A Few Patterns for Managing
Large Application Portfolios

Wolfgang Keller
c/o Generali Office Service & Consulting AG, Kratochwijlestr. 4; A 1220 Wien, Austria
Email: wk@objectarchitects.de
http://www.objectarchitects.de/ObjectArchitects/

Copyright © 2001 by Wolfgang Keller. Permission is granted to EuroPL oP 2001 to make copies for conference use
Abstract

Merger mania hits the corporate world as a Sde effect of globdization. Mergers of their information
systems follow most mergers of companies in the same industries. This paper presents some frequent
problems and frequently used solutions (patterns) to help you manage such information system
mergers. The examples are mogtly taken from ,,elephant mergers’ of corporations with gpplication
portfolios of well over 100,000 function points for the core systems aone. Such marriages typicaly
gppear in the financid industry. The patterns are dso useful for companies, which have more than
one information system for the same business function and want to consolidate their systems.

Introduction

Mergers and acquisitions are one of the predominant phenomena in our new globaized economy.
These trends plus the urge to maximize shareholder value have created a new sport for IS
professonds. Merging information systems and managing large application portfolios. This sport
gopears in various industries. This paper will use the insurance and banking industries as running
examples, as the author knows these best. Therefore the life examples and known uses are taken
from these industries. Nevertheless, the ways and methods how to manage the mergers of IS
landscapes in other industries might be pretty smilar to those presented here.

To give you afeding, whether you should continue reeding, imagine you are in the following Stuation.
You are in charge of managing al the gpplications of a multi-nationa insurance group. You have an
eye on and decision power for the new information systems and you aso supervise the maintenance
of the existing operations. Hundreds of programmers work to maintain that portfolio and the portfolio
has a sze of more than100.000 function points. Your shareholders and your bosses have recently
got natice that you maintain as much as 13 different systems for life insurance aone in the group
(which was a result of mergers and aso a result of time to market decisons in the past). Now they
want to buy yet another competitor about the current sze of your company and will ask you to
reduce IS cogts dramaticdlly at the sametime.

Tough job. What usudly follows is a year long clean up process and you can be sure that the next
merger will appear before you have cleaned up the consequences of the last one.

General Forces

You will find that there are a lot of quite conflicting forces and interests a work here. They range
from technica to domain specific to socio-culturd forces. If you manage alarge gpplication portfolio
you will ded with dl of them.

Cost: is about the sngle most important force (you might think) in the agpplication portfolio
management sport. It seems obvious that it is chegper to have one life-insurance system in your
company than let’'s say 13. However, thisis not dways true and cost is by far not the only factor that
needs to be taken into account when making decisions about the future of your system landscape.
Costs come in such facets as cost to creste the system, maintenance costs, total cost of ownership
and many more. Cods are a counterforce to Function and nonfunctional requirements such as
performance or mantanability.

Function: Your sysems should provide business functiondity. The requirements gurus will tel you
that your systems should do, what the users want them to do. But there are more stakeholders here.
Maybe a board member has some ideas of what a system should do in a few years, maybe the
public has an opinion about what a system should not do in terms of privacy —anyway: All of thiswill
be summed up under the term functional requirements. Function is often a counterforce to
nonfunctiona requirements such as performance. If you concentrate primarily on functiondity you
might aso loose agrip on technica qudlity.

Nonfunctional Requirements lead to sysem properties such as peformance, security,
maintainability, flexibility and the like. This will not be discussed in more depth, as it need not be
referred to these forces in the later discussion. Most books on software architecture like [Bas+98]
contain eaborate ligts of such forces. The better you ate a these the more you pay.

Technical criteria: In order to make sound decisions you aso need to check the technica quaity
of the systems you want to make plans for. Criteriainclude: “How complex is a system compared to
the smplest system that possibly doesthe job”, “ Does the system fit the overall technica architecture
drategy (if you want to build web appsit is not agood ideato buy anew fat client system or to even
keep one for al eternity) and many many more.. These items are in most cases a counterforce to
costs and rich functiondity. The cleaner you want to become the more you have to invest in

redesigns and rework.

Socio-Cultural Forces: Besdes the hard technicd criteria, functiond criteria, and nonfunctiona
requirements there are a lot of soft forces. If you are dedling with reuse you will have heard of the
NIH (Not Invented Here) syndrome. There is also usudly pride of the developers who own and
maintan a sysem, and there is a generd dtitude againg change in many humans (people hate
change), there are various political forces like “what will hgppen to me if my system is abolished and
the data are migrated to other systems?’ and more. Y ou will find most of these in books on generd

change management. If you ignore these forces, you will typicaly have to fix alot of problems with
money — S0 thisis aso related to the cost force.

Time to Market: Besdes dl these internd forces we did not yet tak about the customers — the ones
who bring the money and the ones we want to provide with up to date products. It is very interesting
if the EDP (Electronic Data Processing) department has optimal operation costs — but if it supports
products that have no positive resonance on the market, the company will have trouble paying even
the lowest billsfor the IT department. So if you look at it from a bird’s perspective, it might often be
good for the whole company to accept a few extra costs in the EDP department while sdlling more
and having a better bottom line. Time to market is a counterforce to dmost any of the above forces.
Often time to market will force you to spend a lot of money on a crappy solution just in order to be
present on the market before others are.

Project Risk: Ancther important factor is project risk. If you have an ided solution that has an 80%
risk of faillure due to alack of relevant skills or because it is Smply a death march project, you might
want to favor a solution, which has only 70% or 80% of the features but only a 10% risk of project
fallure. You might even plan paradld grategies like doing the low risk solution first and then trying the
high risk one. Time to market often forces you to take big risks and if you have cost cutting expert as
your boss thiswill o often increase risk.

As you see, optimizing an gpplication portfolio needs to ded with alot of conflicting forces. Every
force conflicts with dmogt al the others. A good application portfolio manager will have to ded with
many of them without loosing focus and without using them as an excuse for total chaos. Evauating a
solution here often means deding with soft and politica factors, which are very hard to quantify.

Therefore you will often have solutions and plans that have smilar measurable costs but you need to
decide anyway and might have afew more enemies afterwards.

Roadmap

The roadmap gives you an overview of the five patterns presented in this papers and relates them to
other patternsin the area.

Keeper of the
Flame
[AOCO00]

should have
OSoe

Archetype
[AOCO00]

Application
O Architecture

Early

facilitates Decision

O s derived from
One often leads to
Application < -
Wins 3y Keep the
facilitates OO Data — Toss

the Code

Application
Map

One
Infrastructure

may use O
()

may use

patterns in this
paper

Stepping
Stone
[Dew99]

The Bridge to
the New
Town [Kel00]

Patterns in
other papers

Needs to
be written

The relations will become clearer from the related patterns sections of the patterns. Once you have
read the patterns this roadmap will help you even better to relate the patterns.

The Patterns

Pattern: Keep the Data — Toss the Code

Also Known As

Another term for the same thing is “Data Migration”. “Keep the Data — Toss the Code’ is a motto
from abook by Michagl Brodie and Michael Stonebreaker [Bro+95].

Example

Imagine you have two (or more) information systems with very smilar functiondity. They are caled
A and B. For cost reasons you want to replace them with only one system. Each of the systems
covers about 70% of your desired target system’s functiondity — but the 70% are different for each
System.

Problem

What do you do, if you have two or more systems with dmost identica functiondity and want only
one sysem?

Forces

Cost: Why not keep the two systems? That depends on your cost Situation but in genera maintaining
two systems on the long run is more expengve than migrating to one new system.

Technical quality of the systems involved: For your decison what to do, you will evauate the
technical quaity of both systems. Y ou will ask questions such as “How old are the systems’, “how
many function points do they comprise?’, “how complex are the systems that support the same
functiondity?” and more. Other criteriainclude performance, or the technica environment used.

Functionality: As mentioned above both sysems, A and B do not have the desired functiondity.
So why not use the best features of the two of them and merging the two? Or you might aso pursue
the idea to write on new system instead.

Politics: Often the choice of a new system will be influenced by who is more powerful: The owners
of system A or the owners of system B. Be aware tha any decison that will be made is not free of
politics. Identify the stakeholdersin your scenario.

Time to Market: Any migration puts your EDP department’ s capability to support new products to
arest for sometime. So if you don’t want to loose market share, you might have an urgeto do afast
job here.

Solution
Keep the Data— Tossthe Code.

migrate the data from dl the systems you have into one common system.

A t
System
B
After
Before
System System System System
A B A B
Migrating data from Ato B Migrating data from A and B
(or vice versa) to a new system C

Figure 1: Data migration scenari

Y ou can migrate the data from system A to system B or vice versaor you can write anew sysem C
and migrate dl the data to system C, but you should not try to use a reengineered code mix of
system A and system B as your target scenario.

Variants
Aswe pointed out in Figure 1 there are two mgjor variants here:
? Migrating the data to one of the existing systems,

? or migraing them to a new system, which has to be created in addition to the two existing
systems.

In practice you will seldom find one of these solution types in pure form. You will insead combine
the firg type with some functiona enhancements of the target system or you could even use one of
the old systems as an intermediate systlem while you build a better sysem C as illustrated by the
below figure.

System

C
A
@ Migrating data from B
u to a new system C
System
B

= — Migrating data from A to B
/L_’) (or vice versa)

System System

Consequences

Technical Forces. Why is reengineering and combining “components’ from two systems a bad
idea?. Well —if you have perfect sysems and if sysem A and system B are based on smilar or the
same component technology reengineering might be a viable way. This kind of reuse is the god of
component based systems. However, in today’s world, mergers seldom have to merge software
basad on such component technologies, certainly not on the same. It is more likely that you will find
one COBOL system let’s say on CICS as system A and one PL/I system on IMS as system B.
Combining the two is possible — in theory — but too expensive in practice.

Cost: Your new system portfolio (let’'s say B only) should be cheaper to maintain than A and B
together (see Example Resolved).

Functionality: The new system will dill not have 100% functiondity, but let’s say Hill the 70% ob
B before the data migration. If you want more functiondity, you need to start a new project to
enhance B or even migrate it to anew system C.

Politics: Whatever the solution is— it will be one that is accepted by those who had the power to
push the new solution. There will be some “losers’: The usars of the abandoned system and its
developers. These two groups need to learn new stuff. One group will aso be offended, as their
system is dumped. Hopefully there's a change management process that makes as many people as
possible winners. The point here is that you make only about 50% or less of the people unhappy. If
you try to find a politicdl compromise that makes close to 100% of the people happy, you
shareholder might be very unhappy, as such paliticad compromises are often very expensive on the

long run.

Time to Market: Any migration will need time and will consume resources. People cannot
implement new products while they migrate from old sysem A to old sysem B. Therefore don't
expect the business departments to support you luckily as they have no additiona

functiondity, no added vaue for the cusomer but immense cods for explaining the old stuff to
developers, and for testing. All this does not improve their business situation as no new functiondity
isbeing is being implemented.

Risk: Compared to any form of code reengineering data migration is alow risk strategy. Compared
to building new systems they are dso low risk dtrategies as there are often people who know the
target system and know how to handle it. But remember: No risk, no competitive advantage, and no
profit. If you keep migrating your old stuff to desth a new competitor with new systems might give
you are very tough time on the market.

Related Patterns

In order to evauate the systems that you want to consolidate you need a Clear Vison This vison
will usudly be expressad in an Application Map, which is your overdl building plan & a aty levd, if
you congder sngle systems the “houses’. If you have to gpply the pattern in a merger Stuation of
two companies, you should not try to make hyper-accurate decisons. Try to make Early Decisons
instead. Using the pattern will lead you towards One (technicd) Infrastructure.

Often people use The Bridge to The New Town [Kel00] (ak.a Live & Let Die [Dew99]) to thin
out alegacy system (in the above case system A). The variant above has large structura amilarity to
the so-called Stepping Stone pattern [Dew99]. System B is only an interim package that shdl findly
be replaced by system C.

Known Uses

The known uses for this pattern are TNTCL. Generdi Vienna Group uses the pattern in the so called
EAS project. This project merges the two legacy application landscapes of Interunfal and Generdi
Audtria. AMB Group Germany uses the pattern for syssem mergers between it's group members,
AXA insurance group use the pattern in order to flatten bought companies, most banks use it, eg. in
the Hypo Bank, Bayerische Vereinsbank merger.

Pattern: Early Decision

Also Known As

One Application Wins sooner or later. Y ou will see why sooner is better than later

Example

Imagine you have just heard the announcement of the merger of two large financia indtitutions— let’s
say banks. Y ou have been appointed the new CIO of the joint AB-bank and you need to come up
with a plan, how to join the two systems. As you are from one of the two banks, let's say the A-
bank, you have a certain hate-bonus from the B-bank’s former employees who want to see their

1 too numerous to count

system win. As you do not want to loose the B-bank employees you think it isa good ideato Sart a
system selection process with objective and measurable criteria. For each of the subsystems you
start workshops and compare and evaluate the subsystems. The process takes one year and after
that process you migrate the core banking app to the A-bank’s app, the security trading app to the
B-bank’s solution and so on and so on. Findly you have spent a year in workshops and have the
entire project before you.

Problem

How do you avoid along and expensve evauation process when you want a decision for one out of
severd very smilar software sysems?

Forces

The forces that apply here are the same as the generd forces above, plus the forces from Keep the
Data— Toss the Code. Except that there is often an extreme emphasis on politics involved here. All
the people in the process want their system to win and will find whatever “objective’ reasons needed
to support her opinion.

Solution

Make an Early Decision. Decidefast and hard ...

and avoid too many workshops as these are seldom redly “objective’ but are more often used to
express the politica will of the participants and to pull marketing sunts.

Example Resolved

Depending on your overdl stuation there are many good solutions—we will just give afew examples
here:

? In one merger of equas of two big German banks the decison was made in favor of the
system of the bank that was “the more equa one’ in the merger of equals — despite the fact
that the system was somewhat technically inferior to the other bank’s system.

? A large European insurance group specidizes in taking over smaler insurance groups. They
have made a professond exercise out of this and have reduced the time needed for amerger
of al EDP systems from about three years to about 9 months.

? Another German insurance group regrets that they did not act quickly. They had a merger of
more or less equas at least of companies of Smilar Sze. They had the array of workshops
and a system landscape that is a mixture of many worlds and produce the appropriate
amount of trouble.

? In a merger of two Audtrian banks the larger bank adopted the smaler bank’s system
because it was smply better from atechnica and functiond perspective. But they knew what
they wanted to do before they bought the smdler bank. This did not prevent some of the

owners of the amdl bank’s sysem from being pushed out of management functions once
they had done the migration job. Bad luck.

Consequences

Cost and Function: Acting quickly may come chegper than expensive and long-running pre-
sudies. The gStuation that each system covers about 70% percent of the desired functionaity, as
described in the example for Keep the Data— Toss the Code is rather typicdl.

Nonfunctional Requirements and Technical Criteria: Can become a killer, if one of the
companies that merge has a sgnificantly better system than the other one. In this case there might
even be aquick decison for the smdler partner’s system that is otherwise “less equa” but smply has
the better system.

Politics: If you decide quickly following the powers you have the least palitical trouble. Y ou might
loose afew people, but you will win alot of time and save alot of money. A quick decison implies
the danger of choosing the wrong application from atechnica point of view. But in most cases when
you have to make such a decigon, the solution is somewhat clear. In most cases you will find two
systems that have roughly the same degree of maintenance and functiona problems it does not redly
matter which on you choose. So you make a fast decison with regard to palitics. If one sysem is
clearly superior, you can dso afford afast decison againgt atougher politica force because you have
clear fact on your side.

Timeto Market: Asyou avoid the paralysis of along shoot-out and comparison process you have
a much better time to market and you can react to the market much fagter than with a long dow
evaluation process.

Project Risks: As you have experts for dl systems you want to merge and as you will likely keep
the experts for the winning system, a quick decison should be neutrd in terms of project risk.

Related Patterns

Once you have an Early Decison the next stop will very likely be a Data Migration (Keep the Data—
Toss the Code). If you avoid the cascade of workshops and make aclear cut, thiswill most likely go
together with One Application Wins and will result in One Infrastructure.

Known Uses

See the Example Resolved section above.

Pattern: Clear Vision

Example

Imagine you want to organize the gpplication portfolio of an insurance company. It is of some
importance that everybody uses a least Smilar congtruction principles and ideas over the whole
application landscape in order to avoid double implementations of functionality and in order to make
the weakest link of the chain (the whole gpplication portfolio) strong enough for your customer’s
gods.

Now imagine you have to communicate a 127 dides detailed building plan in order to communicate
your idea of what the insurance system landscape should ook like.

Problem

How do you communicate architecture for awhole enterprise application portfolio?

Forces

Simplicity versus accuracy: It isagood idea to have a smple vison but it may be very tough to
implement it — a Smple vison done does not tell you how to implement it. If you look eg. a the
NASA’sformer vision “put aman on the moon” thiswill help you to judge whether some action puts
thisgoa forward but it will not yet give you a clear blueprint.

Solution
Formulatea Clear Vison ...

that allows you to put the core congtruction principles of the whole portfolio on a single dide or two
a mog. Well you might say “Smart A..” but where does such a vison come from — it often evolves
in adomain and you only need to pick it up. The vision should be driven by business needs.

Example Resolved

For example in an insurance the vison might be, that you want a system landscape that
? Allowsflexible product definition (short time to market),
? dlowsyou to regroup process steps to ever new workflows (business process orientation),
? dlowsyou to use the system for more than one subsidiary,

? isobject-oriented for better maintenance and therefore lower maintenance costs.

No matter whether you think that this is the correct vison for insurance systems, you can look at a
system and tell whether it is conformant to it or not or in a way conformant. What you need in
addition to that is a building plan that follows the “Mile Wide — Inch Degp” [AOCOQ] pattern and
tells your coworkers something more about how to implement the vison. But gill “Smart A...”:
Where do you pick this up. We can only give the answer for the insurance industry. The above
congtruction principles have evolved over 15+ years as folklore in the industry — if you look at other
indugtries they dso have their Domain Architectures and high-level domain principles. So the solution
could dso be ... pick up the industries vison and formulate it in a clear way.

Consequences

The clear vison is clear but it will often not tell you very much about how to implement a system that
makes your vison redl. Hence you need some complementary materid in order to redly
communicate your enterprise architecture. Such materia could be atop-level architecturd plan plusa
Domain Architecture that comprises al the subsystems. But no maiter how deegp you are involved in
the design of a single subsystem. Often you can Hill ask — is what | do here good to achieve the
vigon?

Related Patterns

The pattern is closdy related to the Keeper of the Flame [AOCOQ]. The clear vison is necessary —
but a Keeper of the Flame is dso needed to enforce the integrity of architecture. In alot of decison
Studions you need a clear vison to be able to judge the qudity of the applications in your
Application Map. The Domain Architecture will typicaly express your Clear Vidon and detall it a a
lower leve.

Known Uses

Generdi’s Phoenix program has a clear vison, which has been vaid for over ten years now and ill
gives a stable guideline on how to build gpplications. Other insurance architectures such as VAA
(Versgcherungs-Anwendungs-Architektur see http:/mww.gdv-onlinedelvaal) or IAA (Insurance
Application Architecture by IBM) have very smilar visons.

Pattern: Application Map

Example

Imagine you are the CIO of an insurance company that has grown historicaly across haf Europe.
Sometimes new systems come into the portfolio of your company when your company buys a new
subsidiary. Sometimes you get a new app when there are market needs for new products. Y ou have
quite a few gpps for the same functiondity in your company; let's say 10+ life insurance systems.
Everything has grown historicaly — but you need to clean up.

Problem

What is your basis for planning what software is ingaled where and what software will be ingdled
where?

Forces

Simplicity, cost and understandability versus accuracy: A planning methodology needs to be
usable in a sense that you need to come to aresult in afinite amount of time. If you look at the size of
portfolios we have to ded with (100,000+ Function Points), thisis not trivid. So you have to find a
smple ingrument that is good enough, chegp and easy to understand by al stakeholders

Solution
Use a planning instrument called application map.

You will analyze the gpplication portfolios for dl your subddiaries. This will result in a series of
application maps. You will then think of how to reduce the number of apps, taking into account the
genera forces.

Structure

Portfolio Life $ 1=

| Technical Infrastructure |
| Phoenix Technical Base |

|Partner| |Object| |Cash| |Other..|

POA ISCD VVS
Product | | Policy | | Claims | | Sales
KPS/L- Phoenix various
SP Life
|
6 W. Keller

Figure 2: Sample application map — real life example

The dructure of an gpplication map istypicaly derived from Domain Architecture. So for each magjor
aop (or cdl it package in the domain architecture) you say what covers this part of the doman
architecture in the gpplication portfolio of a sngle company. E.g. in figure 2 the sysslem POA covers
the Partner and (insured) Object parts of your domain architecture. So what you do for each
gpplication is you check which part of the domain architecture is covered by its functiondity. Often
this will not result in such nice pictures as figure 2 above. For example an gop might have
functiondity that is cluttered across or parts of the map might redundantly be covered by two or even
more apps.

Example Resolved

For the job of application portfolio management you have afew instruments that help you:
? The above gpplication map,

? Your Clear Vison helps you detect what is“good” and what is“bad” in a sense of what
helps you to come closer to your overdl vison.

? And your Domain Architecture provides you with the domain knowledge necessary to judge
the applications.

Consequences

Simplicity versus accuracy. Experience shows that the mechaniam is usable and yet precise
enough for red world planning problems. It is dso smple enough to alow non-techies to understand
it.

Related Patterns

Application Maps help you find proper Early Decisons. They are usudly derived from a Clear
Visonviathe Domain Architecture.

Known Uses

Application maps are widdly used. As you can see, we use it ourselves. Thisis nho strong evidence.
Aachen Muinchener Group uses very smilar maps. SAPisusing so cdled industry solution maps that
tell you which SAP solutions to use for which indugtry. Thisis indeed a stronger known use as SAP
uses those extensively.

Pattern: One Infrastructure

Example

You are again the CIO of the newly merged AB-bank. Y ou have ignored the Early Decison pattern
and have decided for a mixed application portfolio that contains the best from A-bank and B-bank.
Neverthelessyou Kept the Data and Tossed the Code in order to not add additional complexity.
After a one-year shoot out process and two years project run time you have a sngle application
landscape. But you hear more and more complaints about people who have to be familiar with two
print systems, two archive systems, two authorization systems and so on. Y ou find that you have two
suites of technica infrastructures? in your portfolio — the one from A-bank plus the one from B-bank,

2 theterm , technical infrastructure” denotes all the technical hel per applications like a print system, aworkflow
system and the like.

Problem

How do you choose the appropriate technica base infrastructure if you have an application portfolio
from severa sourcesthat come with more than one infrastructure?

Forces

The forces here are the same as for Early Decison

Solution

Choose One Infrastructure and not a mixture of components from two infrastructures

Make an Early Decison about this one and ignore negative comments from one of the two sdes,
because if you do not decide for one, you will hear the complaints three years later, will have the cost

and will

have amuch harder time improving the Stugtion right away from the Sart.

Example Resolved

Wecan

?

revigt the examplesfrom Early Decison

In one merger of equals of two big German banks the decison was made in favor of the
system of the bank that was “the more equa one’ in the merger of equals — despite the fact
that the system was somewhat technicdly inferior to the other bank’s system. As a sde
effect these two banks choose One Infrastructure.

A large European insurance group specidizes in taking over smaler insurance groups. They
have made a professond exercise out of this and have reduced the time needed for amerger
of al EDP systems from about three years to about 9 months. They do not discuss — they
have One Infrastructure.

Another German insurance group regrets that they did not act quickly. They had a merger of
more or less equas at least of companies of amilar Sze. They had the array of workshops
and a system landscape that is a mixture of many worlds and produce the appropriate
amount of trouble. Asaresult they have Two I nfrastructurestoday, leading to the above
complaints.

In a merger of two Austrian banks the larger bank adopted the smaller bank’s system
because it was smply better from atechnica and functiond perspective. But they knew what
they wanted to do before they bought the smdler bank. As a result they aso have One
Infrastructure.

Consequences

The consequences are smilar to the consequences for an Early Decison. Please note that One
Infrastructure might be somewhat expensve if you have to use one or more gpplications that are
based on just the other technica infrastructure for domain reasons. In this case the decision is driven

by the codts for not having the better gpplication for your business versus the costs of having to
maintain two technica infrastructures versus the cost of reengineering the application.

Cost and Function: In many cases both dternative technica infrastructures are dmost identica
from a functiond standpoint — but very different from a technica standpoint making interoperability
an expensive hobby. Therefore a decison comes chegper and will seldom do any damage expressed
in reduction of available functiondity.

Nonfunctional Requirements and Technical Criteria: Can become a killer, if one of the
companies that merge has a sgnificantly better system than the other one. In this case there might
even be a quick decison for the smdler partner’s sysem who is otherwise “less equa” but smply
has the better system. Same asin Early Decision.

Politics: Even techies are full of politics. So expect the most curious arguments for either of the
technical infrastructures to choose from.

Maintenance Costs. as you have to maintain two infrastructures, have to buy two sets of licenses,
have to ingtal two upgrades instead of one, the cogts are in most cases much higher if you do not use
the pattern.

Usability: Your userswill force you sooner or later to move towards one infrastructure. So why not
do it right from the beginning. Users don't want to understand why they have to use two desktop
cdendars ingead of one, two or more different workflow systems and the like. So there will be
pressure to ingdl one infrastructure later anyway.

Project Risks: As you have experts for dl systems you want to merge and as you will likely keep
the experts for the winning system. Any decision does.

Related Patterns

Ore Infragtructure is usudly the result of some form of an Early Decisior leading to the fact that One
Application Wins as a complete application resulting in the least trouble. One Applicationwill Win
sooner or later. The earlier your decision the better for your cost structure.

Known Uses
See the Examples Resolved section above.

Credits

Thanks are due to various persons. Harry Fréser has developed the Generdi application portfolio
management method. Thanks are dso due to Rick Dewar and Alan O’ Calaghan for ther related
patterns. Specid thanks go aso to my EuroPLoP shepherd Markus Vélter who has invested large
amounts of time and diligence in improving this paper.

References

[AOCO0]

[Bas+98]

[Bro+95]

[Dew99]

[Keloo]

Alan O'Callaghan: Patterns for Architectural Practice, in. M. Devos, A. Riping (eds),
Proceedings EuroPL oP 2000.

Len Bass, Paul Clements, Rick Kazman, and Ken Bass. Software Architecture in Practice (SEI
Seriesin Software Engineering), Addison-Wesley 1998.

Michael M. Brodie, Michael Stonebreaker: Migrating Legacy Systems: Gateways, Interfaces &
the Incremental Approach; Morgan Kaufmann 1995.

Rick Dewar: Characteristics of Legacy System Reengineering, pattern Writing Workshop,
EuroPLoP 1999, Bad Irrsee, Germany. See http://reendineering.ed.ac.uk/publications.html for an
online version.

Wolfgang Keller, The Bridge to the New Town: A Legacy System Migration Pattern, in: M.
Devos, A. Ruping (eds.), Proceedings EuroPLoP 2000.

