
Patterns for polymorphic operations 

Three small object structural patterns for dealing with polymorphism 

 

Alexander A. Horoshilov 

hor@epsylontech.com 

 

Abstract 

Polymorphism is one of the main elements of the object paradigm. It 

is considered to be a requirement for any true object-oriented language. Like 

any powerful tool, it should be used properly. This article presents design 

patterns to impose additional constraints on polymorphic operations. The 

patterns can be applied to a wide range of object-oriented languages. They 

help to produce additional benefits from polymorphism and to avoid common 

pitfalls. 

Introduction 

Polymorphic methods are widely used when designing class 

hierarchies to provide flexible manners, to partially change object behavior 

and to avoid complex error prone switches/cases. With polymorphism, new 

derived classes can be added without the need to change the existing 

hierarchy. 

Polymorphism provides a flexible means to redefine parts of object 

behavior but not to break existing code. To succeed with well-designed class 

hierarchies, in certain cases other constraints should be applied. When a 

polymorphic method is designed, its signature (name and argument types) is 

fixed in base class. So, it is important to provide the method with proper 

parameters. Patterns will help choose the right set of parameters. 

Below, three patterns of polymorphism use are presented. They 

address to different cases. Functional polymorphism and procedural 



polymorphism patterns describe two different scenarios. Constant 

polymorphism is a special case of functional polymorphism. Functional and 

procedural polymorphism got their names from languages like Pascal where 

two distinct syntaxes are used for subroutines. If a routine returns some 

value, it is called function. If it returns nothing, it is called procedure. As will 

be shown later, these kinds of routines are usually used specifically for their 

case of polymorphism. There are a lot of exceptions as well. These names 

may seem a little confusing for C/C++ programmers (where all routines are 

called functions), but they are more descriptive terms then other 

alternatives. These patterns have no relation to functional programming 

languages, or to functional programming. 

For simplicity and clearness of interpretation, in the rest of the article 

the following terms are used: 

• Operation whose implementation may be changed in derived classes 

called polymorphic operation. Available in many languages, the notion 

of virtual method is not used in the description in order to be more 

language-neutral. 

• Parameters of the operation are divided into input parameters 

(supplied by the callee) and output parameters (returned from as 

result of its execution). 

• Polymorphism is closely related to the inheritance. You are expected 

to provide the proper design for the base class. The developer of 

inherited classes is called the programmer. 

• Private, protected and public scopes are used. They are available in 

many languages and have their usual meaning. 

Pattern: Functional Polymorphism 

Context 

You are designing a class to be the root of a hierarchy. To implement 

its functionality additional information is needed. But only derived classes 



can provide this information. So, you introduce a polymorphic operation. It 

is expected to provide the data required and called from base class methods. 

Problem 

How can you force the programmer to supply all information needed 

for base class? 

Forces 

• Base class can not provide default values, so if the programmer 

misses this information, run-time error or even unstable behavior will 

occur. 

• This operation is not expected to change the state of the base object. 

It is allowed only to select from the set of the predefined alternatives. 

• Two consequent calls of the operation return the same value. In some 

cases the result is always the same. 

Solution 

Make the operation return the information in output parameters. If 

only one value is needed, return it as result of the function execution. 

Several values can be grouped in complex data; for example, structure or 

array. Since some languages like Pascal call routine with return value 

function, we will name this case functional polymorphism. 

Consequences 

Modern compilers effectively warn the programmer if he misses the 

result value of the operation. These types of errors can be discovered at 

compile-time, which is always better than run-time testing. 

Example 

Traditional use of functionally polymorphic operations - is access to 

some information, specific for each class; for example, to class-IDs in 

environments with no RTTI support. The following code uses functional 

polymorphism to provide classes with a unique string identifier. 



class Base

{

public:

virtual const std::string get_name() = 0;

};

Derived classes should override such an operation and return the 

data (class name in this case) to correspond to the concrete class: 

class Derived : public Base

{

public:

virtual const std::string get_name()

{

return std::string("Derived");

};

};

In C++ the pattern may be extended with the notion of pure virtual 

function. The programmer will be forced to redefine such a function in 

inherited classes. Because of that, he can not forget to implement the 

operation. 

Known Uses 

Good examples of these types of methods taken from Java are 

java.lang.Object.hashCode or java.lang.Object.toString [5]. 

Another example is Object::is_a operation from CORBA specification 

[6], which definition in many mapping languages uses functional 

polymorphism. 



Pattern: Constant Polymorphism 

Context 

You have applied the functional polymorphism pattern. Because of 

some design issues, the result of the operation should preserve the same 

value during the object lifetime. 

Problem 

Functionally polymorphic operations can return different values each 

time they are called. Nothing prevents them from changing the return value. 

How can you guarantee time-invariantness of the value after initial object 

initialization? 

Forces 

• Value returned may vary between different instances of the same 

class. It depends on the concrete class instance. 

• The operation may require some additional data accessible only in 

limited scope; for example, only during object initialization. 

• Value requires complex calculations, so it causes significant overhead 

to call the operation many times. 

Solution 

Call the operation during object initialization and store value returned 

as object attribute. Put the attribute in private scope to prevent it from 

changing. Provide public non-polymorphic read accessor. The operation itself 

may have protected scope. 

Consequences 

This solution allows, on the one hand, derived class to implement 

their own version of polymorphic operation and, on the other hand, force the 

value returned to be the same during the object lifetime. 



Another benefit is very effective access to the operation result. Many 

OO languages support the concept of field accessor to provide read-only 

access to field member. This implementation is equal to direct reading of the 

data field. 

If value returned requires a lot of memory, application of this pattern 

increases the amount of dynamic memory needed for the object or the size of 

the object itself. 

Special cases of constant polymorphism are operations called during 

object initialization when they should return another (usually especially 

created) object to be used later. 

Example 

The following code is the previous example modified to guarantee 

object that the class name will not changed. 

class Base

{

public:

const std::string name() const { return name_; };

void init() { name_ = get_name(); };

protected:

virtual const std::string get_name() = 0;

private:

std::string name_;

};

In C++ such accessors are usually implemented as inline functions. 

Read accessor does not entail any overhead, it just imposes read-only 

constraint on the field. 



Known Uses 

In Visual Component Library shipped with Borland Delphi and 

Borland C++Builder development tools, TCustomGrid component has 

CreateEditor method. It is called during object initialization and expected to 

create and return the contained object. This object is accessible later by 

InplaceEditor property. 

Pattern: Procedural Polymorphism 

Context 

You should allow the programmer to take control when a certain event 

occurs. When an event is triggered, a polymorphic operation is called. 

Derived class should override the operation to process this event. This type 

of event may be a public method that is called from any code, not only from 

methods of the base class. 

Problem 

Complex base object can have many events. Full implementation of 

all these handlers can require a lot of coding. If the event does not require 

obligatory processing, how you can allow the programmer not to implement 

some handlers? 

Forces 

• Base class can provide default behavior useful for a wide range of 

ancestors without overriding. 

• If an operation is overridden, the inherited code of the base class may 

still be usable to be called from the derived one, may be more then 

one time. 

• No return values are expected. 



Solution 

Design your operation not to return any values. Require the operation 

to perform all the jobs needed. If the operation requires additional 

information, pass it as operation parameters. 

If possible, provide default implementation, suitable for derived 

classes. 

Consequences 

The Programmer is now has full control of the event handling. It is 

possible to reuse base class functionality, so time for adding a new class to 

the existing hierarchy is reduced. When overridden, an inherited operation 

can be called before, after, or in the middle of the new logic introduced. If it 

is appropriate, an inherited operation can be called several times, perhaps 

with different parameters. The Programmer can effectively reuse already 

existing implementations. 

Example 

This simple example shows how operation prints object state can be 

designed. By default, it prints only empty string. Ancestors add their own 

logic. 

class Printable

{

public:

virtual void print_state(std::ostream& os)

{

os << endl;

};

};

class IntHolder : public Printable

{



public:

virtual void print_state(std::ostream& os)

{

os << i;

Printable::print_state(os);

};

private:

int i;

};

Known Uses 

Most common examples of procedurally polymorphic operations are 

virtual destructors available in many languages. 

Two Kinds of Polymorphism 

It should be noted that two kinds of polymorphism – procedural and 

functional - are totally different. Some forces of these patterns are exclusive. 

So methods applicable to both patterns usually can not be created. 

If, in the common case of providing the object with properties (or 

attributes - some named values, associated with this object), the read and 

write of the value of this property is performed by polymorphic methods. 

Then the read accessor is functionally polymorphic and the write accessor is 

procedurally polymorphic. 

The bad design of operation signature and functionality expected may 

lead to an error-prone programming style. Operations designed with these 

two patterns, instead, improve purity and robustness of the design. 

Language specific features, as noted in pattern description, can increase 

benefits of the patterns. 

Usually functionally polymorphic operations do not change the object 

state (and are declared as const in C++), while procedurally polymorphic 

operations do. Result of execution of functionally polymorphic operation may 



be used to change object state (which is done in constant polymorphism 

pattern). Procedurally polymorphic operation takes full control of event 

handling. 

Related Patterns and Additional Information 

Patterns described are small-grained recommendations. They are 

widely used in other patterns which cover more complex scenarios. Because 

of this, concrete examples can be easily found in many cases. 

Since [1] is generally accepted as design patterns foundation, it is 

good to highlight the use of described patterns in it. They will help the reader 

that is familiar with [1] to get additional ideas about pattern applicability. 

• Abstract Factory uses functional polymorphism to creation new 

objects. It is illustrated in its code example by MazeFactory class with 

MakeMaze, MakeWall, MakeRoom, and MakeDoor operations. 

• Composite uses procedural polymorphism to provide flexible hierarchy 

extension. In its code example, Equipment class has procedurally 

polymorphic operations Add and Remove. The same functional 

polymorphism is applied to Power, NetPrice, DiscountPrice, and 

CreateIterator operations of the same class. 

• Observer (see Observer::Update method in the code example) and 

Visitor (see Visitor::VisitElementA and Visitor::VisitElementB methods 

in the code example) both have procedurally polymorphic handlers to 

perform a job. 

• In most cases, all patterns described are used as Template Method. 

• Factory Method is a clear case of functional polymorphism, as is 

shown in code example by Creator::CreateProduct method. 

In [2] many recommendations about object-oriented design are given. 

They show how to design a high-quality, robust class hierarchy and describe 

various useful principles that can be combined with polymorphism patterns 

discussed here. 



As described in [3], when External Polymorphism pattern is applied, 

all patterns introduced can be translated from polymorphism based on 

virtual methods to C++ templates and operator overloading, and be suitable 

for dealing with built-in C++ types and classes unrelated with inheritance. 

An important part of the pattern is proper design of arguments 

passed to the operation and result values returned. In [4] additional 

recommendations about operation parameters design can be found. 

References 

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, "Design Patterns: 

Elements of Reusable Object-Oriented Software", 1995, Addison-Wesley 

[2] Robert C. Martin, "Engineering Notebook" Column, C++Report '96-97 

[3] Chris Cleeland, Douglas C. Schmidt, and Tim Harrison, "External 

Polymorphism", in proceedings of PLOP'96. 

[4] James Noble, "Arguments and Results", in proceedings of PLOP '97. 

[5] Java™ 2 SDK, Standard Edition Documentation. 

http://java.sun.com/j2se/1.3/docs/api/index.html 

[6] The Common Object Request Broker: Architecture and Specification. 

OMG document formal/01-02-33, 

http://www.omg.org/technology/documents/formal/corbaiiop.htm 

 


	Abstract
	Introduction
	Pattern: Functional Polymorphism
	Context
	Problem
	Forces
	Solution
	Consequences
	Example
	Known Uses

	Pattern: Constant Polymorphism
	Context
	Problem
	Forces
	Solution
	Consequences
	Example
	Known Uses

	Pattern: Procedural Polymorphism
	Context
	Problem
	Forces
	Solution
	Consequences
	Example
	Known Uses

	Two Kinds of Polymorphism
	Related Patterns and Additional Information
	References

