Reflective Persistence
(Reflective CRUD: Reflective Create, Read, Update & Delete)

Macario Polo, Mario Piattini and Francisco Ruiz
Escuda Superior de Informética
Universty of Cagtilla-La Mancha
Paseo dela Universidad, 4
13071-Ciudad Real (Spain)
mpolo@inf-cr.uclm.es
Tel.: +34-926-295300 ext. 3730
Abstract
This paper presents a pattern for generating persistence methods in runtime, using the Java
API Reflection, with high levels of maintainability and reusability.

1 Introduction

Literature has been very prdific proposng paterns for mapping an object-oriented system
to a reationd database [BRO96|, [KEL97], [AMPOQ], [IBM0OO]. Two of the problems that

onefinds are

The trandformation of the dass diagram of the sysem (usudly the Doman layer
class diagram) to ardaiona database schema.

The assgnment of persstence respongbilities to cdasses, which depends on the
drategy used for transforming the class diagram to the rdationd schema

There are saverd drategiesfor both tasks:
Different relational database schemas can be produced from a same class diagram.

The implementation of perastent operations has a dring dependence on the pattern
used for performing the transformation. Moreover, there are ds0 severa drategies
(petterns) to sdlect the classes that will receive persstence responsihilities.

Usudly, the programmer needs to write the code for dl persdent responghilities, which

Copyright (C) 2001 by Macario Polo, Mario Piattini and Francisco Ruiz.

depends on the pattern used for peforming the transformation and on the pattern used to
assign the persistence respongbilities (the perastent classitself, an associated class, etc.).

We propose a pattern that uses Reflection to avoid the need of writing the code for
pers stence methods.

2 Pattern: Reflective CRUD (RCRUD)

Context

During the devdopment of an Information System, a reationd database has been built
from the classes in the Domain layer. For each persstent class in the class diagram a table
has been condructed, usng foreign keys to represent dl permanent reationships among
classes. The systerm must be developed in Java.

Problem
How are persstence methods assgned to persgtent classes? How are persstence methods
implemented?
Forces
Maintenance effort: very low mantenance costs are dedrable. The impact of adding,

modifying or ddeting fidds from dasses or columns from the database would desrably
be minimum, aswell asthe time devoted to it.

Reusability: the solution proposed should be directly reussble in any other sysem, with
asmple“copy and paste’.

Hexibility: the solution proposed should be eesly adgpteble to work with different
types of transformations from the domain diagram to the rdaiond schema

Peaformance versus cost: the proposed solution mugt not produce deays that ae
aopreciable by users.

Solution

A superclass which uses Reflection to generae persstence methods in runtime must be
written. Each pergastent class should be a specidization of it.

Structure

Fgure 1 shows a generic dass diagram which uses the solution proposed. RCRUD is in
charge of generating al perdstence methods in runtime. Note that the superclass (RCRUD)

has no abstract operations.
RCRULD

+ RCRUDD

+ RCRUDGar[: $tring) L = Bridge to the database

+ insert()

+ deletar)

+update()

Zdpersistents = 4 persistents >
A B
-mPE_primarykey -mPK_primarykeyColumn A
-m _aField -mPE_primarykeyColumnB
-m_anuotherField -m_aField
-m_anaotherField

Figure 1. Generic of use of Reflective CRUD
Participants

In Fgurel:
Aand B are two perggtent classes, which need the methodsin RCRUD.
RCRUD s the class that, thanks to Reflection, generates CRUD methods in runtime for
al peragtent classes.
The Bridge to the database is the sdlected mechanism to access the database. It could be
aBroker, adirect connection (through an association, for example), etc.

Consequences

1. Fadlitates quick devdopment. To make a dass perdgent, dl that is required is to meke
it a goeddizaion of RCRUD and to mantan some dngular (and common sense)
naming conventions (for example the name of the table corresponding to a dass is the

same as the name of the dass the names of the fidds in every persgent class that
correspond to primary keys gat with “mPK”; the names of dl the other fidds gart with
“m”).

2. Good mantainability. If a dass experiences a change in its dructure (fidds), dl that is
needed is the reflection of that change in the corresponding table.

3. Reusability. RCRUD is directly reusable in any other project which reguires persstence
of objects.

4. Reflective CRUD combines in a dngle dass, dl the advantages of both the Template
Method and the Pure Fabrication patterns.

With the Template Method, dl perssence methods are declared in a superdass
methods, with code common to dl dasses, are implemented, wheress methods with
code that depend on the concrete class are left as abdract operations. In these

sysgems, the Doman layer is low coupled to the persgence layer, snce only the
superclass has direct knowledge of the database.

With the Pure Fabrication, a cdlass is built for each persgent class, which receives
the respongbilities of perastence. In this manner, perssent classes have only those
responghbilities rdaed to the problem doman, and pure fabrications have only
perdstent operations. These classes have high cohesion.

Reflective CRUD implements a Template Method because it contains the definitions of
al persgence methods, but with the additiond advantage that dl of them are concrete.
It has dso a Pure Fabrication, because dl perssence operations are delegated to an
associaed dass (the superdass): therefore, domain classes are not responsble of ther
persastence, what alows to keep high cohesion of domain classes.

Example

Fgure 2 shows a little dass diagram which represents the domain layer obtaned when
modelling a problem. If dl these classes need persstence, we can give it to them by doing
al of them spedidizations of RCRUD, as Figure 3 shows.

Ferzor Wehicle

-mPKHame :Sring

-mAddress : String 1
1

-mPERoIl : 5tring
-mDbiesel ;boolean

D riving

-mDbate : Date
-mEilometers :long

Employee
-mPKSSH : String
-m Salary:douhble

Student

-mCourse :int

Figure 2. A Domain class diagram.

In Fgure 3, eveary pasgent dass inherits perssence operaions from the RCRUD dass,
which is in charge of its generaion. When an object desires for example, to be inserted, it
executes thei nsert method, which is completdy defined in RCRUD.

RCRUD

+ RCRUDOM

+ RCRUD(ar: String)
+ insert)

+ delate()

+update)

7

L riving

-mDOate : Date
-mKilometers :long

Ferson Woehicle

-mPEMame : String T -mPERll : String

-mDbOiesel:boolean

-mAddress @ 5tring

7

X

Emploves

Student

-mPESSHN : String
-m 5alary:double

-mCourse :int

Figure 3. Adding persistence to all classes.

Variants

The Domain diagram is the bass for congructing the rdaiona schema There are severd
Srategies for transforming a class diagram to ardationd schema
1 To create a table per cdass and use foregn keys to represent dl permanent
relationships among classes (inheritance, associaions and aggregations). Usng this
type of trandformation, the reationd schema obtaned from the dass diagram in
Figure 2 would be that shown in Figure4.

Diving
1 n

Name [~ == | Name
Address Rod

Drake
kilarmeters

’
‘Rol

Name

Figure 4. Relational schema obtained constructing a table per class.

2. To use the “One inheritance path, one table’ pattern, which reduces each path in an
inheritance tree to a dngle table Fgure 5 is the reationd schema obtained
goplying thistransformation to Figure 2.

Date
Kilometers

Address
Course

Figure 5. Relational schema obtained from the “ one inheritance path, one table’ pattern

3. To use the “One inheritance tree, one table’ pattern, which reduces a full inheritance

tree to a dngle table, as it is shown in FHgure 6 which is the trandformation of
Figure2 with this pattern

Date
Kilometers

Figure 6. Relational schema obtained with the “ One inheritance tree, one pattern”

4. To use different combinations of the previous solutions to tranform a same dass

diagram.

Obvioudy, methods in RCRUD mus have different implementations depending on the
type of trandformation. For example, when a new ingance of Student desires to be inserted
in the database:

1 In the first case FHgure 4), it must be firdly inserted in Person, and then n Student,
probably through a transaction.

2) Inthe second case (Figure5), it may be directly inserted in the Student teble.

3) In the third one Egure 6), it mugt be insarted in the Person table, leaving nulls the
columns of Employee.

I mplementation

This section provides some comments and explanations on the fird variant of RCRUD: in
this one, there exids a table per dass, and each dass is responsble of its persstence. We
begin presenting a condructor for building empty objects a geneic “materidizer” (for
building objects from records), and we conclude with the methods insert, delete and update.

The full implementation of the three vaiants of RCRUD illusraed in the previous
sections, as wel as some examples can be downloaded from the files yetlzip, yet2.zip and
yet3.zip a http:/Aww.inf-cr.uclm.eswww/mpol o/yet/

The empty constructor
The empty condructor must assgn a default vaue to each fidd in the object (for example,

thezerovduetoi nt and | ong fidds new St ring() to Stri ng fidds, €tc.).

RCRUD() {
Field fields[]=this.getd ass().getDeclaredFields();
for (int i=0; i<fieldNanes.size(); i++) {

try {
Field f=fields[i];
if (isvalid(f))
f.set(this, Enpty(f));

}
catch (Exception e) {}
}

Thi}s method retrieves through Reflection dl the fidds in the dass. An "empty" or default
vaues is assgned to each "vdid" fidd. A fidd is "vdid" if its type is a Java basc type
With this we avoid to ded with fidds whose type is, for example, a cdass defined in the
doman of the problem (dthough it is dso possble to materidize this kind of fidds dso
with Reflection).

The Enpty(Field) method is the operation in charge of assgning the empty, default vaue,
depending on the type of the fidd, which can be rerieved through the get Type() method
provided in the Reflection API. In the implementation of RCRUD that we are currently
using, the following isthe body of Enpt y:

private bject Enpty(Field f) {

if (f.getType().toString().conpareTo("class java.lang.Long")==0)
return new Long(0); else

if (f.getType().toString().conpareTo("class java.lang.|nteger")==0)
return new I nteger(0); else

if (f.getType().toString().conpareTo("class java.l ang. Doubl e")==0)
return new Doubl e(0.0); else

if (f.getType().toString().conpareTo("class java.l ang. Bool ean") ==0)
return new Bool ean(fal se); else

if (f.getType().toString().conpareTo("class java.lang. String")==0)
return new String(); else

if (f.getType().toString().conpareTo("class java.util.Date")==0)
return new Date(); else

if (f.getType().toString().conpareTo("class java.util.Vector")==0)
return new Vector();

return new Object();

}

Generic materializer: the congtructor with a parameter
This condructor is used to build indances from the informetion saved in the databese,
vaues of the fiedds which correpond to columns which are pat of the primary key. To
build, for example an Employee whose name is "Maguete’ and has 13203881 as SS

number, we need to write the following sentence:

String args[]={"Maquete", "13203881"};
Enpl oyee e=new Enpl oyee(args);

In the body of this condructor, a sel ect ingdruction must be generated and executed on the
database. Afterwards, the vaue of each column retrieved must be assgned to eech fidd of
the object which is being materidized.

The condruction of the sel ect indruction is quite easy (see lines 3 and 4 in the following
code): as there is a correspondence between the name of the table and the name of the class,
the table in the From clause is the name of the class (or the name of the class with some kind
of trandformation). Then, the method cdled in line 4 (i st O PksAndval ues(String[])) IS in
charge of generating the were dause it mugt look for dl the fidds in the dass whose name
dats with "mPK", trim this prefix (to produce the dring Nane= ingtead of nPkNane=) and
concatenate the dements in the aray. Possbly, some kind of marks must be dso generated
depending on the type of the fidd (for example Name=' Maquete’ Wwith quotation marks, and

SSN=13203881 With none).

1 RCRUD(St ring PKVal ues[]) throws Exception {

this();
3 String SQL="Select * from" + this.getd ass().getNarme() + " where " +
4 |'i st O PKsAndVal ues(PKVal ues);

Resul t Set r=Broker. bd. creat eSt at enent (). execut eQuery(SQ.);
if (r.next()) {
Vector fieldNanmes=listOFields(this.getdass());
for (int i=0; i<fieldNanes.size(); i++) {
9 Field f=
this.getd ass(). getDecl aredFi el d((String)
fiel dNanmes. el enent At (i));

try {
10 Obj ect o=val ueOr (f, r, i+1);
11 f.set(this, o0);

}
catch (Exception j) {}
}

}
1

When the indruction has been retrieved in a Resul t Set , its columns mugst be assgned to the
vdid fidds (see the notion of "vadid fidd' in the empty condructor section) in the object,
whichisdonein lines 10 and 11.

The Insert method.
This method must generate a SQL indruction as the one shown in the left Sde of next table,
for which the code in the right sde can be used:

Insert into String SQL="Insert into “ +

the_name_of _the_table this.getd ass().getName() +

(col ums) “ (" + getListOColums() + “) “ +
val ues “val ues” +

(val ues_of _fiel ds) “ (" + getListOValues() + “)7;

Table 1. Generation of the Insert method.

As it is seen, the name of the class is used as name of the table to insart the record. The ligt
of columns is extracted with the getListOColums method, which has the following
implementation:

String getListO Tabl eCol ums() throws Exception {
String fiel dName, result=new String();
Field f;
Field fields[];

fields=this.getd ass().getDeclaredFields();
for (int i=0; i<fields.length; i++) {
f=fields[i];
if (isvValid(f.getType().toString())) {
fi el dNanme=f. get Nane();
fiel dName=trim(fi el dNare);
result+="[" + fieldNane + "],";
}
}
return result.substring(0, result.length()-1) ;

}
The lig of vaues is retrieved as a dring with the get Li st & val ues method. Some vaues

must be set between quotation marks, which isdone with narks(String, String) method:

String getListOValues() {
String fieldd ass, fieldValue, result=new String();
Field f;
Field fields[];

try {
fields=this.getd ass().getDeclaredFields();

for (int i=0; i<fields.length; i++) {
f=fields[i];
if (isvalid(f.getType().toString())) {
fieldd ass=f.get Type().toString();
fieldvalue=f.get(this).toString();
resul t +=mar ks(fiel dval ue, fieldd ass)+",";
}
}

}

catch (Exception e) {}

String result2=result.substring(0, result.length()-1);
return result2;

Oncethel nsert ingruction has been generated, it is executed againg the database.

The Delete method
This method must generate and execute a SQL indruction to delete the current object from
the database. It will be a Delete indruction whch removes from the database the record
whose primary key coincides with the fidds of this object whose name sarts with "mPK".
public int Delete() throws Exception {

String SQL="Delete from" + this.getd ass().getName() +

" where " + |istOPKsAndVal ues();
return Broker. bd. createStatenent().executeUpdate(SQ);

}

The i st O PKsAndval ues() method retrieves a sring with the forma [Nane] =' Maquete’ and
SSN=13203881. It operates in the same way that 1i st Of PKsAndVal ues(String[])), which was
commented in he Generic materidizer section, but in this case it acts on the current object,
not on the array passed as parameter.

The Update method
This method has a specid characterigic which didinguishes it from the previous ones it
must generate an Wdate indruction which assgns to the columns of an exising record the
vaues of the fidds in this object, but must compare with the old vaues of the primary key.

For example: let us suppose that there is in the database the following person:

Nane SSN Age
Maquet e 13203881 3

We can build an object from this record and then, maybe its SSN is changed:
p. mPKNanme="Maquet e"; p. mPKSSN=2801234; Age=3;

To save this record in the database, the following ingtruction must be generated:

Updat e Person set

Name=' Maquet e', SSN=2801234, Age=3 &< Current val ues
wher e

Nane="Maquet e" and SSN=13203881 < dd val ues
See that the set clause uses the current vaues of the record, but the were dause looks for
the previous vaues of the primary key in the database (otherwise, the record would not be
found). Therefore, a method to keep the initid vaues of the object/record is needed, in

order to do the following generation of the wiere clause. We save the initia vaues in the

ol dPks dass varigble of RCRUD with the following method:

public void saved dPks() {
ol dPKs=l i st O PKsAndVal ues() ;
}

It cals to IistCf PKsAndval ues(), Which has been commented in the previous section.
saved dPks IS executed when the user decides to modify the object which is being edited:
for example, when he/she press the updat e button on the Person screen; then, when the data
have been changed and the save button is pressed, the update method, which has the

following body, is executed:

public int Update() throws Exception {
String fieldd ass;
String fiel dval ue;
String SQL="Update " + this.getd ass().getName() + " set "
Vector fieldNanmes=listOFields(this.getdass());

try {
for (int i=0; i<fieldNanes.size(); i++) {
Field f=
this.getd ass().getDeclaredField((String) fieldNanmes.elenmentAt(i));
try { fieldValue=f.get(this).toString(); }
catch (Exception e) { fieldValue=null; }
if (fieldvalue!=null) {
fieldd ass=f.get Type().toString();
SQ=SQ + "[" + trin(f.getNane()) + "]=";
SQ@A=SQL+mar ks(fiel dval ue, f.getType().toString()) + ","
}
}
}
catch (Exception e) { }
SQ.=SQ.. substring(0, SQ.length()-1);
SQ= SQ@ + " where " + this.ol dPKs;
return Broker. bd. createStatenent().executeUpdate(SQ);
}

Related patterns

The CRUD (Create, Read, Update & Deete) pattern of Yoder et d. [YJD98] determines
that the CRUD methods are the minima st of operations required to provide persstence to
objects.

The Template Method patterns is described by Gamma et d. in [GHIV95]. The Pure
Fabrication pattern is detailed in [LARSS].

Patterns “One dass, one table’, “One inheritance peath, one table’ and “One inheritance
tree, one table’ are used for describing three of the variants of RCRUD. These patterns are
described by Keller [KEL97].

Known uses

1) We have used the fird variant of RCRUD in the devdopment of an indudrid
project which involves 139 cdlasses, 42 with persgence in the database. The fird
vasons of the application were deveoped usng the spec coec bridge with the
Microsoft Access database. Afterwards, and due to the necessty of incorporating
dored procedures, posshiliies of auditing and more security redrictions, we
sected the SQL Server 7 database running on Windows NT Server. Furthermore,
as the program runs on saverd platforms (PC and Macintosh), we decided to e a
direct connection to the database, with no use of the JpBc ooBc bridge, through the
AveConnect driver, which is 100% pure Java
(http:/Avww.avenir.net/products/aveconnect.htm).

In both cases RCRUD has operaied fine Only a litle modifications on its code
have been done but due to the change of dadbase, and not to the change of
accessng way: as the bool ean data type in Access is bit in SQL Server, ingteed of
inserting or updaing true or false, a converson to the numbes 1 or 0 must be

done. For eample

if (fieldd ass.conpareTo("class java.l ang. Bool ean")==0) {
if (fieldVvalue.toLowerCase().conpareTo("fal se")==0)
SQL=SQ + "0, "
el se SQL=SQL + "1,"
} else

The use of RCRUD to access members in runtime does not produce any gppreciable
deay: dl the pesgence methods are executed quickly; aso the condruction of
objects from records (which is the operation with more access to metadata) operates
very well.

2) The RCRUD cdlass has been dso used in other projects as EasyTed, a dngle
program to generate randomly and to correct test exams. EasyTed, including its
source code, is avalable at http:/mwww.inf -cr.uclm.eshwww/mpol o/easytest

3 Ambler dexribes a persgence layer with some classes in charge of generdting
CRUD methods (see [AMBOO], specidly pages 9, 10 and 19). However, the
proposed framework uses a wide set of classes that saves the needed information to

generdte the methods in a perssent dorage, indead of accessng dynamicdly to
the object members.

4) Other authors are involved in projects or researches that use metadata, dthough no
explicitly in the same context of RCRUD. Joe Yoder reports of some works a
http:/Anww.joeyoder.conVResearch/metadatal

5 In any case, the ue of Reflection and metadata are incipient themes that produce
many interest in the sdentific and practitioner community: in fact, dso Joe Yoder
reports on the celebration of several workshops rdlaed in some conferences, as
ECOOP and OOPSLA.

3 Additional benefits of RCRUD and of the use of Reflection

In the indudrid project described in the firg point of the “Known uses’, a screen was
desgned for each persgent class. The sructure and behaviour of these screens is very
dgmilar (Fgure 7). Due to this amilarity, a generic, abstract screen can be designed, with
quite dl the dructure functiondity on it: common buttons, menus and severd methods We
have cdled Fr ameRCRUD tO this screen. It has a reference to a generic RCRUD Object.

_|

- |
i |

E!-

L

B g

| raew

Torpams

L)

|
e ||

Figure 7. Sructure of screensfor persistent classes.

The response to the sdection of the New button (or the New option in the menu bar) is to
"empty” the screen to create a new object that, later, will be saved in the datdbase. To
empty the screen, the idea that appears more quickly is to declare an abdract method in
FrameRCRUD and to implement it in the specidizations, however, as a screen is a dass and it
is posshble to access in runtime to the members of a class, we can write a method in
FrameRORUD that checks the type of each widget, writing the empty gring if it is a TextField

or Text Area, Seiting false as date if it is a checkBox, and S0 on. The Tenpl at e button has the

same behaviour than New, but in this case, the streen is not emptied. Both buttons cal then
to the enabl e(bool ean) method, which dlows the modification of the datain the screen.

Puerta et d. [PEGM94] and Konglathu [KON98] have sudied the relationship between the
Doman and Presentation layers more in depth, in order to automeate the generation of user
interfaces However, the definition of both RCRUD and its corresponding FrameRCRUD
dlows to generate the user interface with less effort than in these works.

The dructure of an gpplication built through RCRUD and FranercRUD is shown in Hgure 8.

Bodies of its methods gppear in Table 2.

private void template() { |private void nmodify() {

private void exit() {

mOper at i on= kNEW moj ect. saved dPks(); di spose();

enabl e(true); nOper ati on=
} kMDD FY;

enabl e(true);
}

private void save() { private void delete() {

enabl e(f al se); Di al ogConfirmation d=

try { new Di al ogConfirmation

; : ; . (this, "Attention", true)
/ﬁeiggg?)nfbject with the data in the w dgets d. set Vi si bl e(true)

i f (mOperati on==kNEW
nobj ect. I nsert();

el se
nObj ect . Updat e() ;

}
catch (Exception e) {
Di al og d=new Di al ogError (this
"Error saving", true, e.toString());
d.setVisible(true);
enabl e(true);

d. di spose();
}

if (d.mOption==d.YES) {
try {
mObj ect . Del ete();
enpty();

catch (Exception e) {
Di al og d2=
new Di al ogError
(this, "Error",
true,
e.toString());
d2.setVisible(true);
d2. di spose();
}
}

Table 2. Body of methods in FrameYet.

Presentation layer Domain layer Persistence layer

#mObject

FrameRCRUD RCRUD —% DBBroker
mOperation:int

new()
template()
modify()

exit() Database
save() Management
delete() System
enable(boolean)
empty()
reload()

load()

? -mWorker

FrameWorker Worker
mPKName:String
mPKNIF:long
reload() mTelephone:String
load()

mOperation:int

Figure 8. Sructure of applications usng RCRUD.

4 Conclusions and future trends

Sysems developed with RCRUD produce perdgtent classes in a very eassy way: to do
perddent a doman dass the programmer only needs to write the fields of the class (teking
into account some name conventions) and do it a RCRUD’s child. None persstence
method must be written in the dass snce dl of them are inherited from RCRUD. In this
way, pesdent classes have a high coheson, snce dl ther methods are rdaed to the
doman problem. The coupling added to the sysem is very low: every class has only the
"filid" rdationship with RCRUD, plus those rdaionships (essociations and aggregaions)
related to the problem. Moreover, RCRUD is the only dass which has knowledge of the
database (in our examples and indudrid gpplications, via a dadbase broker). In this
manner, Domain classes do not access to the persistence mechaniams.

Asit is seen in FHgure 8 the gpplications we have developed do not use observers to refresh
the dtatus of the presentation layer, snce they are refreshed every time they get the focus.
Currently, we are working on the incorporation of a generic observer to the RCRUD dlass.

Also, from the migration to the new database management system to use stored procedures,
we saw as a possbility the creation and execution in runtime of sored procedures to do the
persistent operations.

5 Acknowledgments

The authors want to thank Wolfgang Kdler, our shepherd, for dl the readings of the
previous versons of this pgper. Without him, this pgper would never have been a pattern
paper.

This work is pat of the DOLMEN project (Didributed Objects, Languages, Methods and
Environments), which is patidly supported by FEDER with number TIC2000-1676-CO6-
06.

6 References
[AMBO0O] Ambler, SW. The Design of a Robust Persistence Layer. Ronin Internationd.
Avallable at (April 6, 2001): http:/Aww.ambysoft.convpers stencelayer.pdf

[BRO96] Brown, K. and Whitenack, B. Pattern Languages of Program Design, vol. 2.
Reading, MA: Addisson-Wedey.

[GHIV95] Gamma, E., Hdm, R,, Johnson, R. and Vlissdes, J. Design Patterns. Reeding,
MA: Addisson-Wedey.

[IBMOQ] IBM. Object to relational table mapping techniques with persistence. Visud Age
Developer Domain. Avallable a (April 6, 2001):

http:/AMww7.software.ibm.comvad.nsf/DatalDocument3124

[KEL97]. Keler, W. Mapping objects to tables. A pattern language. Proceedings of the
1997 European Pattern Languages of Programming Conference, Irrsee, Germany.

[KON98] Konglathu, JA. Automated generdtion of user interfaces. Avalable a (December
26, 2000): hitp:/Aww.cs.unc.edw/~konglath/pvt/cl/

[LAR98] Larman, C. Applying UML and Patterns. Upper Saddle River, NJ. PrenticeHdll.

[PEGMY] Pueta, AR, FEriksson, H., Gennai, JH. and Musen, M.A. Modd -based
automated generation of user interfaces. Proceedings of the 12th Nationd Conference on

Artificd Intelligence, pp. 471-477. Seettle, WA, USA.

[YDX8] Yoder, JW., Johnson, RE. and Wilson, Q.E. Connecting Business Objects to
Relational Databases. Avaldde a (April 6, 2001):

http:/Awww.joeyoder.com/Research/objectmappings/Pers sta pdf

