
Performance Patterns

Author Peter Sommerlad
SYNLOGIC AG, Zurich, +41-79-432 23 32
peter.sommerlad@synlogic.ch

Abstract This collection of patterns revives some old wisdom of experienced
programmers with Sidestep System Calls and explains tactics to
improve the performance and predictability of multi-threaded
applications with Locking Categories and Thread-local Memory-Pool.
They are mined and applied in server applications that provide
services for a large number of users and for users that are sensible to
fast response times.

Overview Today, many developers and software architects are shielded from the
low-level consequences of their doings that they no longer can be
aware of the performance issues. Several factors have created such a
situation:

� Low-level programming is "uncool", because often the abstractions
provided by an operating system are too cumbersome to use
efficiently.

� Moore's law makes hardware faster and faster.

� Popular high-level languages, tools and libraries provide a lot of
useful functionality without giving awareness of performance
implications. And some tool architectures really are slow.

In the early days of mass-market internet, users connected via
relatively slow modems and the bandwidth of the connection was the
limiting factor of an application server's performance. Today,
broadband access is becoming more an more popular and slow
response times and high latency not only annoy users but also limit
effeciency in web-based work places.

Performance Patterns

Bad performance is particularly a problem for developers creating
server applications that need to handle either a large number of
concurrent users or users that expect immediate responses.

Not only performance, but also predictability of behavior is becoming
important in a 24x7 operating condition. First, crashes and
recognizable down-times become less acceptable. Second, multiple
services on a single machine call for predictable behavior in terms of
resource utilization, so that one service running under load doesn't
block another on the same hardware.

The patterns presented here cover some old folk wisdom with
Sidestep System Calls and its specialization Locking Categories. In
addition it introduces a new one for multi-threaded server
architectures with Thread-local Memory Pool that in turn helps to
implement Locking Categories more efficient for transient, but
dynamically allocated objects.

References

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns � Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995

[POSA96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern-
oriented Software Architecture�A System of Patterns, J. Wiley & Sons, 1996

[POSA2000] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann: Pattern-oriented Software
Architecture Volume 2 �Patterns for Concurrent and Networked Objects, J.
Wiley & Sons, 2000

[PLOPD3] Pattern Languages of Program Design 3, Addison-Wesley, 1997

[EPLOP1998] P.Sommerlad, M.Rüedi: Do-it yourself Relfection, EuroPLoP 1998

[KircherJain] M. Kircher, P. Jain: Patterns for Resource Management, Workshopped at
EuroPLoP 2002

Credits Thanks to my shepherds for EuroPLoP 2002 Michael Kircher and Ali
Arsanjani and the workshoppers in Irsee.

Copyright Peter Sommerlad and SYNLOGIC AG.

Permission is hereby granted to copy and distribute this paper for the
purposes of the EuroPLoP '2002 proceedings.

Sidestep System Calls

Sidestep System Calls

In applications or systems where performance matters, decrease the
number of system calls made, because they are an order of magnitude
more expensive than regular function calls within a program.
Especially on modern hardware with large register sets, caches and
multiple CPUs, the penalty payed per system call is relatively high.
Understand how your program behaves with respect to system calls
and learn how you can reduce the number of system calls required.
For example, employ mechanisms like buffering, cacheing, or avoid
unnecessary system calls by improved architectural structure.

Also Known As Buffering, presented as Avoid System Calls at EuroPLoP 2002.

Example Consider you write a simple program counting the occurences of the
letter 'A' in a file. When you just rely on using Unix system calls
open() and read() you might end with a solution like this:

/* program 1 */
 #include <fcntl.h>
 int main(int argc,char **argv)
 {
 char c; int counter=0;
 int fd = open(argv[1],O_RDONLY);
 if (fd < 0) return;
 while (read(fd,&c,1) == 1){ if ('A'==c) counter++; }
 printf("number of A's:%d",counter);
 }

when you run this program on a large input it is significantly slower
than the following program using the stdio library�s fopen() and
fgetc():

/* program 2 */
 #include <stdio.h>
 int main(int argc,char **argv)
 {
 int c; int counter=0;
 FILE *f =fopen(argv[1],"r");
 if (!f) return;
 while ((c=fgetc(f)) != EOF){ if ('A'==c) counter++; }
 printf("number of A's:%d",counter);
 }

Performance Patterns

On my system timing the programs with /usr/share/dict/words
results in

program 2 program 1
 real 0m0.038s real 0m0.437s
 user 0m0.040s user 0m0.130s
 sys 0m0.000s sys 0m0.290s

As you can see the second program using stdio's buffering
mechanisms is more than 10 times faster than the first one.

Context You are developing an application or a system that expects either very
high load or stresses the limits of its hardware and operating system.

Problem Omnipotent libraries and naive programmers tend to neglect the
performance requirements of some applications. On the other hand,
libraries or programmers can sometimes provide optimizations that
are useful.

Program code runs fastest on modern system if it fits into the
processor's cache memory and employs no calls or data accesses
outside the cache, thrashing the cache's content. A major reason for
calling outside of the current code context is a call to the operating
system. In addition to thrashing the cache memory, the processor has
to change its internal mode of operation and raise the privilege level.
The operating system needs to save the process' execution context
and establishes the kernel context to perform the OS' call (and vice
versa on return). Thus this is a relatively costly operation compared
to a regular in-program function call.

On the other hand, program code that does something useful needs
to have an external (lasting) effect. This can only be obtained by
calling the operating system's features.

With many operating systems (especially UNIX) such calls are an
order of magnitude more expensive than a regular function call within
the program. In addition often data needs to be passed from the
process' user address space to or from the OS' address space to
obtain a desired result (i.e. write the contents of a file).

Whenever the operating system needs to perform input or output (i.e.
disk, network), the communication aspect with the peripheral units
adds another order of magnitude overhead. Reducing the number and
frequency of such expensive system calls can give a program a boost
in performance and a drop in the usage of system resources.

Sidestep System Calls

How can you minimize the number of operating system calls in your
program to improve its performance?

In particular you want to address the following forces:

� calling the operating system is expensive, but

� system cannot be avoided completely.

� a process or thread of your system will be interrupted within a
system call, if a resource is not available, thus giving other threads
or processes the chance to continue. The overhead for switching to
and from a process or thread increases the overall performanc
impact.

� a long running thread or process will be interrupted when its time
slice is exceeded, even when it is not issuing system calls.

� some libraries provide mechanisms to reduce the number of
system calls, i.e. by buffering (stdio, iostreams).

� some libraries hide or encapsulate system calls so deeply, that a
programmer is unaware of the implications using them. 1

Solution The solution is two-fold: There is the technical aspect of using
mechanisms like buffering and caching to reduce the need to call the
OS too often. The other is the human aspect of educating
programmers to understand the implications of their code or of the
libraries or programming languages they are using.

For the technical aspect of the solution exist several popular
approaches:

� Buffering input/output operations and issue a system call only when
a buffer is full or empty (as in stdio or iostream).

� Cacheing of results (see Proxy pattern [GOF][POSA96]). Keep the
result of an expensive operation in a proxy object and reuse this
result later on instead of re-issuing the operation on the original

1. For example, many middleware infrastructures strive to give the
programmer the illusion of a local call, when a remote procedure call
happens. Unfortunately, the relative cost of such an external call
increased with each generation of middleware from RPC, Corba, Java-
RMI, J2EE Beans, SOAP. I wonder who is re-inventing this overhead
over and over.

Performance Patterns

object. An example of such cacheing is the implementation BIND
named of the Internet domain name service (DNS).

� Architectural approaches as demonstrated, for example, in the
Thread-local Memory Pool pattern.

The human aspect is approached by writing or reading this pattern.
In addition you can use tools provided by your development platform
to learn about the system call behavior of your programs.

For a better understanding of implications imposed by system calls to
your program use existing tools to monitor your program (for
example, on UNIX use ps, top, and time), trace the system calls issued
(e.g., truss or strace), or read the library source code and
documentation to understand what is really going on under the
blanket.

Example
Resolved

Tracing the number of system calls made for our two programs
results in about 120 system calls for the efficient program 2 and more
than 400'000 system calls for program 1. No wonder, the naive
program is an order of magnitude slower.

strace ./program2 /usr/share/dict/words 2>&1 | wc -l
129
strace ./program1 /usr/share/dict/words 2>&1 | wc -l
408889

However, fortunately we humans never need to stop to learn. Look at
the following program, using the more sophisticated mmap() system
call for counting the 'A's. This program runs about 4 times faster than
program 2 and uses only about 25 system calls (the majority used by
the dynamic library loader on my system).

#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
int main(int argc,char **argv)
{

char c; int counter=0;
long l=0; const char *s;
int fd = open(argv[1],O_RDONLY);
if (fd < 0) return;
l=lseek(fd,0,SEEK_END);
s=mmap(0,l,PROT_READ,MAP_PRIVATE,fd,0);
if (s == MAP_FAILED) return;
while (l--){ if ('A'==*s++) counter++; }
printf("number of A's:%d",counter);

}

Sidestep System Calls

On my system I get the following timing:

real 0m0.009s
user 0m0.010s
sys 0m0.000s

Known Uses The technical aspect of this pattern is omnipresent in many libraries
dealing with input or output, among them are stdio, iostream or
Java's buffered streams that can improve performance of a solution
dramatically as shown in the example.

However, as stated above, the opposite is also true, for libraries or
middleware hiding from the programmers the huge performance
impacts of using distributed components.

The human aspect today falls short, but this pattern is a step in
educating you the reader to take care.

Consequences The pattern implies the following benefits:

� reducing the effective number of system calls made can improve the
performance of your program, if it needs so.

� libraries or your own Wrapper Facades [POSA2000] to system calls
can implement buffering or cacheing and provide a more convenient
API than bare-bone operating system calls. In addition higher-level
error handling can be easier to deal with than the operating system�s
abstractions.

� learning the implications of your deeds can make you a better
programmer

However, the Sidestep System Calls pattern also has its liabilities:

� Complex mechanisms for buffering or caching are error prone if
implemented yourself and can be hard to maintain. Libraries take
time time to mature in that respect.

� Premature optimization or optimization without need can lead to
obscure and hard to maintain programs. Often the speed of a
program is a neglectable today.

� It can be hard to retro-fit an existing system to employ significant
fewer system calls.

Performance Patterns

� Error handling can be more fine grained and deal with individual
situations, if you program on a system call level. Thus your program
can behave better that just saying �sorry� to the user. On the other
hand, doing good and failure resistent error handling on the level of
system calls can increase complexity of your code heavily.

� Sometimes avoiding system calls can make an application more
fragile or hard to debug. One example that happened to me was
writing a log file with a large in-program buffer. The contents of the
log file itself never showed where the application really crashed,
because in case of the crash the relevant log data has not been written
to disk.

See Also Locking Categories: locks are implemented by system calls, therefore
minimizing the number of locks needed is a special case of Sidestep
System Calls.

Thread-local Memory Pool minimizes the use of locks required for
allocating and deallocating objects.

Locking Categories

Locking Categories

When programming multi-threaded systems, thread-safety is
omnipresent. However, locking any object or method that might be
shared somewhen carries not only the danger of deadlocks but also
even if deadlock-free, the dread of poor performance. Good locking
strategies as the one suggested by this pattern are therefore needed.
This pattern gives you categories of objects to look for, so that you can
carefully minimize the need for locking.

Also Known As This pattern was named Minimize Locking when presented at
EuroPLop 2002.

Example Consider an application server, that keeps user sessions and serves
request within individual threads. Each shared resource, that such a
server uses, needs to be secured by locks. Otherwise, the threads
running in parallel might access such a shared resource in an
inconsistent state.

One such shared resource is the session manager object, that keeps
a list of active user sessions. Each request handling thread will obtain
the session for a request from the session manager. Such a session

 RequestThread

startProcessing()
parseRequest()
renderReply()
stopProcessing()

Server Configuration

Configuration c

getConfiguredURL() const
...

SessionManager

List<Session> *fSessions

getSessionFor(sessionid)
getNewSession()
releaseSession(session)

Session

Values

getValue(name)
setValue(name,value)

<<creates>>

is stored in

<<creates>>

Reply

Buffer

append(string)

get and release session

transient shared read only shared

use
lock

no lock no lock needed

obtain URL

get and save
user data

<<destroys>>

Performance Patterns

can be newly instantiated by the session manager. In turn the
manager modifies its list of sessions. A request of a returning user will
get its already existing session object from the session list by the
session manager. Multiple requests occur in parallel, therefore the
session manager must use a lock to serialize access by request
threads.

Another shared resource our server provides is its current
configuration in a server configuration object. This object holds all
configuration data of the server like the URL to process. It is
initialized on server start-up and never changes later on. Threads
processing requests need to access the server configuration object to
obtain the URL of the server, because it must be rendered to the reply.
Caution will tell you also to use locks for the server configuration
object, because it is accessed simultaneously.

Each request processing thread builds up its output in a reply object
that resembles an in memory buffer, before the result is sent over the
network back to the client. Such a reply buffer will only be accessed
by an single request processing thread and never used by another
thread.

Context You are developing a multi-threaded (server) application that requires
access to shared resources.

Problem One common solution to the situation where several threads access a
shared resource (i.e. an object) is to provide a lock, that must be
acquired for every access to this object (for example, via java's
synchronized keyword).

Without locking you cannot guarantee that your system runs
correctly, because a thread might read inconsistent information from
the shared resource while another one is updating this information.
This can result in your system crashing or misbehaving.

However, using locks for each access to a potentially shared object
can be very expensive: instead of a memory access, you need a system
call to acquire a lock before you access the object and release the lock
by another system call after you are done.2 As we have learned from
Sidestep System Calls this can result in bad performance.

2. On a multi-processor hardware, lock acquisition needs to synchronize all
processors and caches, making it especially expensive.

Locking Categories

Many operating systems provide read-write locks, that allow multiple
simultaneous threads read an object preventing all others to write at
the same time. Read-write locks promise increase in parallelism. This
pays off, when you only rarely update a shared object.

How can you implement a multi-threaded system, that does not pay the
performance penalty of too many locks?

In particular you want to address the following forces:

� You must protect a shared mutable resource by a lock, so that all
threads have a consistent image of it. Neglecting locks will lead to
systems that crash.

� Excessive use of locks not only is expensive, but can also lead to
race conditions or deadlocks, when locks are applied without a
clear and working strategy (see also Thread-Safe Interface pattern
[POSA2000]).

� Using read-write-locks allows you better sharing of a resource read
mostly, but still requires a system call per acquire and release.

� Lock acquisition and release are expensive operations, especially
on multi-processor hardware and can be hard to implement
correctly (see Double-Checked Locking pattern [POSA2000]).

� You have decided that a simpler single-threaded design like shown
in the Reactor pattern [POSA2000] cannot meet the goals of
performance and system utilization.

� Read-only objects can be accessed by multiple threads in parallel
without requiring locks.

� Objects allocated on the heap, that are only used by a single thread
still require obtaining a lock by the memory management library,
because the heap memory itself is a shared global resource. Only
stack-allocated objects are really local to the thread and require no
locks at all.

Solution There is no boilerplate solution to build a system just using the
minimal number of lock acquisitions and releases. However, this
pattern represents an engineering strategy to create a system, that
uses a less locks than a naive design might come up with.

Performance Patterns

In a server application you can classify your objects into three
categories:

� transient objects that will ever only be used by a single thread, i.e.
those that are only useful during the processing of a single request
(see the Reply Buffer object in our example). Objects allocated on
the stack are examples of such objects. The Thread-local Memory
Pool pattern allows for efficient allocation of transient heap objects
without locking.

� shared objects that are used by several threads, potentially in
parallel and thus require locks. The session manager of our
example definitely is a such a shared object.

� read-only shared objects that are created by a single-threaded or
contention-free initialization phase (i.e. according to Eager
Acquisition pattern [Kircher Jain]) and do not change their
statelater on, like the server configuration object. Thus, they can
be employed by several threads in parallel without the need for
locks, not even read-write locks.

To minimize the overall locking overhead, you can strive to optimize
the number of objects in the shared category. Too many shared
objects might result in too many locks to acquire and release, even
when good parallelism is won. Too few shared objects (e.g. one) might
limit throughput, because of contention for the lock of these objects.
Your goal must be have no objects unnecessarily in the shared
category.

Access to shared objects should be implemented using the Thread-
Safe Interface pattern and if you are using C++ by the Scoped Locking
idiom [POSA2000].

Configuration objects, that are initialized on system startup but later
on not changed, fall in the category read-only shared. They can
provide flexible, data-driven operation of your system, without the
need to sychronize their access during normal system operation.
Having such objects pre-allocated and initilized is shown in Eager
Acquisition as opposite to what Lazy Acquisition pattern [Kircher
Jain] and Double Checked Locking Optimization pattern [POSA2000]
talk about.

Locking Categories

Structure You will have the following types of components in your resulting
system:

Initializer running only at system startup in a single thread. An
Initializer sets up all read-only shared objects. It might also initialize
shared objects.3

Worker Threads are started after the Initializer is done. You will have
multiple, for example in a thread pool as shown in Leader/Followers
[POSA2000].

Shared Objects represent shared resources with an associated lock
(perhaps a read-write lock) used by Worker Threads.

Read-only Shared Objects represent shared resources that do not
change after the Initializer is done.

Transient Object corresponds to objects created (and destroyed!) by
a thread that is never passed across the thread�s boundary while it is
in use.

Dynamics To allow for read-only shared objects your system needs to be working
accordig to the following phases:

� Initializer started and initializing (1 active thread):

� initialize read-only shared objects

� initialize shared objects

� initialize Thread-Local Memory Pool (optional, see next pattern)

� initialzie Worker Threads in a Thread Pool

3. The Initializer is not shown in the diagram of the example.

Initializing
Working

Wait for WorkersRe-Initilize

stop

re-initialize

finished
[All worker threads stopped]

Performance Patterns

� start normal operation:

� start Worker Threads in the Thread Pool.

� within each thread: create, use and destroy transient objects and
access read-only shared objects without locks.

� stop normal operation for re-initilization:

� stop threads, each thread will release its transient objects.

� wait until threads are finished and only one active performing the
re-initialization remains.

� re-create/re-initialize shared and shared read-only objects

� stop the entire system.

Providing a means of re-initialization without completely stopping the
system can be a daunting task. You need to provide a means to stop
all threads in the thread pool and enter a mode where only one active
thread remains that is used for re-initialization. However, it might

Shared
Readonly
Shared

task

Initializer

Transient

Worker
Thread

acquire lock

release lock

no locking

Locking Categories

much easier and sufficient to just simply kill and restart the system.
For example, stopping the worker threads might take a long time,
when some threads are waiting for I/O to complete and cannot be
interrupted in this state. Killing the process by brute force, the
operating system guarantees that all threads and I/O is stopped.
However, active users of your system might have some inconvenience.

An alternative solution for re-initialization, outside the scope of this
pattern, is to take read-only shared object as almost read-only and
provide them with a read-write lock. So re-initialization needs to
obtain a write lock on these objects before changing. Such a solution
significantly increases the number of locks and lays the burden on
the worker thread�s code to obtain and release the read locks often.
Otherwise the re-initialization cannot take place when worker threads
are running.

Implementation To implement the Locking Categories several activities are needed:

1 First, you have to keep an eye on what locking behavior your system
will require or actually has. A careful analysis might come up with
objects in each locking category.

2 Implement the Initialzer, that allocates and initializes all shared and
read-only shared objects. Often an application server provides such
an initializer in a generic form, where configuration data actually tells
what objects to create and how to set up their state.

3 Implement your shared objects. Add a lock to each such object and
use the Thread-Safe Interface pattern [POSA2000] to clearly
distinguish external operations, that can be called from different
threads and that acquire the lock from the internal ones that assume
the lock is already acquired. Nevertheless, be careful in your design
and try to minimize the chance that a Worker Thread needs to keep
several locks of different shared objects. This will increase the chance
for deadlocks. In such cases, a helpful strategy is to always acquire
such locks in the same order and to release all held locks if you
cannot obtain the next one needed. The trylock operation usually is
used in these cases.

4 You might be unfamiliar with the category of read-only shared
objects, that are pre-allocated during initialization (see Eager
Acquisistion pattern [Kircher Jain]). For example, the Server
Configuration object is allocated and preset by the Initializer and later

Performance Patterns

on only accessed in a non-mutating way. However, you must clearly
document such behavior and if you are providing a framework using
such read-only shared objects, ensure that framework users do not
introduce mutating operations when deriving new subclasses
instantiated by the Initializer as read-only shared objects. One
solution to avoid application of mutating operations on read-only
shared objects is to provide read-only adaptors to the pre-allocated
objects. After initialization, the read-only shared objects are only
accessed via these adapters ensuring the non-mutability.

5 Transient objects are only created and used by one Worker Thread. If
they are allocated on the stack (as it is possible in C++ compared to
Java) there is no locking overhead at all. However, heap allocation of
transient objects requires locks for allocation and release of the
memory (see Thread-local Memory Pool to sidestep these locks).

Known Uses SYNLOGIC�s server application framework WebDisplay employs the
strategy presented by Locking Categories. WebDisplay uses read-only
shared objects heavily to avoid locking. It uses locks for its session list
manager and individual session objects. Each request context object,
most strings, Anythings [EPLOP1998] and iostream objects are
transient objects thus not requiring locks.

TAO distinguishes between stack, heap and synchronized objects,
which kind of falls in the three categories.

Apache Tomcat does something similar with request/session/
application objects.

Variants For the sake of simplicity this pattern talks about multi-threaded
systems with process-internal shared resources, but almost
everything also applies to multi-process systems with external shared
resources (e.g. shared memory or files). The Apache httpd server (up
to 1.3.x) initializes itself on start-up creating read-only shared objects
representing its configuration and then spawns further child
processes for request processing. The child processes inherit the
read-only shared objects from their parent and if they never change
data, the operating system effectively keeps only one copy of the
according memory pages.

See Also A special case as well as an implementation option for making heap
objects of the category transient is the Thread-local Memory Pool.

Locking Categories

Eager Acquisition [KircherJain] shows consequences of up-front
initialization.

Thread-Safe Interface [POSA2000] is a good strategy to implement
objects in category shared.

Consequences The pattern implies the following benefits:

� you cannot avoid the need for all locks in a multi-threaded system,
but following the guidelines of the pattern you might be able to reduce
the number of locks during request processing close to the minimum.

� the object categories give you a model to work with while designing
your system. Thus you can strive to minimize the number of locks by
reducing the number of shared objects.

� With read-only shared and transient objects, that do not need locks
you can effectively reduce the number of locks required.

However, the Locking Categories pattern also has its liabilities:

� Even with the clear distinction of the object categories, multi-
threaded programming is hard. Without care it is easy to implement
chances for deadlocks or race conditions.

� Implementing an on-the-fly re-configuration in a safe way can be
beyond the abilities of your threading architecture and you might
need to introduce locks you tried to get rid of by using read-only
shared objects.

� Your application might not easily fit with the three categories and you
end up with too many objects in the category shared. Then this
pattern might be of little help. Too many shared objects, might be a
sign of a poor design strategy, that might lead to deadlocks and race
conditions, when a thread needs to lock several objects to perform an
operation.

� On the other hand, using only a few large grained shared objects
employed by many worker threads can serialization of worker
threads, thus eliminating performance gains by multi-threading.

Performance Patterns

Thread-local Memory Pool

If you are implementing Locking Categories you might be confronted
with transient objects that require dynamic memory management,
such as strings. However, heap memory is a global shared resource,
so heap management requires locks to protect its data structures. A
universal memory manager can not be aware that memory will only
be used and freed by the thread requesting it. Thread-local Memory
Pool shows you a way out of this dilemma, by implementing your own
allocators for each thread and using them for transient objects.
Access to allocators is implemented using the Thread-Specific Storage
pattern [POSA2000], so that classes and programmers usually do not
need to deal with the issue of having different allocators.

Example Your multi-threaded web application server uses a thread per request
architecture with thread pool. During request processing your code
creates more and more of the web page content. To be able to give a
definitive size of the result you first collect the page content in a string
buffer (reply object). However, this string grows and might require
frequent re-allocation resulting in locking overhead, even though it
can be categorized as transient, that wouldn�t need any locks by itself.

Context You are applying the Locking Categories with transient objects that
require dynamic memory management in a multi-threaded system.
Your implementation language allows you to implement your own
memory management features, like C++.

Problem Even when you try to minimize locking you face the challenge that
object-oriented programming often requires you to allocate objects on
the heap, i.e. using std::operator new(). Unfortunately the
programs heap is a resource shared by all threads and thus dynamic
memory management requires locks, even when needed by transient
objects. Especially data objects like strings suffer from frequent
allocation or reallocating of buffer space on the heap, even if the
object itself is placed on the stack in C++.

How can you alleviate this situation with transient objects needing
heap allocation without paying the penalty of aquiring and releasing
the memory management lock?

Thread-local Memory Pool

In particular you want to address the following forces:

� heap memory is a global shared resource. allocating and releasing
memory each requires locks on its management data structures.

� you do not want to pay the price of locking overhead for objects
used only by a single thread.

� objects that are passed up the call chain need to be allocated
dynamically and cannot be allocated just on the stack.

Solution Implement your own memory manager that provides a memory pool
for transient objects in each thread. Access the individual memory
manager by using Thread-Specific Storage [POSA2] so that
programmers automatically access the right one. These thread-local
memory managers do not require locks for their management data
structures.

If you have classes that will be instantiated in transient thread-local
fashion as well as shared objects you also need to keep track which
allocator was used for a specific instance. You wrap the global heap
manager with the same interface as your thread-local allocators.

Dynamics The dynamics are similar to Locking categories. Just the Initializer
needs to be extended to set up the thread-local memory pools and
their references in thread-local storage when setting up the worker
threads.

Implementation Implement thread-local memory pools following these guidelines

1 Define the API for allocators. For example:

class Allocator {
public:

Allocator(long allocatorid);
virtual ~Allocator();
void *Calloc(int n, size_t size)
void *Malloc(size_t size) { return Alloc(size);}
virtual void Free(void *vp) = 0;
static Allocator *Current();
static Allocator *Global();

protected:
//!hook for allocation of memory
virtual void *Alloc(u_long allocSize) = 0;

};

2 We implement the auxiliary methods like Calloc, based on the hook
method Alloc. Note this code is simplified neglegting error conditions.

Performance Patterns

void *Allocator::Calloc(int n, size_t size)
{

void * ret = Alloc(n*size);
if (ret && n*size>0) memset(ret,0,n*size);
return ret;

}

3 Implement the interface using the regular global (malloc) allocator, so
that at least one is available as a default global allocator to use.

class GlobalAllocator: public Allocator {
public:
GlobalAllocator();
virtual ~GlobalAllocator() {}
virtual void Free(void *vp) { ::free(vp);}
protected:
static Allocator *getInstance(); //Singleton
virtual void *Alloc(u_long allocSize)
{ return ::malloc(allocSize);}
};

Access the global allocator in Allocator::Global() using the
GlobalAllocator�s Singleton [GHJV95] implementation:

Allocator* Allocator::Global()
{ return GlobalAllocator::getInstance();}

4 Implement an allocator with a allocation strategy suited to your
application that is largely independent of the global allocator. One
example is using a pool of pre-allocated memory. The GNU malloc
library implements a strategy using the mmap system call with
anonymous files for getting memory chunks (so-called arenas)
outside the process heap-space. For brevity, we leave out the messy
details of pooled memory management and just give the class
declaration:

class PoollAllocator: public Allocator {
public:
PoolAllocator();
virtual ~PoolAllocator() {}
virtual void Free(void *vp) ;
protected:
virtual void *Alloc(u_long allocSize) ;
};

5 Extend your system�s initializer with code to set up a memory pool for
each thread. Each pool will allocate its initial pool space from global
heap memory using Eager Acquisition [KircherJain]. If the worker
threads are also managed in a fixed sized pool, you can get a stable,

Thread-local Memory Pool

predictable memory footprint of your system, if you choose the
memory pool sizes are big enough for normal operation.

6 Use Thread-specific Storage for keeping the pointers to the thread-
local memory pools you initialize. Access these allocators in
Allocator::Current() like the following:

Allocator::Current()
{

Allocator *current =
(Allocator *)pthread_getspecific(ALLOCATOR_KEY);

if (current) return current;
return Allocator::Global(); //fallback

}

7 For classes that are only used to create transient objects implement
operator::new() and operator::delete() to use allocator
Storage::Current(). Classes that have both use for shared objects
as well as for transient objects and that are instantiated often enough
to have recognizable locking overhead in the transient case, you need
to keep track which allocator was used, so that a deletion of an
instance asks the correct allocator to reclaim its memory.

8 Classes that manage their own buffers internally, may need to be
explicitely given the allocator to use. For example, our string class
is used both for transient strings and also for strings in shared
objects. Thus, provide class String with an additional Allocator*
parameter and use that allocator for managing the Strings buffer.

class String {
public:
String(Allocator *a=Storage::Current()):fAllocator(a){}
// all the uses of the Allocator are left for the reader
to imagine
private:
Allocator *fAllocator;
}

Note that the default allocator used is Storage::Current(). This way a
developer does not need to care about allocators and does not need to
specify the extra parameter.

Now, all transient string objects can use the thread-local pool
allocator without incurring the overhead of a lock required by the
default operator::new()/malloc() implementation.

Performance Patterns

Known Uses SYNLOGIC�s WebDisplay implement Thread-local Memory Pools and
greatly benefited from the performance boost by reducint the number
of locks used during multi-threaded processing.

Apache�s http server version 1.3.x implements this pattern in a multi-
process manner. Such a multi-process single-threaded server is an
extreme variant of this pattern where the thread-local memory pool is
trivially provided by the generic memory manager, but sharing objects
is the complex case using shared memory system calls.

GNU�s glibc's malloc implementation, goes in the direction minimizing
locks for memory allocator access by using a clever schema of arenas
(corresponds to a pool) and creating new arenas for each thread on
the fly. However, because it cannot assign an arena strictly to a single
thread the design is complicated and thus each arena requires its
own lock. A thread uses thread local storage to keep its last used
arena and a trylock call to that arena's lock. In addition the new
arenas are obtained from the system by the use of mmap, so the
orignal process' heap (the main arena) is still a single shared resource
always using a lock. So with multi-threading and without mmap GNU
malloc will acquire and release a lock for every call (malloc or free) to
the allocator.

RogueWave ATS (application tuning system) reduces locking
overhead, but its memory manager is not backed by application
design. It might be better than the default memory manager, but still
needs some locking when freeing memory, because it might have been
allocated by a different thread. From an outside view, its
implementation strategy looks similar to the modern glibc�s malloc.

Consequences The pattern implies the following benefits:

� You save the cost of acquiring and releasing the lock for each object
allocation and deallocation for transient objects. This is especially
true for strings or similar transient data objects (e.g. Anything
[EPLOP1998]).

� Pre-allocating memory pools allows a stable memory footprint of your
server, if pool size is adjusted accordingly. Such a stable memory
footprint gives better predictability and monitoring capabiltiy.

Thread-local Memory Pool

However, the Thread-local Memory Pool pattern also has its
liabilities:

� Implementing your own memory management is an advanced
programming topic and might lead to headaches if you make errors.

� Thread-local Memory Pools require discipline. For example, if an
object allocated thread-locally is passed to another thread, that
deletes it, you easily get a crash. Such errors are very hard to detect.

� Using non-standard memory management can be error prone or at
least bloat interfaces for classes requiring it. Use it only for classes
where you know, that this optimization is worth the complexity.

� Tuning parameters of your memory pools (like the initial size, the
increment when it overflows) might be too complicated.

� Pre-allocating memory pools wastes resources, if the pool size is too
generous or most of your threads do not fill the pool�s memory.

See Also Thread-Local Memory Pools use Eager Acquisition [KircherJain] for
the pool memory.

Locking Categories is a prerequisite organization schema of your
system, so that you can decide what objects are candidates that
might profit from a thread-local memory pool.

