the
reference count.

INDEPENDENT
COUNT

How can a DETACHED
COUNT be kept physically
independent of the shared
object for which it
accounts?

Have the COUNTING HANDLE
hold separate pointers to the
EXPLICITLY COUNTED OBJECT
and the DETACHED COUNT.

ASSOCIATING
COUNT

How can a DETACHED
COUNT know and affect an
EXPLICITLY COUNTED
OBJECT?

Have the DETACHED COUNT
hold a pointer to the
EXPLICITLY COUNTED OBJECT.

LOOKED-UP COUNT How can EXPLICITLY
COUNTED OBJECTs and their
reference counts be
grouped and treated
together without
necessarily affecting the
type of the shared object?

Manage the shared objects and
their counts collectively in a
separate managed object,
using some identity of the
shared object as the key for its
direct access from the
COUNTING HANDLE.

LINKED HANDLES How can all the COUNTING
HANDLEs associated with a
shared object be addressed
collectively without
introducing any
intermediate objects?

Introduce bidirectional links
between the COUNTING
HANDLEs so that they are
aware of both the shared object
and other COUNTING HANDLEs
referring to the same object.

Table 1. Pattern thumbnails for determining physical handle, shared, and counting configuration, listed in
partial order of consideration.

Name Problem Solution

COPY ON WRITE

[Henney2001c,
Meyers1996,
Murray1993]

How can the representation
body in a HANDLE–BODY
configuration be shared
transparently when any
change to the body's state
will affect all the handles?

Treat the body as an
IMMUTABLE OBJECT for all
query operations on the
handle. Any operations that
require change to the
representation must ensure
that it is not shared, making
their own copy of it if
necessary.

HANDLE–BODY

[Coplien1992,
Gamma+1995]

How can the representation
of an object be decoupled
from its usage, for instance
to reduce its copied
footprint?

Place the abstraction and
representation into separate
objects (and class hierarchies),
so that the abstraction is
accessed via a handle object
and its representation is a
separate, hidden, body object.

IMMUTABLE OBJECT

[Henney2000a,
Henney2000b,
Henney2001b]

How can you share objects
and guarantee no
interference problems from
operation side effects?

Hold the state of the object
fixed, offering only query
operations on it — no modifier
operations. Any changes are
effected by replacing the object
with another, appropriately
initialized with the right state.

PROXY

[Buschmann+1996,
Gamma+1995]

How can a client
transparently communicate
with a target object when
the communication must be
managed?

Provide a proxy that stands in
for the actual target object,
forwarding and managing
requests to the target as
necessary.

SMART POINTER

[Meyers1996,
Stroustrup1994,
Stroustrup1997]

How should a PROXY be
defined where control on
the target is the same for
access to all its members
and no actions are required
after the request has been
forwarded?

Define a class that supports
conventional pointer
operations, e.g. operator* and
operator->, so that access to the
target object is provided but is
also managed.

SMART REFERENCE

[Coplien1992,
Meyers1996]

How should a PROXY be
defined that replaces an
lvalue?

Define a class that supports
the assignable and conversion
characteristics of a
corresponding lvalue, and use
it where a reference might
otherwise be expected.

VALUE OBJECT

[Henney2000]
How do you define a class
to represent values in your
system?

Define a class that supports
expected value operations,
such as copy construction,
assignment, and inward and
outward conversions.

Table 2. Pattern thumbnails for patterns used, but not documented, in this paper, listed alphabetically.

The patterns that are documented in this paper are presented more fully using a brief, low-
ceremony pattern form: pattern name followed by intent; an example; a description of the
problem, identifying the forces; and a detailed description of the solution, identifying the
consequences.

Pattern Examples

Each pattern in this paper is accompanied by an example drawn from a familiar problem domain;
that of automatic memory management of shared objects. These typically build on other familiar,
idiomatic C++ practices, such as SMART POINTERs and generic programming techniques. Each
pattern example explores a variation on a theme, and the examples taken together are not
necessarily intended to form a single design.

In addition to the running examples in each pattern, there is a worked example towards the end
of the paper that explores the pattern language from a different point of view. It explores the
surprisingly varied possibilities for — and subtle issues in — implementing representation
sharing for string objects — a cautionary narrative for all who are captivated by the frequently
false prophets of optimization and advanced C++ trickery! For brevity and simplicity, the
worked example does not explore the issues of sharing substrings. However, this proves easy to
accommodate with an extra offset or pointer, and is left as an exercise for the interested reader.
The worked example is adapted from previous work [Henney2001c].

COUNTING HANDLE

Simplify the lifetime management of shared heap objects by introducing handle objects that act as the
references to the heap object.

Example: Smart Pointer for Managing Lifetimes of Shared Objects

Factory objects are often used to hide the details of object creation — additional parameters used
in creation or the specific concrete class used. On request they return an object to a user, who can
then use and share the object as they wish. The following is an example of encapsulated
parameterization:

template<typename resource_type>
class resource_factory
{
public:
 typedef typename resource_type::initializer_type initializer_type;
 resource_factory(initializer_type);
 resource_type *create()
 {
 return new resource_type(initializer);
 }

private:
 initializer_type initializer;

};

As with other shared object scenarios, how will the original caller — or, indeed, any of its
associates — know when to delete the factory produce? In some designs the ownership policy is
simple, typically that the party responsible for initiating creation is also responsible for initiating
its destruction. In other cases the custody is passed in a clear and predetermined fashion.
However, it is not always possible to predetermine the owner and the relative lifetimes of the
sharing participants. This is common in event-driven environments. Given that memory leaks are
not a reasonable option, how can the factory produce be guaranteed to be cleaned up safely when
it is no longer required? This problem can be resolved by introducing a SMART POINTER type that
manages the sharing and determines when there are no outstanding references to a shared object,
at which point the object is destroyed:

template<typename element_type>
class counting_ptr
{
public:
 explicit counting_ptr(element_type *countee = 0);
 counting_ptr(const counting_ptr &);
 ~counting_ptr();
 counting_ptr &operator=(const counting_ptr &);
 element_type *operator->() const;
 element_type &operator*() const;

};

The user now works in terms of the SMART POINTER rather than a raw pointer:

template<typename resource_type>
class resource_factory
{
public:

 typedef counting_ptr<resource_type> pointer;
 pointer create()
 {
 return pointer(new resource_type(initializer));
 }

};

Many factories are designed more symmetrically than to offer only a creation function: A
disposal function is often also defined, so that the factory can dispose of its products in an
appropriate fashion, which may or may not be to used a delete expression. It is possible to adapt
counting_ptr so that it accommodates an appropriate policy for deletion [Henney2001c]:

template<typename element_type, typename destructor = deleter>
class counting_ptr
{
public:
 explicit counting_ptr(element_type *countee = 0);
 counting_ptr(element_type *, destructor);

private:

 destructor destruct;
};

With the default policy being the use of a delete expression:

struct deleter
{
 typename<typename deletion_type>
 void operator()(deletion_type to_delete) const
 {
 delete to_delete;
 }
};

To have factory products returned to the factory when there are no more outstanding references
requires a small change:

template<typename resource_type>
class resource_factory
{
public:

 class disposer
 {
 public:
 disposer(resource_factory *home) : home(home) {}
 void operator()(resource_type *to_dispose) const
 {
 home->dispose(to_dispose);
 }
 private:
 resource_factory *home;
 };
 typedef counting_ptr<resource_type, disposer> pointer;
 pointer create()
 {
 return pointer(new resource_type(initializer), this);
 }
 void dispose(resource_type *);

};

Problem

How can a shared object allocated on the heap be accessed simply and have its lifetime managed
transparently, without explicit intervention from the shared object's users? C++ heap object lifetime is
deterministic, beginning with a new expression and ending in single a delete. The absence of a delete
introduces a memory leak into a system, and the knock-on potential of other resource leaks, and more than
one corresponding delete causes undefined behavior.

Simple, symmetric allocation–deallocation strategies cater for many common scenarios, so that
the creator of an object is also its destroyer — the creator may be anything from a local block
scope to a centralized manager object. However, if the created object is shared, the lifetime of the
creator must be guaranteed to be longer than the other sharing parties to avoid the possibility of
premature destruction, leaving behind dangling pointers and bug opportunities. Even the
simplest oversight in how an object is shared can also lead to this outcome.

If an object is shared between a number of parties whose usage of the object is not predetermined,
how can the original creator know when it is safe to delete the shared object? An object's creation
and destruction context may be separated across a framework boundary or caused by unrelated
events in event-driven environment. The use of additional notification scaffolding to compensate
for the non-determinism introduces significant accidental complexity — numerous object
relationships that take up space and require code for registration, deregistration, notification, etc.
— making a design more cumbersome and less encapsulated.

Exceptions interrupt the normal, smooth flow of execution, with the result that a crucial delete, or
event leading to a delete , may be bypassed and lost. Explicit compensation in the form of try and
catch makes the code exception aware but difficult to work with.

In spite of some of the drawbacks of carefree management, the use of raw, unmanaged pointers
does not intrude on the use of an object, so that indirection is familiar and transparent. The
programmer is not required to use opaque handles to access an object's features, interaction is
immediate in both time and syntax.

Where sharing has come about as VALUE OBJECT optimization, so that a HANDLE–BODY
configuration has been introduced and the body is shared between handles to reduce copying,
the principal design force is to ensure the transparency of the optimization from the VALUE
OBJECT user's perspective.

Solution

Introduce or nominate a handle object through which the user works on the shared object. The handle
encapsulates the responsibility for tracking references to the shared object and, consequently, for its
deletion. Its construction, destruction, and assignment functions are written to manage the tracking —
realized either with an EXPLICITLY COUNTED OBJECT or through LINKED HANDLES — and it provides a
means for accessing the shared object.

In a HANDLE–TARGET configuration, in place of a raw pointer, the shared object client now uses
the COUNTING HANDLE. The access can be through a simple get operation or, more transparently,
via a PROXY. The most common, convenient, and generic PROXY form in C++ is a SMART POINTER
whose target access operations are already familiar to the user. If the target object is not an
IMMUTABLE OBJECT, and the target object does not manage its own thread safety internally, the
PROXY can also be implemented as an EXECUTE-AROUND PROXY [Henney2000c].

With both HANDLE–TARGET and HANDLE–BODY it is possible to defer actual object deletion. When
an object is known to be unreachable, as the last handle referring to it disappears, the normal
response is to delete it there and then. However, the COUNTING HANDLE may choose a lazy
deletion option, enqueuing the objects for later deletion, e.g. by a separate sweep phase or in
specific response to an event, such as the calling of an installed new handler.

A COUNTING HANDLE frees shared-object users from a great deal of memory management
responsibility, with a couple of notable exceptions. This freedom also comes with responsibilities
for HANDLE–TARGET users: The created object is normally created outside the handle, and so a
pointer to it — therefore custody for it — must be transferred to the COUNTING HANDLE correctly
and explicitly. The user of the shared object should refrain from holding raw pointers to it or
attempting a delete — this way lies madness and badness.

COUNTING HANDLE users must guard against subtle unreachable-object scenarios. Reference-
accounting solutions do not address cyclic relationship concerns out of the box. Reference-
accounting solutions will also fail to account for lost sheep in the event of shepherd loss: An
object that is not managed by a reference accounting solution, but holds COUNTING HANDLEs to
other objects that are, will introduce leaks into a system if it is itself forgotten.

The adoption of a COUNTING HANDLE for a HANDLE–TARGET arrangement, even as a PROXY, can
never be entirely transparent. The decision to use a COUNTING HANDLE in one body of code, e.g. a
framework, can influence and intrude on the decisions take in another body of code, e.g. an
application using the framework. Such a constraint may well be beneficial, i.e. freeing the user
from worrying about details of memory management, but it may also cause tension and conflict,
e.g. where different memory management strategies have been adopted in different parts of a
system.

HANDLE–BODY configurations already have a handle introduced, and so the user is already
largely shielded from internal details. The responsibility of the implementer is to preserve this
transparency when making the handle a COUNTING HANDLE. This involves the use of COPY ON
WRITE access, defining the body as an IMMUTABLE OBJECT, or both. Sharing and the use of COPY
ON WRITE does not always ensure either optimization or transparency, so the design must weigh
this decision carefully.

EXPLICITLY COUNTED OBJECT

Use an explicit reference count to track the number of handles pointing to a shared object.

Example: Recycling Factory Produce

Working with the factory example presented in the COUNTING HANDLE pattern, consider a
variation where, for reporting purposes, a factory is aware of all of the products that are currently
live, and recycles the ones that are not. In other words, if there is no one else using an object,
rather than destroying it, it is kept around and returned as the result of a future creation request.
However, how can the factory know which of its products are no longer required? One approach
builds on the dispose function and uses it to add to a list of recyclable objects:

template<typename resource_type>
class resource_factory
{
public:

 pointer create()
 {
 resource_type *result = 0;
 if(spare.empty())
 {
 result = new resource_type(initializer);
 }
 else
 {
 result = spare.front();
 result->reset(initializer);
 spare.pop_front();
 }
 live.insert(result);
 return pointer(result, this);
 }
 void dispose(resource_type *to_dispose)
 {
 live.erase(to_dispose);
 spare.push_back(to_dispose);
 }
 void clear()
 {
 std::for_each(spare.begin(), spare.end(), deleter());
 spare.clear();
 }

private:

 std::deque<resource_type *> spare
 std::set<resource_type *> live;
};

However, if this variation has not been adopted, i.e. there is only a create function and
counting_ptr does not support policy-driven deletion, the problem becomes a little more
awkward. If, however, the counting_ptr supports an explicit count this can be used both in the
reporting of factory statistics and in the implementation of the recycle functionality:

template<typename element_type>
class counting_ptr
{

public:

 size_t count() const;

};

A single collection of counting_ptr is used, ensuring that the reference count is always at least 1 :

template<typename resource_type>
class resource_factory
{
public:

 pointer create()
 {
 std::deque<pointer>::iterator found =
 std::find(created.begin(), created.end(), is_spare);
 pointer result;
 if(found == created.end())
 {
 result = pointer(new resource_type(initializer));
 created.push_back(result);
 }
 else
 {
 result = *found;
 result->reset(initializer);
 }
 return result;
 }
 void clear()
 {
 created.erase(
 std::remove_if(spare.begin(), spare.end(), is_spare),
 created.end());
 }

private:

 static bool is_spare(const pointer &resource)
 {
 return resource.count() == 1;
 }
 std::deque<pointer> created;
};

Problem

How can a COUNTING HANDLE know that it is the last one to refer to a shared object? The logic for
tracking is placed in the COUNTING HANDLE, but what is the mechanism?

Objects are unaware of who or what points to them, let alone when and how many. Introducing a
system that answers all of these questions leads to an OBSERVER-like [Gamma+1995] that intrudes
heavily on the shared object, with a corresponding penalty in execution time and space.

COUNTING HANDLEs can acquire and release shared custody of an object arbitrarily. The absence
of a known ordering means that a single COUNTING HANDLE cannot be nominated in advance to
be the final custodian.

In a multi-threaded environment — where counted objects are shared between threads — safety
is clearly a concern, and neither the COUNTING HANDLE nor the shared object it affects should be
compromised by a decision to use threads.

Solution

Introduce an explicit reference count that is incremented and decremented to track the number of
COUNTING HANDLEs pointing at the shared object. An explicit count makes the task of checking sharing
against a specific limit, such as zero, simple and visible. The reference count is manipulated by the
COUNTING HANDLE either directly, i.e. using ++ and -- on a built-in integer type, or via a function
interface.

An explicit count clearly needs a physical location, which may be realized as an EMBEDDED
COUNT in the shared object, a DETACHED COUNT separate from the shared object but also under
the governance of the COUNTING HANDLE, or a LOOKED-UP COUNT that is also separate from the
shared object and managed by a third party. Depending on the implementation adopted, it may
be possible to associate additional information and extra-curricular capabilities for the shared
object along with its physical reference count. In other words, attaching and sharing data
describing the object, such as string length in the case of a shared string representation, and the
addition of behavior unrelated to shared-object management, such as dynamic saving and
loading of a shared object to and from file.

In a multi-threaded environment the reference count must not be corrupted as the result of a race
condition between COUNTING HANDLEs in two different threads: Integer operations cannot be
assumed atomic, even when the integer used is the same as the natural word size of the machine.
The shared object must also be created with threading in mind — if not, then a race condition on
the count will be the least of the programmer's worries. However, the safety of the count is
independent of the safety of the shared object and any mechanism it may adopt: Copying or
destroying a COUNTING HANDLE is unrelated to calling a function on the usable interface of the
shared object, therefore sharing the means of synchronization would be inappropriate. A separate
mutex lock for the count may seem at first an attractive solution, but is costly in time and system
resources. Lock-free increment and decrement operations are available on many platforms — e.g.
InterlockedIncrement and InterlockedDecrement on Win32 — and offer the more appropriate route
to thread safety.

EMBEDDED COUNT

Embed the reference count in the shared object being counted to ensure that both are collocated.

Example: Generic Reference Counting

Consider a program that uses a reference-accounting SMART POINTER, such as counting_ptr, but
needs to pass the shared through an existing library that works only in terms of raw pointers,
such as a callback-based event notification library. An obvious issue is how can the count be
recovered independently of any of the original counting_ptr instances that had come into contact
with each other? If this can be resolved, it would allow the pointer to be reintroduced to a
COUNTING HANDLE without jeopardizing the validity of the count. In other words, without
ending up with two separate counts maintained by two separate communities of COUNTING
HANDLEs, one of which would inevitably reach 0 before the other and invalidate the pointer. At
the same time, how can we keep the mechanism of the COUNTING HANDLE, counting_ptr,
independent of the actual type?

Ensuring that the count is embedded in the shared object, rather than separately, allows both
concerns to be addressed. To respond to the first concern, a raw pointer can be acquired and
reacquired safely by any counting_ptr because the countability is a property of the target object, to
which we have a pointer, and not of some other object to which we have no access:

template<typename element_type>
void update(element_type *source)
{
 counting_ptr<element_type> ptr(source);

}

The second concern may be addressed by adopting a generic, requirements-based approach
[Henney1998]. We can establish a set of non-member function requirements that must be satisfied
by any pointer that we wish to count. The operations we need for a type to be Countable are
loosely:

? An acquire operation that registers interest in a Countable object.

? A release operation unregisters interest in a Countable object, and returns whether there are any
outstanding references to the shared object.

? A dispose operation that is responsible for disposing of an object that is no longer acquired.

More precisely, for a type to be Countable it must satisfy the following requirements, where ptr is
a non-null pointer to a single object (i.e. not an array) of the type, and #function indicates the
cumulative number of calls to function(ptr) :

Expression Return type Semantics and notes
acquire(ptr) no requirement inv: #acquire >= #release
release(ptr) convertible to bool result: #acquire > #release, if ptr

!= 0, otherwise false
dispose(ptr, ptr) no requirement pre: Last release returned false

post: *ptr no longer usable

Note that the two arguments to dispose are there to support selection of the appropriate type-safe
version of the function to be called. In the general case the intent is that the first argument
determines the type to be deleted, and would typically be templated, while the second selects

which template to use, e.g. by conforming to a specific base class. Also note that there are no
requirements on these functions in terms of specific exceptions thrown or not thrown, except that
if exceptions are thrown the functions themselves should satisfy the strong guarantee of
exception safety [Sutter2000].

The counting_ptr code can now be written solely in terms of these requirements, and without any
explicit reference to the details and mechanism of the count:

template<typename countable_type>
class counting_ptr
{
public:
 explicit counting_ptr(countable_type *countee = 0)
 : target(countee)
 {
 acquire(target);
 }
 counting_ptr(const counting_ptr &other)
 : target(other.target)
 {
 acquire(target);
 }
 ~counting_ptr()
 {
 if(!release(target))
 dispose(target, target);
 }
 counting_ptr &operator=(const counting_ptr &rhs)
 {
 acquire(rhs.target);
 if(!release(target))
 dispose(target, target);
 target = rhs.target;
 return *this;
 }
 countable_type *operator->() const
 {
 return target;
 }
 countable_type &operator*() const
 {
 return *target;
 }

private:
 countable_type *target;
};

The generic approach allows many implementation variations of an EMBEDDED COUNT to be
supported through the same COUNTING HANDLE code base:

Problem

How can a direct user of an EXPLICITLY COUNTED OBJECT know the reference count of the shared object?
How can the shared object be treated independently of the COUNTING HANDLE without interfering with the
COUNTING HANDLE's counting model?

Raw unmanaged pointers represent the lowest common-denominator indirection mechanism in
C++: They are universal and visibly present in existing — and future — APIs, frameworks,
applications, etc. Introducing a COUNTING HANDLE can simplify parts of a system, but if those
parts must interact closely with other bodies of code that use plain pointers, care must be taken
when passing around a pointer to an object in the custody of one or more COUNTING HANDLEs. If

another party holds onto the pointer beyond the life of the object, as determined by the
community of COUNTING HANDLEs, undefined behavior is the only reward.

A plain pointer to an EXPLICITLY COUNTED OBJECT that is received from another part of the
system, such as results from a callback, presents another challenge. An existing callback
mechanism may work only in terms of pointers, presenting the called code with a dilemma: It has
received a pointer to an object that it knows is reference counted, but to which it has no
COUNTING HANDLE. What are the consequences of initializing a new COUNTING HANDLE with the
pointer? Will two different counts now be maintained, with a race to see which one first reaches
zero — delete for the winner, undefined behavior for the loser?

Solution

Embed the reference count in the EXPLICITLY COUNTED OBJECT itself. This configuration ensures that,
when it comes to reference counts, there can be only one. The actual embedding of the count may be made
visible as PUBLIC COUNTABILITY or implemented more discreetly as a HIDDEN PREFIX COUNT.

Because of its attachment, the count may be accessed directly and independently of any
COUNTING HANDLE. Therefore there is no problem working in terms of the raw unmanaged
pointer and then reintroducing it to an unrelated COUNTING HANDLE.

The benefits of being able to recover the count independently of the regimented confines of a
COUNTING HANDLE must also be weighed against a potential liability. Direct and undisciplined
use of an EMBEDDED COUNT reinvites the very memory management problems that a COUNTING
HANDLE and an EXPLICITLY COUNTED OBJECT were called in to resolve.

The EXPLICITLY COUNTED OBJECT and the EMBEDDED COUNT form a single object. Therefore this
configuration is efficient time-wise and space-wise, requiring only a single heap allocation, not
much larger than the allocation of an uncounted version of the object. Realistically, the extra
space required is unnoticeable because heap managers return blocks of sufficient size rather than
blocks of exact size.

PUBLIC COUNTABILITY

Make the reference counting capability an explicit part of the interface and representation of the shared
object's class so that object users and the object itself are aware of the object's countability.

Example: Countable Mix-in Class

If an object type is designed for use with reference counting, and will always be heap allocated,
what is the simplest way to incorporate countability into its objects? It should be introduced in
such a way that all users, and the object itself, can have access to the counting features and,
optionally, the actual count.

The repetition of common implementation and the expression of a capability suggest a mix-in
class that can be used as a base for any classes designed for sharing through reference counting
[Henney1998]:

class countability
{
public:
 void acquire() const
 {
 ++count;
 }
 size_t release() const
 {
 return --count;
 }
 size_t count() const
 {
 return count;
 }
protected:
 countability()
 : count(0)
 {
 }
 ~countability()
 {
 }
private:
 countability(const countability &);
 countability &operator=(const countability &);
 mutable size_t count;
};

This mix-in class can be made to work with the generic counting_ptr described in the EMBEDDED
COUNT pattern example:

void acquire(const countability *ptr)
{
 if(ptr)
 ptr->acquire();
}
size_t release(const countability *ptr)
{
 return ptr ? ptr->release() : 0;
}
template<typename countable_type>
void dispose(countable_type *ptr, const countability *)
{

 delete ptr;
}

Note that the countability class has logically const operations because it provides a quality-of-
service rather than a core functional feature, and this capability applies equally to const and non-
const objects alike.

Problem

How can both the users of a shared object with an EMBEDDED COUNT and the shared object itself be aware
of the reference count? How may an EMBEDDED COUNT be provided consistently for all instances of a
class, so that all users work in terms of a COUNTING HANDLE?

A user of an EMBEDDED COUNT, such as a COUNTING HANDLE, must clearly be able to access the
reference-counting facilities, but what of the EXPLICITLY COUNTED OBJECT itself? Normally an
object is unconcerned with its dependents, its ultimate fate being of interest only during its
destructor and not before. However, an object may require a level of introspection that supports
awareness of the reference-counting mechanism.

An EMBEDDED COUNT is created along with an EXPLICITLY COUNTED OBJECT, and is not a property
of the COUNTING HANDLE. This means that the creator must be aware of the counting capability.
If all objects of a particular class are intended for counted use, the count must be provided
uniformly in each instance. In other words, whether or not counting is included is not a separate
decision taken by the creator, and so should not be presented as such.

Solution

Make the reference counting capability an explicit part of the interface and representation of the
EXPLICITLY COUNTED OBJECT 's class. Therefore the shared object is responsible for both defining the
representation of the count and the functions for tracking it.

A COUNTING HANDLE, direct user of the object, or the shared object each has equal access to the
reference-counting functionality. If this granting of privileges is felt to be too permissive, the
reference-counting features can be declared private or protected in the class, and a friend
declaration added to permit COUNTING HANDLE access.

There is a potentially intrusive coupling between the use of reference counting and the other
features of the shared object's class. If an instance of this class is allocated but neither shared nor
counted, e.g. as a data member of another object, the EMBEDDED COUNT appears a wasteful and
uncohesive feature.

On the other hand, the dependence of the class on its PUBLIC COUNTABILITY can be seen as a
benefit, advertising clearly that class instances are intended to be both heap-allocated and
counted. To use the class in any other way suggests misuse.

The PUBLIC COUNTABILITY can be incorporated easily into new classes. Existing types may prove
less co-operative. A HIDDEN PREFIX COUNT offers a more type-agnostic alternative to PUBLIC
COUNTABILITY. Alternatively, if the type is a class, adaptation through PARAMETERIZED
INHERITANCE can add an EMBEDDED COUNT with PUBLIC COUNTABILITY.

HIDDEN PREFIX COUNT

Allocate additional memory for a reference count immediately preceding the memory of the shared object so
that the shared object's type is independent of counting.

Example: Countable-Object Allocator

To contrast with the example used in the PUBLIC COUNTABILITY pattern, what if the type of the
objects to be counted has not been designed for use with reference counting, but some of the
type's instances still require this capability, directly and non-intrusively?

If the requirement for reference counting is on a per-instance basis, and the need for reference
counting is known in advance of creation, it is possible to define a new operator that creates both
the desired instance and prefixes the memory allocated for it with a count [Henney1998]:

struct countable_new;
extern const countable_new countable;
void *operator new(std::size_t, const countable_new &);
void operator delete(void *, const countable_new &);

operator new has been overloaded with a dummy argument to distinguish it from the regular
global operator new — comparable to the standardized use of a new(std::nothrow) expression. The
placement operator delete is there to perform any tidy up in the event of failed construction. So,
for some appropriate type, e.g. resource_type, the allocation of a countable instance would be
written as new(countable) resource_type .

Assuming appropriate alignment, we can build on the countability class in the PUBLIC
COUNTABILITY:

class prefixed_countability : public countability
{
};
const prefixed_countability *prefix(const void *ptr)
{
 return static_cast<const prefixed_countability *>(ptr) – 1;
}
void *operator new(std::size_t size, const countable_new &)
{
 size += sizeof(prefixed_countability);
 return new(::operator new(size)) prefixed_countability + 1;
}
void operator delete(void *ptr, const countable_new &)
{
 ::operator delete(prefix(ptr));
}

Because the countability feature is a property of instance and not type, all the required functions
are written in terms of the most generic runtime type possible, void *. The result of new(countable)
can be made to work with the same counting_ptr as was presented in the EMBEDDED COUNT
pattern example by defining the following publicly available functions:

void acquire(const void *ptr)
{
 if(ptr)
 prefix(ptr)->acquire();
}
size_t release(const void *ptr)
{
 return ptr ? prefix(ptr)->release() : 0;

}
template<typename countable_type>
void dispose(const countable_type *ptr, const void *)
{
 if(ptr)
 {
 ptr->~countable_type();
 operator delete(const_cast<countable_type *>(ptr), countable);
 }
}

Problem

How can an object's type be independent of an EMBEDDED COUNT? It may be inappropriate or impossible
to couple an object's type with such a feature. PUBLIC COUNTABILITY may be irrelevant to the EXPLICITLY
COUNTED OBJECT , which find such self-knowledge as unnecessary and unwanted.

The assumption of a closed — and therefore modifiable — code base may be inappropriate. An
object's type may already exist or it may resist adaptation through inheritance, e.g. a built-in type
or a class not designed for use as a base, e.g. missing a virtual destructor.

It may also be inappropriate to hardwire the assumption of an EMBEDDED COUNT into the type if
the need for a COUNTING HANDLE is on a per-instance basis and not a general requirement across
the type. Some instances may be used directly as data members in other objects, others may be
heap-allocated and unshared, and others may be allocated for use with a COUNTING HANDLE.

Solution

On allocation, provide additional memory for the count in the memory preceding the shared object. The
decision to make an object an EXPLICITLY COUNTED OBJECT is made at allocation, rather than following its
creation or when its type is written.

A HIDDEN PREFIX COUNT works on raw memory at runtime, bypassing not unuseful compile-time
checks. The use of a HIDDEN PREFIX COUNT invites some caution: Once in the custody of a
COUNTING HANDLE such an object is safe, but outside this context the user relies on all the type
checking normally on offer with a void *.

A HIDDEN PREFIX COUNT is not visible in the object's type, and so neither the object nor the user of
a raw pointer to it is directly aware that it is an EXPLICITLY COUNTED OBJECT. This has the liability
that the object appears like other objects of the same type, and attempting to generalize and treat
other objects as EXPLICITLY COUNTED OBJECTs may lead to surprises.

The allocation code can be wrapped at using an overloaded operator new, either global or class
specific. Alternatively the whole COUNTING HANDLE and HIDDEN PREFIX COUNT arrangement can
be more fully encapsulated inside the COUNTING HANDLE, in a HANDLE–BODY configuration, or
inside a factory object that exposes only COUNTING HANDLEs rather than raw pointers.

DETACHED COUNT

Introduce a separate object to hold the reference count so that the shared object is independent of its
counting.

Example: Weak Reference-Counting Smart Pointer

Consider the following situation: Objects in an OBSERVER relationship [Gamma+1995] where
subjects may be observed by a number of observer objects that each observe and know only one
subject. Assuming that the framework and the code using it have been written in terms of the
same reference-counted SMART POINTERs, many memory management issues in an event-driven
environment have been addressed. Many, but not all: If a subject holds a counting pointer — of
any of the variants seen in the pattern examples presented so far — to its observers, and each of
those holds a counting pointer back to the subject, all the participating objects will remain in
memory long after the last proper owning references to any of them has disappeared.

This problem's resolution requires explicit breaking of the cycle by an external party or a
weakening of relationship strength. One approach to keeping the symmetry of the existing
solution, and not adding another management level above, requires the use of unmanaged
pointers and a MUTUAL REGISTRATION [Henney1999] arrangement between the subject and
observers. This reflects an arrangement in which subjects and observers use each other but do not
own each other.

An alternative approach, that does not require the same amount of control flow to be negotiated
between subjects and observers, is to introduce the distinction of weak pointers. In such a
scenario, neither subjects nor observers are involved in mutual ownership, but the SMART
POINTERs used are aware of whether or not the target object has gone away, resolving to null if
they have:

class subject
{
public:
 void attach(const tracking_ptr<observer> &new_observer)
 {
 observers.push_back(new_observer);
 }

protected:
 void notify()
 {
 std::for_each(observed.begin(), observed.end(), update);
 }

private:

 static void update(const tracking_ptr<observer> &target)
 {
 if(target)
 target->update();
 }
 std::vector< tracking_ptr<observer> > observers;
};
class observer
{
public:
 virtual void update() = 0;

private:

 tracking_ptr<subject> observed;
};

Here, the weak pointer type, tracking_ptr, is used to hold observer pointers. On notification, any
observer instances that have been destroyed, i.e. there are no more counting_ptr instances
referring to them, appear as null pointers, and are ignored. An obvious refinement would be to
remove the nulled weak pointers before performing the actual notification:

class subject
{

 void notify()
 {
 observed.erase(
 std::remove(observed.begin(), observed.end(), 0),
 observed.end());
 std::for_each(observed.begin(), observed.end(), update);
 }

};

The interface to tracking_ptr would be similar to that of a counting_ptr with the additional
requirement of a simple test for null, represented conveniently by an implicit opaque pointer
conversion:

template<typename element_type>
class tracking_ptr
{
public:

 operator const void *() const;

};

For this weak counting scheme to work the shared object cannot work in terms of an EMBEDDED
COUNT because if the strong counting_ptr deletes the shared object, which also contains the count
the weak tracking_ptr checks against, tracking_ptr will be left with a stale pointer and undefined
behavior as its reward for dereferencing. If the shared object deletion is deferred until all
tracking_ptr and counting_ptr references to it are gone, then the lingering cyclic dependency has
been reintroduced and tracking_ptr just becomes another name for counting_ptr .

Problem

How can a shared object be both an EXPLICITLY COUNTED OBJECT and kept independent of the reference
count? An EMBEDDED COUNT intrudes directly on the object, its allocation, and, in the case of PUBLIC
COUNTABILITY, on the object's type.

It may prove difficult or inappropriate to add an EMBEDDED COUNT to an object, either because its
type is fixed or because COUNTING HANDLEs are required to have weak ownership over the
EXPLICITLY COUNTED OBJECT.

A shared object that is not intended for use outside the context of COUNTING HANDLEs does not
require the intrusion of an EMBEDDED COUNT. However, type independence and openness is often
still important.

The need to start counting a shared object may occur some time after its creation, or not at all. A
certain amount of planning and forethought is required to introduce an EMBEDDED COUNT.

Solution

Introduce a separate object that is managed by the COUNTING HANDLE to hold the reference count. The
DETACHED COUNT is created when the shared object is first introduced to a COUNTING HANDLE, only then
does it become an EXPLICITLY COUNTED OBJECT .

Because there are two objects, this means two separate allocations: The first for the shared object
and the second for the DETACHED COUNT. This is likely to incur a slightly greater time and space
overhead than an EMBEDDED COUNT. The DETACHED COUNT may be an INDEPENDENT COUNT or
an ASSOCIATING COUNT.

Once accounted for, the EXPLICITLY COUNTED OBJECT cannot be shared with unrelated COUNTING
HANDLEs, i.e. sharing can only pass through copying of COUNTING HANDLEs — there be dragons
otherwise. This also means that construction that affects custody should not be by casual
conversion, and explicit should adorn any single argument constructors on the COUNTING
HANDLE that take a raw pointer.

Both the EXPLICITLY COUNTED OBJECT and its type are independent of the count. The shared object
relies on the COUNTING HANDLE to manage the count for the memory and coordinate it with the
lifetime of the object.

Lifetime responsibility remains with the sharing COUNTING HANDLEs until either the object's
counted demise occurs or the counting is prematurely terminated. The separation of count, which
can also acquire the role of a validity flag, allows the EXPLICITLY COUNTED OBJECT to be destroyed
or detached without making the compromising the definedness of COUNTING HANDLE behavior.
Using an EMBEDDED COUNT in the EXPLICITLY COUNTED OBJECT cannot support this feature — the
shared object goes, and so does any chance for any meaningful behavior in its wake. Having a
DETACHED COUNT also means that additional behavior may be associated with an EXPLICITLY
COUNTED OBJECT and shared between COUNTING HANDLEs — support for weak pointers, for
instance.

INDEPENDENT COUNT

Manage the count separately from the shared object, so that the count object and the counted object are not
connected to one another.

Example: Weak and Strong Reference-Counting Smart Pointers

Building on the example presented in the DETACHED COUNT pattern, how could co-operating
weak and strong reference-counting SMART POINTERs be implemented? The count must now take
into account strong counts and weak counts, both of which must be independent of the
EXPLICITLY COUNTED OBJECT with which they are associated. The most direct translation of this
approach to an implementation is to have both the SMART POINTER types work with a pointer to
the shared object and another pointer to a counting object that holds both strong and weak
counts. The commonality here suggests a number of possible implementation options, including
policy classes or a base class. Here is a base class example:

template<typename element_type>
class common_ptr
{
public:
 operator const void *() const
 {
 return count->strong == 0 ? 0 : target;
 }
 element_type *operator->() const
 {
 return count->strong == 0 ? 0 : target;
 }

protected:
 common_ptr(element_type *countee = 0)
 : target(countee), count(new counter())
 {
 }
 common_ptr(const common_ptr &other)
 : target(other.target), count(other.count)
 {
 }
 common_ptr &operator=(const common_ptr &rhs)
 {
 target = rhs.target;
 count = rhs.count;
 return *this;
 }
 void weak_acquire()
 {
 ++count->weak;
 }
 void weak_release()
 {
 if(--count->weak == 0 && count->strong == 0)
 delete count;
 }
 void strong_acquire()
 {
 ++count->strong;
 }
 void strong_release()
 {

 if(--count->strong == 0)
 {
 delete target;
 if(count->weak == 0)
 delete count;
 }
 }
private:
 struct counter
 {
 size_t weak, strong;
 };
 element_type *target;
 counter *count;
};

The strong counting_ptr is then implemented in terms of this functionality, using the strong_
features in the protected interface:

template<typename element_type>
class counting_ptr : public common_ptr<element_type>
{
public:
 explicit counting_ptr(element_type *countee = 0)
 : base(countee)
 {
 strong_acquire();
 }
 counting_ptr(const base &other)
 : base(other ? other : counting_ptr())
 {
 strong_acquire();
 }
 counting_ptr(const counting_ptr &other)
 : base(other)
 {
 strong_acquire();
 }
 ~counting_ptr()
 {
 strong_release();
 }
 counting_ptr &operator=(const counting_ptr &rhs)
 {
 rhs.strong_acquire();
 strong_release();
 base::operator=(rhs);
 return *this;
 }

private:
 typedef common_ptr<element_type> base;
};

Similarly, the weal tracking_ptr is implemented in terms of common_ptr's weak_ features, but
without catering for construction from a raw pointer. Note that it is possible to initialize a
tracking_ptr from a counting_ptr and vice-versa.

Problem

How can a DETACHED COUNT be kept physically independent of the shared object for which it accounts?
The COUNTING HANDLE is responsible for managing the separate count and shared objects, but what is the
physical relationship between these three roles?

Solution

Have the COUNTING HANDLE hold separate pointers to the EXPLICITLY COUNTED OBJECT and the
DETACHED COUNT. The count is therefore fully independent of the shared object.

A family COUNTING HANDLEs, related by sharing the same EXPLICITLY COUNTED OBJECT, is
constrained to refer always to the same count–shared-object pairing. Although individual
COUNTING HANDLEs may be reassigned to other count–shared-object pairs, it is not possible to
replace physically either the count or the shared object other objects — except in the limiting case
of an EXPLICITLY COUNTED OBJECT referred to by a sole COUNTING HANDLE. If such replacement is
a requirement, an ASSOCIATING COUNT is more suitable than an INDEPENDENT COUNT.

The footprint of the COUNTING HANDLE is now at least two pointers in size, but access to either
the count or the shared object is only a single level of indirection removed. The COUNTING
HANDLE is fully responsible for the management of both heap objects.

ASSOCIATING COUNT

Introduce a link from the count object to the shared object, so that the shared object is accessed via the count
object.

Example: Early Object Destruction and Replacement

In a reference-counted scenario it is assumed that objects will die peacefully of natural causes, in
their own good time when there are no outstanding strong references to them. There are,
however, situations where an object's early demise must be forced, either as a result of events
beyond its control or explicitly to break a relationship cycle. This kind of functionality cannot be
accommodated with an EMBEDDED COUNT as it will leave behind stale pointers (and all the joy of
debugging that they hold). An INDEPENDENT COUNT can be adapted to this purpose by the use of
some extra indication, such as an additional flag or the use of a negative count to signify that the
pointer is no longer valid and must be treated as null. These extras complicate an INDEPENDENT
COUNT implementation with special-case conditions and representation, but they do not form a
showstopper. However, a simple variation of the early destruction requirement cannot be
handled with an INDEPENDENT COUNT: Replace the shared object by another one, so that all the
COUNTING HANDLEs are similarly updated.

It is possible to set up an OBSERVER mechanism to resolve this issue, but this turns out to be
unnecessarily elaborate and costly in terms of both space and execution. An alternative, that stays
within the reasonable bounds of reference counting, is to have the COUNTING HANDLE hold a
pointer to a counter object, which in turn holds a pointer to the actual target shared object. In this
way, each COUNTING HANDLE shares an object that is one level removed from the EXPLICITLY
COUNTED OBJECT, and so any changes at that level will be immediately visible to all:

template<typename element_type>
class counting_ptr
{
public:

 operator const void *() const
 {
 return count->target;
 }
 element_type *operator->() const
 {
 return count->target;
 }
 void dispose()
 {
 delete count->target;
 count->target = 0;
 }
 void replace(element_type *new_countee)
 {
 delete count->target;
 count->target = new_countee;
 }
private:
 struct counter
 {
 size_t count;
 element_type *target;
 };
 counter *count;
};

Problem

How can a DETACHED COUNT know and affect an EXPLICITLY COUNTED OBJECT? How can sharing
COUNTING HANDLEs replace their common EXPLICITLY COUNTED OBJECT with another?

An INDEPENDENT COUNT supports a full separation of count and shared object roles, so that the
count may be used to hold additional information about the shared object, such as its validity.
However, this configuration does not accommodate arbitrary changes of shared object.

Solution

Have the DETACHED COUNT hold a pointer to the EXPLICITLY COUNTED OBJECT. The COUNTING HANDLE
now only holds a pointer to the DETACHED COUNT. The footprint of the COUNTING HANDLE is now a
single pointer in size, but access to the shared object is two levels of indirection removed.

The COUNTING HANDLE is responsible for the creation and deletion of the DETACHED COUNT. The
DETACHED COUNT can also be given responsibility for performing the adoption and deletion of
the shared object. In a HANDLE–BODY configuration the DETACHED COUNT can be given further
responsibility for the creation of the EXPLICITLY COUNTED OBJECT.

LOOKED-UP COUNT

Manage the object counts collectively in a separate object, using the identity of the shared object to access
the count.

Example: Relocatable Managed Shared Object

An object's address is commonly seen as its identity, and therefore as its principal identifier. If
another object can replace the underlying object, but to all intents and purposes its role in the
program and its identity remain the same, the identity can no longer be equated with the object
address.

Consider a resource manager that looks after resource objects that use their own ordered
identifier, e.g. a string. The manager allows the registration of identifiers to be registered, the
inclusion of resources against them, the replacement of resources, and the removal of identifiers.

template<typename resource_type>
class resource_manager
{
public:
 typedef typename resource_type::key_type key_type;
 bool insert(key_type, resource_type * = 0);
 bool replace(key_type, resource_type *);
 bool remove(key_type);
 resource_type *find(key_type) const;

};

Although complete, this is a potentially error-prone interface. On object replacement, the old
object is destroyed: Any users of remaining pointers to it will be surprised — to put it politely —
by the undefined behavior that greets them on dereferencing. Also, identified resources should
not be removed while there are still interested parties.

A COUNTING HANDLE can manage reference tracking, but an EMBEDDED COUNT will allow
replacement and a DETACHED COUNT, specifically an ASSOCIATING COUNT, will not easily allow
centralized management. If, however, the COUNTING HANDLE holds a lookup key rather than a
raw pointer, and it notifies the resource_manager of changes in its interest, the resource_manager can
track the count itself:

template<typename resource_type>
class resource_manager : private resource_ptr_view<resource_type>
{
public:
 typedef typename resource_manager::key_type key_type;
 resource_ptr<resource_type> insert(key_type, resource_type * = 0);
 bool replace(key_type, resource_type *);
 resource_ptr<resource_type> find(key_type) const;
private:

 struct shared
 {
 size_t count;
 resource_type *resource;
 };
 std::map<key_type, shared> resources;
};

The resource_ptr type is the COUNTING HANDLE and is the user's route of access to the resources:

template<typename resource_type>
resource_ptr<resource_type>
resource_manager<resource_type>::find(key_type key) const
{
 return resource_ptr<resource_type>(key, this);
}

The resource_ptr_view is a private control interface implemented by the resource_manager:

template<typename resource_type>
class resource_ptr_view
{
public:
 typedef typename resource_type::key_type key_type;
 virtual void acquire(key_type) = 0;
 virtual void release(key_type) = 0;
 virtual resource_type *at(key_type) const = 0;

};

And the resource_ptr works in terms of the resource_ptr_view:

template<typename resource_type>
class resource_ptr
{
public:
 typedef typename resource_type::key_type key_type;
 typedef resource_ptr_view<resource_type> manager_type;
 resource_ptr(key_type, manager_type *manager)
 : key(key), manager(manager)
 {
 manager->acquire(key);
 }
 ~resource_ptr()
 {
 manager->release(key);
 }
 resource_type *operator->() const
 {
 return manager->at(key);
 }

private:
 key_type key;
 manager_type *manager;
};

Problem

How can EXPLICITLY COUNTED OBJECTs and their reference counts be grouped and treated together
without necessarily affecting the type of the shared object?

COUNTING HANDLEs are seen as individuals pointing to distinct objects. In programming terms,
there is no concept of a collective of either COUNTING HANDLEs or EXPLICITLY COUNTED OBJECTs
that may be referred to and manipulated directly. However, there are many situations in which
objects must be treated together rather than in isolation.

Introducing an OBSERVER-like relationship between COUNTING HANDLEs and EXPLICITLY
COUNTED OBJECTs introduces significant overhead and complexity without solving the problem
of accessing collectives of EXPLICITLY COUNTED OBJECTs. It is also not the place for EXPLICITLY
COUNTED OBJECTs to suddenly become dependent on one another.

Solution

Manage the shared objects and their counts collectively in a separate managed object, using some identity
of the shared object as the key for its direct access from the COUNTING HANDLE. This key can be as simple
as the EXPLICITLY COUNTED OBJECT 's address — which would prevent object replacement — or as
application specific as a database key.

The introduction of a third party — whether a full blown MANAGER object or a simple table —
gives an access point for users that want to access the shared objects, and any information about
them, directly. If general access is not appropriate, a private static offers a scoped compromise.
The introduction of a third party has the potential to complicate rather than simplify the user's
view of the objects in a system if it adopts too much responsibility.

The lookup means that the shared object itself can be virtual, popping in and out of existence as
usage demands. To ensure that an object is not whisked away from beneath the feet of any
legitimate users, an EXECUTE-AROUND POINTER [Henney2000c] would be a more appropriate
return than a raw pointer.

In multi-threaded environments, thread-safety concerns must be addressed for the lookup
mechanism. Locking may introduce an inappropriate overhead for frequently accessed and fast
changing collections of objects.

The separation of the count from the EXPLICITLY COUNTED OBJECT means that a LOOKED-UP
COUNT configuration can support both strong and weak pointers.

LINKED HANDLES

Track references to a shared object by linking handles together to form a bidirectional list.

Example: Reactive Shared-Object Smart Pointers

Returning to the example given in the ASSOCIATING COUNT pattern, consider the following
variation: On early disposal or replacement of a shared object, each associated COUNTING
HANDLE reacts by having a callback function called on it. This requirement implies that there is
some kind of OBSERVER [Gamma+1995] relationship between the COUNTING HANDLE and either
the shared object or its count. This adds significant complexity to both the COUNTING HANDLE
and its immediate target.

An alternative is to work within the same constraints as a DETACHED COUNT implementation, so
that a shared object can only become known about by copying one COUNTING HANDLE to another.
In this case, if a COUNTING HANDLE remembers the source of its copying, a chain of COUNTING
HANDLES can be formed:

template<typename element_type>
class counting_ptr
{
public:
 explicit counting_ptr(element_type *countee = 0)
 : target(countee), prior(this), next(this)
 {
 }
 counting_ptr(const counting_ptr &other)
 : target(other.target), prior(&other), next(other.next),
 {
 prior->next = this;
 next->prior = this;
 }
 ~counting_ptr()
 {
 prior->next = next;
 next->prior = prior;
 if(prior == this)
 delete target;
 }

private:
 element_type *target;
 counting_ptr *prior, *next;

};

The callbacks are intended to be per COUNTING HANDLE instance, and these can be added
through a pair of generalized function objects [Henney2000e] or by introducing TEMPLATE
METHODs [Gamma+1995] that are then specialized by classes derived from counting_ptr . The
former option is shown here:

template<typename element_type>
class counting_ptr
{
public:

 counting_ptr(
 element_type *countee,
 any_function on_dispose, any_function on_replace)

 : target(countee), prior(this), next(this),
 on_dispose(on_dispose), on_replace(on_replace)
 {
 }
 void dispose()
 {
 counting_ptr *at = this;
 do
 {
 at->target = 0;
 at->on_dispose();
 at = at->next;
 }
 while(at != this);
 }

private:

 any_function on_dispose, on_replace;
};

Problem

How can all the COUNTING HANDLEs associated with a shared object be addressed collectively without
introducing any intermediate objects? Intermediate objects require separate management and
understanding.

If the ability to affect individual COUNTING HANDLEs, rather than work in terms of an explicit
reference count or just a common view of a shared object, an Observer relationship may seem
tempting. However, this affects the type of the shared object, adding significant complexity and
increasing memory usage.

Solution

Introduce bidirectional links between the COUNTING HANDLEs so that they are aware of both the shared
object and other COUNTING HANDLEs referring to the same object. In addition to prior and next links, the
COUNTING HANDLE also holds a pointer to the shared object. In effect, a COUNTING HANDLE joins hands
with any COUNTING HANDLE from which it copies, and ends up looking at the same thing.

The shared object is not an EXPLICITLY COUNTED OBJECT because there is no physical count kept of
its referees. The first COUNTING HANDLE to take custody of a particular shared object has a choice
either to set its bidirectional links to null or to itself, i.e. this. The resulting COUNTING HANDLE
chain either is null terminated at each end or forms a closed loop. Therefore the last COUNTING
HANDLE to a particular shared object can see either nothing or itself in both directions. The
advantage of forming a closed loop is that operations carried out on all COUNTING HANDLEs can
be done so in a single loop.

Because of the linear performance in visiting each node, weak pointers are not conveniently
supported, and nor is a reference count query — support for these features is more a matter of
brute force and ignorance than of immediacy and elegance. However, where it is expected that
each COUNTING HANDLE is to be visited individually, LINKED HANDLES provide a simple and
direct mechanism for doing so.

Once a shared object is introduced to a COUNTING HANDLE, unless explicitly disassociated from
the resulting chain, it cannot be passed to another, otherwise unrelated COUNTING HANDLE.

The only allocation required for LINKED HANDLES is for the shared object, which is accessed at a
single level of indirection. However, the footprint of the COUNTING HANDLE is three pointers, one
for each direction and one for the shared object. If there is any additional information that must

be shared it must either be copied by value between COUNTING HANDLEs, or shared between
them explicitly as a separate object.

Traversals and extensive pointer plumbing tend to make LINKED HANDLES unsuitable for use
outside the scope of a single thread.

The Patterns in Practice

Strings get copied. Fact of life. Copy assignment and construction afford strings their value-based
behavior. But strings are not lightweight classes. They encapsulate a heap allocated
representation, and copying could be expensive, especially if the copied string is never modified:

template<typename char_type>
class string
{

private:

 size_t used, reserved; // current length and allocated space
 char_type *text; // allocated and deallocated representation
};

Compiler-Level Optimizations

The compiler is entitled to a number of optimizations. For instance, the following:

string<char> cow = "Woof!";

Is equivalent to:

string<char> cow = string<char>("Woof!");

But can be — and is normally — optimized to:

string<char> cow("Woof!");

For assignment, overloading operator= to take a const char * prevents a conversion to a
temporary that is then used with the ordinary copy assignment operator.

The result of string concatenation is a temporary string object:

string<char> loud_cow = cow + "!!";

Here operator+ returns a temporary string<char> object that is used to initialize loud_cow.
Depending on how the called function is written, the named return value optimization (NRV)
allows a compiler to construct directly into loud_cow [Ellis+1990, Lippman1996] rather than create
an additional temporary object. This optimization applies only to copy construction, not copy
assignment: If loud_cow is assigned the result of the concatenation, a temporary is created and
then discarded. Similarly, in the following initialization two temporaries are created, only one of
which can be optimized away by the NRV:

string<char> loud_cow = cow + " " + cow;

Because VALUE OBJECTs are commonly passed around by const reference, copying typically
happens through assignment, data member initialization, and return values. We can see that the
compiler already has considerable license to optimize, and that techniques such as overloading to
prevent conversions and preferring initialization to construction help reduce the temporary
burden, so to speak. But in complex expressions and initialization of data members we can also
see that there may still be the need to amortize the cost of copying.

What is required of an optimization? Transparency — so it is substitutable for the unoptimized
version — and optimization — many optimizations aren't. In particular, the requirement of
transparency means that users should not be entertained by new and interesting bugs.

Counting the Bodies

A string is a VALUE OBJECT, and the most common copy optimization is to treat it as a HANDLE–
BODY object and share the body representation of a string when a copy is made, rather than take a
deep copy that results in heap allocation. The char_type array forms a natural body in this case.
This means that copying is simple and cheap. Only when the string is going to be modified does
the 'real' copy occur to avoid aliasing surprises. This lazy, just-in-time model — referred to
commonly as COPY ON WRITE and fondly as COW — defers the cost of allocation until the point it
is absolutely needed. If it is never needed, the cost is not paid. However, few things in life are for
free: The sharing is not without overhead. For a start, it must be managed, which increases the
complexity of the code. The referencing must also be tracked so that when — as a result of
assignment or destruction — a string's text body is no longer referenced it is properly
deallocated, and when only a single string handle refers to a text body, redundant deep copies
are not made. Therefore, the string itself must be a COUNTING HANDLE.

There are five specific patterns that apply in which references held by string handles to text
bodies can be sensibly tracked, each with its own particular tradeoffs:

1. Make the body an EXPLICITLY COUNTED OBJECT with a DETACHED COUNT. Using an
INDEPENDENT COUNT leads to separate pointers to the reference count and the actual text. This
means that the footprint of the string object is a little larger and that we are paying for the
allocation of two heap objects. The allocation means that it is unlikely that we recoup our
investment unless a text body is shared by more than two string handles. For a single
reference, this is a not an optimization. Holding a static reference count of 1 , and only
allocating a dynamic count when the figure rises above that can reduce the overhead in this
case. This will complicate the implementation, but if the majority of strings are never copied
this will be a saving. If, on the other hand, the string handle's footprint is a concern, the
information duplicated between sharing handles can also be associated with the count,
reducing the footprint to two pointers:

template<typename char_type>
class string
{

private:

 struct shared
 {
 size_t used, reserved, count;
 };
 shared *info;
 char_type *text;
};

2. Make the body an EXPLICITLY COUNTED OBJECT with a DETACHED COUNT. Using an
ASSOCIATING COUNT leads to a single pointer to an object that contains the reference count, the
pointer to the shared text, and the text size information. This always results in the allocation of
two objects on the heap, and there is an extra level of indirection to reach the actual text. For
some designs this could provide an additional benefit of allowing the actual text to be
reallocated or virtualized in some way, e.g. to disk, without affecting the handle objects. In the
common case, the main benefits of this approach are a little more restricted. The string
handle's footprint has now been reduced to a single pointer and, if you want to add a
constructor and destructor to the shared body, the management of the text memory can be
hidden from the string handle. In its simplest form we can see the basic rearrangement is a
proper HANDLE–BODY configuration:

template<typename char_type>
class string
{

private:

 struct shared
 {
 size_t used, reserved, count;
 char_type *text;
 };
 shared *body;
};

3. Make the body an EXPLICITLY COUNTED OBJECT with an EMBEDDED COUNT. Because the body is
not a user-defined type, a HIDDEN PREFIX COUNT is the only option. This option leads to a
single pointer to memory that contains both the information about the string text — including
the reference count — and the string text itself. The information is held as a prefix to the
char_type array. Only a single pointer is held in the handle, only a single allocation is
performed, and treating the space before the text as a different type accesses allows access the
string information. Although this solution is at a slightly lower level, it can be very effective
[Henney1998], especially when encapsulated within the string handle. The drawbacks to this
approach are that any resize must also involve reallocating and copying the information
prefix, and also the intent of the code and connections between the data structures is less
obvious:

template<typename char_type>
class string
{

private:

 struct shared
 {
 size_t used, reserved, count;
 };
 char_type *text; // reinterpret_cast<shared *>(text) - 1
};

4. The string objects, i.e. the handles, can be defined as LINKED HANDLES, so that copied objects
are linked together in a doubly-linked list and each hold a pointer to the string text. The
information about the string text can be held duplicated in each string handle or as a prefix of
the text body's memory. When the links going to the previous and next string handle are both
null (or, in a circular configuration, pointing to this) the text body is uniquely owned. This
style of reference accounting is perhaps least appropriate for strings because there are no
operations that require traversal of all handles. Each string handle will have a larger footprint
than the other solutions considered so far, although only a single allocation is required per
text body:

template<typename char_type>
class string
{

private:

 size_t used, reserved;
 char_type *text;
 string *prior, *next;
};

5. Make the body an EXPLICITLY COUNTED OBJECT with a LOOKED-UP COUNT. This option leads to
the string text being held in a managed lookup table, with the handle retaining some kind of
reference into the table. The information about the string can be held alongside the actual text
in the table. This approach is suitable when the aim is not simply to reduce copy cost, but also

to eliminate any duplicate strings. It is effectively a symbol table. The cost of initialization
from a raw string is increased because of an initial search and a possible initial insertion, and
there is increased space overhead per text body that exists. Strings can be held uniquely so
that some string features, such as reserved capacity, are no longer appropriate. For strings, the
typical implementation is to hold a static repository, which introduces its own issues as far as
initialization and finalization ordering. This is typically not a suitable design for general
purpose strings:

template<typename char_type>
class string
{

private:

 struct less {....}; // function object type for comparison
 struct info
 {
 size_t used, count;
 };
 typedef map<const char_type *, info, less> string_map;
 static string_map strings;
 string_map::iterator entry;
};

Clearly, there are many ways to skin a cow. For general-purpose, COPY ON WRITE strings, the first
three techniques are the most appropriate and most common.

Trying to be Smart

It seems clear that non-const operations such as operator+= and resize require a string handle to
operate on its own copy of the text body. It also seems clear that const operations, such as size
and compare, can operate without ill effect on a shared representation. This seems to divide
operations in the string world neatly into two type types. However, there is a gray territory in
between. What about non-const operator[]? This operator may be used for both reading from and
writing to a string:

string<char> cow = "Woof!", ghost = cow;
ghost[3] = cow[1];

Both of these calls result in a call to the non-const operator[] , but for assignment we want to
assure that a deep copy happens, but for reading a deep copy would be wasteful. There is no way
to distinguish between these uses within operator[]. What we need is a smarter reference to the
work for us:

template<typename char_type>
class string
{
public:
 class reference
 {
 public:

 char &operator=(char); // perform deep copy before write
 operator char() const; // use shared representation
 private:
 string *target;
 size_t index;
 };
 reference operator[](size_t);

};

A SMART REFERENCE works for many scenarios. However, a SMART REFERENCE is not totally
substitutable for a real reference. The following fails to compile because std::swap expects real
references:

swap(cow[3], ghost[1]);

There are other problems with the SMART REFERENCE approach for strings [Meyers1996,
Sutter1998a], some of which are related to dubious practice — holding the address of a returned
reference — and others to do with constraints in the standard — the reference type is required to
be a real reference, no smart references allowed.

And don't think that the problem is just confined to operator[]: It also applies to the iterator type,
which may be used for both reading and writing. Therefore, for reference-counted strings,
iterator must be a smart pointer rather than raw pointer type for the reference-counting
optimization to be fully effective.

Pessimism

The outlook is pessimistic. As a copy optimization the effectiveness of COPY ON WRITE with some
form of reference accounting has been reduced to a few cases. In other cases it may be quite the
opposite of an optimization, regardless of investment and increase in code complexity.

The only workable evaluation model for these problem functions is a pessimistic one: You don't
know whether the user is going to read or write through the returned reference, and you have to
just accept that and assume the worst. You may also consider catching some of the corner cases
for undefined behavior, such as holding onto the address of a returned reference. In these cases
you have to prevent any future sharing, so that if the current string is used as the source for a
copy it causes a deep copy rather than sharing:

template<typename char_type>
class string
{
public:
 typedef char_type *iterator;
 iterator begin()
 {
 reserve();
 return text;
 }
 void reserve(); // reserve representation exclusively

private:

 char_type *text;
};

All in all, this further reduces the effectiveness of copy optimization to a few corner cases. For
non-const cases there appears little to be gained from considering this a general-purpose
optimization.

Threadbare

The final body blow comes with the introduction of multithreading. Sharing a reference-counted
text body becomes unnecessarily interesting when the sharing is between threads. The gut
instinct of programmers new to threaded programming is that a mutex or equivalent
synchronization primitive will solve the problem. For instance:

template<typename char_type>
class string
{

private:

 struct shared
 {
 size_t used, reserved, count;
 mutex guard;
 char_type *text;
 };
 shared *body;
};

Synchronization primitives are operating system resources, and as such may be potentially scarce
and costly to obtain. The temptation is then to share a common mutex for all string objects:

template<typename char_type>
class string
{

private:

 struct shared
 {
 size_t used, reserved, count;
 char_type *text;
 };
 static mutex guard;
 shared *body;
};

In addition to the initialization and finalization issues, you now have another problem:
performance. First of all, locking and unlocking mutexes for all data accesses comes with a
measurable overhead. And second, all string objects are now serialized through the same mutex,
creating a potential bottleneck. Given that the aim of COPY ON WRITE with reference accounting is
to optimize — and taken with all the other issues raised previously — a mutex-based approach is
not even on the radar.

If you look carefully at what you need to lock, you will see that the locking revolves around the
reference count. Many operating systems provide you with lock-free synchronization primitives
for incrementing and decrementing integers, e.g. InterlockedIncrement and InterlockedDecrement
on Win32. With careful coding it is now possible to ensure that no shared text body is ever
compromised by race conditions. But note that these primitives still incur a performance penalty
— few things in life are free.

Evaluating COW Strings

There is a question we have to ask ourselves: Is it all worth it? The assumption has always been
there that this is a good general-purpose optimization, from the early days of standardization
[Teale1991] to the current standard [ISO1998]. At every stage, accommodating this style of
implementation has caused headaches, even without the threading issues. The concern is not a
recent one [Murray1993]:

A use-counted class is more complicated than a non-use-counted equivalent, and all of this
horsing around with use counts takes a significant amount of processing time. If the time
spent copying values is small enough (either because the values are small and cheap to copy
or they are not copied very often), changing the class to do use counting may make programs

slower. Always do some performance measurements when making this kind of change to
convince yourself that this optimization is not really a pessimization!

With multithreading the issues become even more involved [Sutter2001] and the horsing around
becomes a full-blown stampede (but hopefully not a race condition...). This simply reinforces an
increasingly widely held belief: It is not possible to design a single string implementation that
satisfies all uses. Thus the default implementation that causes the fewest surprises (bugs) —
either in use or in implementation — is to avoid COPY ON WRITE reference accounting. Avoiding
it, or providing explicit information on how to disable it, is the approach now adopted by many
libraries.

So deeply rooted is the idea that sharing with COPY ON WRITE is mandatory for strings that many
developers are shocked — and sometimes go into denial — when they discover that the return on
investment in this technique is often negligible and sometimes negative. The long-standing belief
in this old practice is, however, younger than faith in another more fundamental software
engineering principle: separation of concerns. And hey, do we have concerns.

A Qualified Difference

Listen to the code, it is trying to tell you something: Mixing transparent sharing with mutability
causes problems. Period. However, if you listen closely, you can hear a leading question, and the
whisper of a solution: What if you don't mix sharing with mutability? What if we are dealing
with two related but distinct types?

From an interface perspective, we can see that we can use a string either as something that is
read-mostly information or as a read-and-write space. From an implementation perspective,
problems with sharing arise only with mutability. However, sharing an IMMUTABLE OBJECT does
not encounter the same difficulties.

Consider a design where string covers the general case and something like const_string covers
the immutable case. const_string has a subset of the operations of string: the const ones plus some
that effect a rebinding of handle to text body, such as operator=. const_string is different to const
string, which prevents all modification but still comes with any baggage not relevant to const,
e.g. reserved capacity. It is more like the relationship between iterator and const_iterator.

Not only do string and const_string differ in interface, but they can also differ in implementation:
string should not share its body but const_string , because its representation is an IMMUTABLE
OBJECT, may share its body. const_string has none of the concerns that plagued COPY ON WRITE
for a mutable string, and thread safety can be catered for by atomic increment and decrement
operations.

Before you get too attached to the names string and const_string — and assuming that your
compiler fully supports partial template specialization — consider one last refinement that uses
template specialization and lets us keep a single name:

template<typename char_type>
class string
{

private:

 size_t used, reserved;
 char_type *text; // unshared
};

template<typename char_type>
class string<const char_type>
{

private:

 struct shared
 {
 const size_t used;
 size_t count;
 };
 char_type *text; // reinterpret_cast<shared *>(text) - 1
};

With this approach string<char> is a common, writeable string and string<const char> is the
idiom used to work with the read-only variant.

Acknowledgments

My thanks to Peter Sommerlad for his attention as a shepherd, to both he and Andreas Rüping
for their enduring patience, and to Frank Buschmann and Andrey Nechypurenko for their
detailed and constructive comments.

References

[Buschmann+1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal, Pattern-Oriented Software Architecture: A System of Patterns, Wiley, 1996.

[Coplien1992] James O Coplien, Advanced C++: Programming Styles and Idioms, Addison-Wesley,
1992.

[Ellis+1990] Margaret Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual, Addison-
Wesley, 1990.

[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Henney1998] Kevlin Henney, "Counted Body Techniques", Overload 25, April 1998, also
available from http://www.curbralan.com .

[Henney1999] Kevlin Henney, "Mutual Registration", EuroPLoP '99, July 1999, also available from
http://www.curbralan.com.

[Henney2000a] Kevlin Henney, "Patterns of Value", Java Report 5(2), February 2000, also available
from http://www.curbralan.com .

[Henney2000b] Kevlin Henney, "Value Added", Java Report 5(4), April 2000, also available from
http://www.curbralan.com.

[Henney2000c] Kevlin Henney, "C++ Patterns: Executing Around Sequences", EuroPLoP 2000,
July 2000, also available from http://www.curbralan.com.

[Henney2000d] Kevlin Henney, "Valued Conversions", C++ Report 12(7), July/August 2000, also
available from www.curbralan.com .

[Henney2000e] Kevlin Henney, "Function Follows Form", C/C++ Users Journal C++ Experts Forum ,
November 2000, http://www.cuj.com/experts/1811/henney.html.

[Henney2001a] Kevlin Henney, "Total Ellipse", C/C++ Users Journal C++ Experts Forum , March
2001, http://www.cuj.com/experts/1903/henney.html.

[Henney2001b] Kevlin Henney, "Distinctly Qualified", C/C++ Users Journal C++ Experts Forum,
May 2001, http://www.cuj.com/experts/1905/henney.html.

[Henney2001c] Kevlin Henney, "Making an Exception", Application Development Advisor, May
2001.

[ISO1998] International Standard: Programming Language - C++, ISO/IEC 14882:1998(E), 1998.

[Lippman1996] Stanley Lippman, Inside the C++ Object Model, Addison-Wesley, 1996.
[Meyers1996] Scott Meyers, More Effective C++, Addison-Wesley, 1996.

[Murray1993] Robert B Murray, C++ Strategies and Tactics, Addison-Wesley, 1993.
[Sommerlad1998] Peter Sommerlad, "The Manager Pattern", Pattern Languages of Program Design

3, edited by Robert Martin, Dirk Riehle, and Frank Buschmann, Addison-Wesley, 1998.

[Stroustrup1994] Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesley, 1994.
[Stroustrup1997] Bjarne Stroustrup, The C++ Programming Language, Third edition, Addison-

Wesley, 1997.
[Sutter2000] Herb Sutter, Exceptional C++, Addison-Wesley, 2000.

[Sutter2001] Herb Sutter, More Exceptional C++ , to be published by Addison-Wesley, 2001.

