
Null Object 
Something for Nothing 

Kevlin Henney 
March 2003 

kevlin@curbralan.com 
kevlin@acm.org 

Abstract 

The intent of a NULL OBJECT is to encapsulate the absence of an object by providing a 
substitutable alternative that offers suitable default do nothing behavior. In short, a design 
where "nothing will come of nothing" [Shakespeare1605]. 

NULL OBJECT is a tactical pattern that has been discovered time and again, and not only in 
object-oriented systems: null file devices (/dev/null on Unix and NUL on Microsoft systems), 
no-op machine instructions, terminators on Ethernet cables, etc. 

The pattern has been documented in a variety of forms by many authors, varying widely in 
structure and length: from a thorough and structured GOF-like form [Woolf1998] to a brief 
thumbnail-like production-rule form [Henney1997]. This paper is derived from a 
previously published article [Henney1999] and includes the aforementioned thumbnail. 
The aim of the current work is to update and capture the latest understanding of the 
pattern and its implications, also addressing a wide audience by documenting the pattern 
primarily with respect to Java and UML. 



 

 

Thumbnail 
if 

 An object reference may be optionally null and 
 This reference must be checked before every use and 
 The result of a null check is to do nothing or assign a suitable default value 

then 
 Provide a class derived from the object reference's type and 
 Implement all its methods to do nothing or provide default results and 
 Use an instance of this class whenever the object reference would have been null 

Problem 

Given that an object reference may be optionally null, and that the result of a null check is 
to do nothing or use some default value, how can the absence of an object — the presence 
of a null reference — be treated transparently? 

Example 

Consider a logging facility for some kind of simple server-housed service. It can be used to 
record exceptional events, housekeeping activities, and the outcome of operations during 
the course of the service's operation. One can imagine many different kinds of log, such as 
a log that writes directly to the console or one that uses RMI to send a message to a remote 
logging server. However, a server is not necessarily required to use a log, so the association 
between the server and the log is optional. Figure 1 shows the relationships diagrammed in 
UML, and Listing 1 shows the Log interface and two simple implementations. 

 

Figure 1. UML class diagram of a service with optional support for logging. 

 
public interface Log 
{ 
    void write(String messageToLog); 
} 
 
public class ConsoleLog implements Log 
{ 
    public void write(String messageToLog) 
    { 
        System.out.println(messageToLog); 
    } 
} 
 

«interface»

Loglog

0..1

Service

File
Log

Console
Log



 

 

public class FileLog implements Log 
{ 
    public FileLog(String logFileName) 
    { 
        try 
        { 
            out = new FileWriter(logFileName, true); 
        } 
        catch(IOException caught) 
        { 
            throw new RuntimeException("Failed to open log file: " + caught); 
        } 
    } 
    public void write(String messageToLog) 
    { 
        try 
        { 
            out.write("[" + new Date() + "] " + messageToLog + "\n"); 
            out.flush(); 
        } 
        catch(IOException caught) 
        { 
            throw new RuntimeException("Failed to write to log: " + caught); 
        } 
    } 
    private final FileWriter out; 
} 

 

Listing 1. The root Log interface and sample concrete implementations. 

 

In Listing 2, it can be seen that because the option exists for not having logging enabled for 
a service, a check against null is required before every use of log. 

 
public class Service 
{ 
    public Service() 
    { 
        this(null); 
    } 
    public Service(Log log) 
    { 
        this.log = log; 
        ... // other initialization 
    } 
    public Result handle(Request request) 
    { 
        if(log != null) 
            log.write("Request " + request + " received"); 
        ... 
        if(log != null) 
            log.write("Request " + request + " handled"); 
        ... 
    } 
    ... // other methods and fields 
    private Log log; 
} 

 

Listing 2. Initializing and using a Log object in the Service. 



 

 

Forces 

There is a great deal of procedural clunkiness in code such as 

 
if(log != null) 
    log.write(message); 

 

This style is repetitive as well as error prone: repeated checks for null references can clutter 
and obfuscate code; it is too easy to forget to write the null guard. However, the user is 
required to detect the condition and take appropriate inaction, even though the condition 
is not in any way exceptional — having a null log is a normal and expected state of the 
relationship. The condition makes the use of the logging facility less uniform. 

A feature of conditional code is the explicitness of its conditions and the visibility of the 
resulting control flow. However, this is only a benefit if the decisions taken are important 
to the logic of the surrounding code, otherwise the resulting code is less — rather than 
more — direct. Such minor but essential decisions become distractions rather than 
attractions, obscuring the core algorithm. 

Where conditional code does not serve the main purpose of a method it tends to get in the 
way of the method's own logic, making the method longer and harder to understand. This 
is especially true if the code is repeated frequently, as one might expect from the logging 
facility in the example, or if in-house coding guidelines encourage the use of blocks to 
surround single statements: 

 
if(log != null) 
{ 
    log.write(message); 
} 

 

The use of an explicit conditional means that the user may choose alternative actions to suit 
the context. However, if the action is always the same and if the optional relationship is 
frequently used, as one might expect of logging, it leads to duplication of the condition and 
its action. Duplicate code is considered to have a "bad smell" [Fowler1999]. Duplication 
works against simple changes, such as fixes or improvements, and is in violation of the 
DRY principle (Don't Repeat Yourself) [Hunt+2000]. 

For an explicit conditional on a null reference the cost of execution amounts to no more 
than a test and a branch. On the other hand, the use of an explicit test means that there will 
always be a test. Because this test is repeated in separate pieces of code it is not possible to 
set debugging breakpoints, or introduce diagnostic statements, consistently for all uses of 
the null case. 

The code would be much clearer if the null tests could be ignored or hidden. The JVM 
already checks each access via any reference against null, and there can be a temptation to 
exploit this behavior (see Listing 3). This technique is specific to languages that guarantee 
that all accesses are checked, e.g. Java and C#, and will lead to undesirable (undefined) 
results where this guarantee is absent, e.g. C++. 

 



 

 

public class Service 
{ 
    ... 
    public Result handle(Request request) 
    { 
        try 
        { 
            log.write("Request " + request + " received"); 
            ... 
            log.write("Request " + request + " handled"); 
            ... 
        } 
        catch(NullPointerException ignored) 
        { 
        } 
    } 
    ... 
} 

 

Listing 3. Assuming a non-null log and ignoring any NullPointerException. 

 

There are two objections to such piggybacking. There is the matter of style and taste, as 
well as the cost of overgeneralization at the expense of correctness: 

 Style: In spite of the vagueness of the common advice that "exceptions should be 
exceptional", the reliance on NullPointerException for masking the absence of logging 
does seem to be a clear abuse of what is otherwise a hollow platitude. The normal 
motivation for adopting such a style is as a performance micro-optimization; such 
reasoning does not apply to Listing 3. 

 Correctness: A NullPointerException is thrown for any access via null, and not just 
writing through log. Ignoring such exceptions runs the obvious risk of quashing 
genuine errors, throwing the baby out with the bath water. To check log against null in 
the catch clause further uglifies the code, and still does not offer a guarantee in all cases 
that a null log was the culprit. 

What is needed of a solution is the ability to wish away the null so that nothing — rather 
than something exceptional — happens. The solution should be non-intrusive, easy to 
code, and inexpensive at runtime. 

Solution 

Provide something for nothing: A class that conforms to the interface required of the object 
reference, implementing all of its methods to do nothing or to return suitable default 
values. Use an instance of this class when the object reference would otherwise have been 
null. Figure 2 shows an essential, typical NULL OBJECT configuration as a class model. Other 
expressions of this pattern are, of course, possible. 

A NULL OBJECT can be used to complete many other common patterns and object 
structures: a null ITERATOR [Gamma+1995] goes nowhere; a null COMMAND [Gamma+1995] 
does (and undoes) nothing; a pointer to an empty function can be used to provide null 
callback behavior in C; a null collection is empty and cannot be changed; a null STRATEGY 
[Gamma+1995] provides no algorithmic behavior, a generalization that extends to compile-
time binding of template policies in C++, e.g. non-locking behavior for STRATEGIZED 
LOCKING in a single-threaded environment [Schmidt+2000]; a null lamina can terminate 
LAYERS [Buschmann+1996], such as a null socket layer for a standalone workstation. 



 

 

A NULL OBJECT should not be used indiscriminately as a replacement for null references. Its 
intent is to encapsulate the absence of an object where that absence is not profoundly 
significant to the user of an actual object. If the optionality has fundamental meaning that 
leads to different behavior, a NULL OBJECT would be an inappropriate. Any need for a 
runtime type query, such as an isNull method, indicates that absence is significant rather 
than transparent, suggesting a null rather than a NULL OBJECT. 

For example, in a graphical editor, a null fill color leads to transparency and would be a 
good use of a NULL OBJECT. However, the state of being unmarried is not best represented 
with a null spouse object: marriage is optional, and being single really is different. 

 

 

Figure 2. Key roles in a typical NULL OBJECT collaboration. 

Resolution 

Returning to the server-logging example, a NULL OBJECT class, NullLog, can be introduced 
into the Log hierarchy. Such a comfortably null class (see Listing 4) does nothing and does 
not demand a great deal of coding skill! 

 
public class NullLog implements Log 
{ 
 public void write(String messageToLog) 
 { 
 } 
} 

 

Listing 4. A NullLog class providing do nothing behavior. 

 

The tactical benefit of a NULL OBJECT, once initialized, is in simplifying the use of this 
simple logging framework. It is now guaranteed that the relationship to a Log object is 
mandatory, i.e. the multiplicity from the Service to the Log is 1 rather than 0..1. This 
strengthened relationship allows the explicit conditional code to be eliminated, making 
logging simpler and more uniform. Polymorphism takes up the responsibility for selection, 
making the presence (or absence) of logging transparent (see Listing 5). 

 

«interface»

Interface
1

Client

Actual
Object

Null
Object

method

method methoddo nothing



 

 

public class Service 
{ 
    public Service() 
    { 
        this(new NullLog()); 
    } 
    public Service(Log log) 
    { 
        this.log = log; 
        ... 
    } 
    public Result handle(Request request) 
    { 
        log.write("Request " + request + " received"); 
        ... 
        log.write("Request " + request + " handled"); 
        ... 
    } 
    ... 
    private Log log; 
} 

 

Listing 5. Introducing a NullLog object into Service. 

 

Figure 3 shows the classes and interfaces in the design (based on Listing 4, Listing 5, and 
additional classes from Figure 1) and how they correspond, in terms of roles, to the 
elements outlined in Figure 2. 

 

 

Figure 3. The relationship between the problem resolution and the roles described in Figure 2. 

Consequences 

Introducing a NULL OBJECT simplifies the client's code by eliminating superfluous and 
repeated conditionals that are not part of a method's core logic. Selection and variation are 
expressed through polymorphism and inheritance rather than procedural condition 
testing. Taking a step back, polymorphism can be seen to magic away switch statements or 
if else if cascades. In the specific case of NULL OBJECT, the missing (but implied) empty 
default or else has been captured and concealed. 

Service

File
Log

Console
Log

Log

Null
Log

NullObject

Client Interface

Actual
Object

Actual
Object

Null
Object



 

 

The object relationship moves from being optional to mandatory, making the use of the 
relationship more uniform. However, to preserve this invariant, care must be taken to 
ensure that the reference is never seen as a null: 

 The reference may be declared final so that only the initialization is required to guard 
against a null reference, setting a NULL OBJECT in its place. 

 Alternatively, only INDIRECT VARIABLE ACCESS [Beck1997] should be used to access the 
reference. A SETTING METHOD [Beck1997] can ensure that the reference is assigned a 
NULL OBJECT rather than a null reference, or a GETTING METHOD [Beck1997] can ensure 
that a null reference is returned as a NULL OBJECT. 

A NULL OBJECT is encapsulated and cohesive: It does one thing — nothing — and it does it 
well. This reification of the void and encapsulation of emptiness eliminates duplicate 
coding, makes the (absence of) behavior easier to use, and provides a suitable venue for 
debug breakpoints or print statements. 

The absence of any side effects on a NULL OBJECT means that instances are immutable, and 
are therefore shareable and intrinsically thread safe. A NULL OBJECT is typically stateless 
and its identity is not a significant part of its make up, which means that all instances are 
equivalent. If a time or space optimization is required a single static instance, but not 
necessarily a SINGLETON object [Gamma+1995], may be used in place of freshly instantiated 
NULL OBJECTs. 

On the other hand, using a NULL OBJECT in a relationship means that method calls will 
always be executed and their arguments will always be evaluated. For the common case 
this is not a problem, but there will always be an identifiable overhead for method calls 
whose argument evaluation is complex and expensive. 

The use of NULL OBJECT does not scale to remote objects. If a Java NULL OBJECT were to 
implement java.rmi.Remote, every method call would incur the overhead of a remote call 
and introduce a potential point of failure, both of which would swamp and undermine the 
basic do nothing behavior. Therefore, if used in a distributed context, either null should be 
passed in preference to a NULL OBJECT or the NULL OBJECT should be passed by copy. In a 
distributed environment transparent replication rather than transparent sharing becomes 
the priority. For RMI this does not introduce a significant overhead, because a NULL OBJECT 
class is small and loading it will be relatively cheap. The only change to the code is to 
ensure that the NULL OBJECT class implements java.io.Serializable: 

 
public class NullLog implements Log, Serializable 
{ 
    ... 
} 

 

Users of a hierarchy that includes a NULL OBJECT class will have more classes to take on 
board. The benefit is that, with the exception of the point of creation, explicit knowledge of 
the new NULL OBJECT class is not needed. Where there are many ways of doing nothing, 
more NULL OBJECT classes can be introduced. A variation on this theme is the use of an 
EXCEPTIONAL VALUE object [Cunningham1995]. Rather than doing nothing when a method 
is called, an EXCEPTIONAL VALUE either raises an exception or returns a further 
EXCEPTIONAL VALUE. A generalization of this theme is the SPECIAL CASE [Fowler2003], 
where an object in some way represents a special case, such as an EXCEPTIONAL VALUE or a 
NULL OBJECT, each of which can be considered special cases of SPECIAL CASE. 

The implementation of do nothing behavior is simple for many methods: empty method 
bodies. However, methods that return results can only avoid the inevitable return 



 

 

statement by throwing an exception — behavior more appropriate for an EXCEPTIONAL 
VALUE than for a NULL OBJECT. Different parameter passing modes require different 
responses: 

 in arguments: Arguments passed to the method to provide it with suitable information 
can be safely ignored, requiring no handling code in the method body. Pass by copy is 
Java's sole mechanism for passing arguments. In CORBA the in mode corresponds to 
in arguments. In C++ pass by copy and pass by const reference play this role. In C# the 
in mode is the default for method arguments. 

 void result: No method code is required to deal with a void return type. 

 out arguments: An out argument must, by definition, be set and so the method body 
must set it to an appropriate default. Java does not support these directly, but the 
HOLDER idiom is often used to emulate it. This can is used in the mapping of CORBA's 
out arguments. In C# an out argument must also be set. 

 Non-void result: As with out arguments, an appropriate default must be returned. 

 in–out arguments: An in–out argument may be either ignored, as with an in argument, 
or set to an appropriate default, as with an out argument. Java only supports in–out 
arguments via the HOLDER idiom, as found in the mapping of CORBA's inout 
arguments. The corresponding feature in C++ is pass by reference. In C# ref 
arguments fulfil this role. 

However, what precisely is meant by "appropriate default"? 

 Success defaults: A success value is often an identity value of some kind and does not 
indicate any form of failure, and will typically not affect the caller. For numeric types, 0 
is often such a value. For result objects that represent values, a null reference is 
sometimes suitable, but more often a default constructed object is a better result, e.g. "" 
as opposed to null for a String. For result objects that represent behavior, either a null 
or a NULL OBJECT of the result type should be returned. 

 Failure defaults: A failure value shows that a method call was in some way 
unsuccessful, but in the context of NULL OBJECT it should probably not be fatal. For 
integer types, -1 is often used to signal failure. For floating point types, NaN or infinity 
are the common out-of-band results. For objects, either a null reference or an 
EXCEPTIONAL VALUE should be returned. 

If no defaults are required — e.g. a method taking no arguments or in arguments only and 
returning void — or results can be default constructed — e.g. a return value of 0 for a 
numeric or a null for a reference — a dynamic proxy can be used as a generalized NULL 
OBJECT. Dynamic proxies are a JDK 1.3 feature (java.lang.reflect.Proxy) and, based on 
reflection, they can interpret arbitrary messages. A NULL OBJECT dynamic proxy would 
simply discard all method requests, returning default values where necessary. 

Taking an existing piece of code that does not use NULL OBJECT and modifying it to do so 
may also open the door to bugs. By following carefully the INTRODUCE NULL OBJECT 
refactoring [Fowler1999] programmers can have greater confidence making such changes 
and avoiding pitfalls. 

When introducing a NULL OBJECT class into an existing system a suitable base interface 
may not exist for the NULL OBJECT class to implement. Either an EXTRACT INTERFACE 
refactoring [Fowler1999] should be applied to introduce one or the NULL OBJECT class must 
subclass the concrete class referred to by the reference. The second option may be 
unavoidable if the hierarchy code cannot be rearranged, but it is less desirable than the first 
option: It implies that any representation in the superclass will be ignored.  Such 
inheritance with cancellation can lead to code that is harder to understand because the 



 

 

subclass does not truly conform to the superclass, failing the is a or is a kind of litmus test 
for appropriate use of inheritance. The inclusion of redundant implementation that cannot 
be disinherited suggests a tradeoff with weaker cohesion. However, inheritance from an 
existing concrete class cannot be used if it or any of its methods are declared final. 

Note that, for the same reasons of substitutability, a NULL OBJECT class should not be used 
as a superclass except for other NULL OBJECT classes. The assumption is that any 
inheritance of a NULL OBJECT class will preserve that classification — the subclass of a 
NULL OBJECT class is also a NULL OBJECT class, and its instances can be used where any 
NULL OBJECT is expected. 

Acknowledgments 

An earlier version of this paper was published in Java Report (RIP) [Henney1999]. The 
current version has also benefited from earlier papers by Bruce Anderson [Anderson1996] 
and Bobby Woolf [Woolf1998]. 

I would like to thank the following people: Joe Bergin for his shepherding and humor; 
Hubert Matthews for his additional comments on the preshepherded version of this paper; 
Frank Buschmann and the Siemens patterns retreat in St Martin, Austria, in June 2000 for 
their company and comments on a previous draft of this paper; Jim Coplien, Pascal 
Costanza, Jutta Eckstein, Ian Graham, Klaus Marquardt, Alan O'Callaghan, Andreas 
Rüping, Titos Saridakis, Didi Schütz, Christa Schwanninger, Markus Völter, and Uwe 
Zdun for the comments they gave on the paper at EuroPLoP 2002. 

References 
[Anderson1996] Bruce Anderson, "Null Object", PloP '96. 
[Beck1997] Kent Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1997. 
[Buschmann+1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, 

and Michael Stal, Pattern-Oriented Software Architecture, Volume 1: A System of Patterns, 
Wiley, 1996. 

[Cunningham1995] Ward Cunningham, "The CHECKS Pattern Language of Information 
Integrity", Pattern Languages of Program Design, edited by James O Coplien and Douglas 
C Schmidt, Addison-Wesley, 1995. 

[Fowler1999] Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999. 

[Fowler2003] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 
1999. 

[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design 
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995. 

[Henney1997] Kevlin Henney, "Java Patterns and Implementations", presented at BCS 
OOPS Patterns Day, October 1997, http://www.curbralan.com. 

[Henney1999] Kevlin Henney, "Patterns in Java: Something for Nothing", Java Report 4(12), 
December 1999, http://www.curbralan.com. 

[Hunt+2000] Andrew Hunt and David Thomas, The Pragmatic Programmer, Addison-
Wesley 2000. 

[Schmidt+2000] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann, 
Pattern-Oriented Software Architecture, Volume 2: Patterns for Concurrent and Networked 
Objects, Wiley, 2000. 

[Shakespeare1605] William Shakespeare, King Lear, 1605. 
[Woolf1998] Bobby Woolf, "Null Object", Pattern Languages of Program Design 3, edited by 

Robert Martin, Dirk Riehle, and Frank Buschmann, Addison-Wesley, 1998. 


