
Explicit Interface
and

Object Manager
Two patterns from a pattern language

for distributed computing

Frank Buschmann

Siemens AG, Corporate Technology
Software and Engineering

Frank.Buschmann@mchp.siemens.de

Kevlin Henney

Curbralan Ltd
kevlin@curbralan.com

“I wish life was not so short,” he thought,
“Languages take such a time,

and so do all the things one wants to know about.”

J.R.R. Tolkien, The Lost Road

In this paper, we present two patterns from a proposed pattern
language for distributed computing. We have distilled this language
from our experiences in building distributed systems as well as from
the distribution patterns that other software architects, designers,
and developers have contributed to the software community. Almost
all of the patterns in this language—92 of them to date—are taken
from existing publications. However, two patterns are new: Explicit
Interface and Object Manager. Both patterns repesent missing links
that helped us to integrate the other patterns correctly and more
tightly.

The patterns for distribution infrastructure, application
infrastructure, event handling, concurrency, and synchronization of
this language were presented and workshopped at the last two
EuroPLoP conferences.

Most patterns in our language are well known and already published
in the pattern literature. The two new patterns were introduced as a
result of finding that the fit between some of the existing patterns was
rough. Introducing Explicit Interface and Object Manager led to a snug
fit leading to a clearer flow in the language:

The Explicit Interface pattern is the central pattern of the
component-partitioning patterns of our pattern language. It splits
a component into two distinct physical entities: interface and
implementation. This separates component usage aspects from
realization details. Clients depend only on the signature and
functional contract that the component interface defines, but not
on this component’s internal design. It reduces a client’s
dependency on the component’s location, synchronization
mechanisms, and other operational and developmental details.

The Object Manager design pattern is one of the core resource
management patterns in our language. It separates object usage
from object management to support an explicit and centralized
but decoupled and efficient handling of resource-based objects.

Much of the discussion within the Explicit Interface pattern about
general component design was assigned initially to the Extension In-
terface [POSA2] pattern—in accordance with its original description
[POSA2]. However, this led to problems when integrating the Proxy
[GoF95] [POSA1] and Facade [GoF95] patterns into our language, as
the focus of Extension Interface is on providing hook points for future

extensibility rather than on describing the separation between inter-
face and implementation. Likewise, many of the statements about
distributed and concurrent components that are now included in Ex-
plicit Interface were repeated across all of our application infrastruc-
ture patterns. This arrangement felt uncomfortable.

The resolution of our discomfort was simple: introduce a new
pattern—Explicit Interface—that describes a fundamental partitioning
principle for components in distributed systems. Hindsight reveals
that this pattern is a cornerstone of any distributed architecture
founded on a stable and explicit type system. Application
infrastructure patterns can now reference Explicit Interface instead of
repeating the same ideas. Extension Interface, Proxy, and Facade can
focus on their essence: how to organize a component’s interface.

The name Separated Interface was used originally to describe what is
now Explicit Interface. However, this name is already used to describe
a related but subtly different pattern [Fow03]. To avoid confusion,
and to allow us to make the link to this other pattern, the name
Explicit Interface is now used.

The Object Manager pattern originates from the merger of two other
patterns—Manager [Som97] and Object Lifetime Manager [LGS99]—
and several discussions with our colleages Michael Kircher and
Prashant Jain, the authors of many of the resource management
patterns included in our language. From these discussions we
realized the need for a pattern like Object Manager, but in the body of
software literature we could not find a single pattern that matched
our purpose without too much stretching: Manager focuses on finding
objects, mentioning object creation only briefly, and the scope of
Object Lifetime Manager is limited to Singletons [GoF95] and static
objects. Our solution was to fill this gap by introducing Object
Manager, integrating the essence of Manager and Object Lifetime
Manager into its description.

The following diagram shows how Explicit Interface is connected to the
pattern language.

application
infrastructure

Extension
Interface

Proxy

Explicit
Interface

Layers

Pipes and
Filters

Blackboard

MVC

PAC

components

Facade

Object Group

Whole-Part

Composite

Half-Object
plus Protocol

Master-Slave

component
interface

component
implementation

Monitor
Object

Bridge

Adapter

Mediator

interface /
implementation
decoupling

Active Object

Half-Sync/
Half-Async

Leader/
Followers

concurrent
components

Builder

Abstract
Factory

component
creation

Wrapper
Facade

Container

Annotations

OS independence
component
management

The next diagram show how the Object Manager pattern fits into our
pattern language.

Asynchronous
Completion Token

View
Handler

Component
Configurator

Disposal
Method

Broker

Object Manager

Client-Dispatcher-
Server

Thread-Specific
Storage

Reactor

Forwarder
Receiver ContainerSingleton

component,
object &
resource
management

Singleton

Factory
Method

Thread-Safe
Interface

Strategized
Locking

object
creation

internal
design

object
passivation

thread
safety

object
availability

Eager
Acquisition

Partial
Acquisition

Lazy
Acquisition

Evictor

Activator

Leasing

Counting
Handle

object
deletion

Caching

Pooling

Lifecycle
Callback

object
lifecycle
control

Lookup

Iterator

object
access

Explicit Interface **

We are designing components for a component-based system, or we
are realizing the application functionality for a Layers [POSA1], Pipes
and Filters [POSA1], Blackboard [POSA1], Model-View-Controller
[POSA1], or Presentation-Abstraction-Control [POSA1] architecture.

A component represents an implementation of a self-contained
unit of functionality and deployment with a published usage
protocol. Clients can use a component as a building block in
providing their own functionality. However, direct access to the
full component implementation would lead to clients depending
on the component internals, which ultimately increases an
application’s internal coupling.

Ideally, the only dependency of clients to a component should be on
its published interface. If this interface remains stable, modifications
in the implementation of the component should not affect its clients.
Encapsulating components in ‘ordinary’ classes is therefore
impractical: class interfaces are always bound to their
implementations. An additional concern in distributed systems is
location independence: clients of a component may reside in remote
address spaces; in some cases, the location of the component may
change during an applicaton’s lifetime. Consequently, direct
dependencies of a client to the particular location of a component
should be avoided.

Explicit Interface **
Therefore:

Separate the interface of a component from its implementation
so that the latter can be modified transparently and
independently. Export the interface to the clients of the
component, but keep its implementation and location private. A
call from the client through this explicit interface will be to the
component, but the client code will depend only on the interface
and not on the component implementation.

Splitting a component into two distinct physical entities—interface
and implementation—separates component usage concerns from
concrete realization and location details. The component interface is
associated with a contract that clients must follow to use the an
implementing component correctly [Mey97]. This contract includes
operations offered by the component, the protocol for calling these
operations, and any other constraints and information that clients
must know to use the component correctly or most effectively. If
clients do not satisfy their side of the contract, the component is
entitled to fail. The quality of such failure is an additional design
consideration. The component should depend on the contract and not
vice-versa. The contract should not be added as an afterthought: the
contract would inevitably depend on the component’s internal
implementation, they very thing that we are trying to insulate the
client from. Any change to the component should require little more
than a recompilation of the component and rebinding of the client

Extension Interfaces [POSA2], Proxies [GoF95] [POSA1], and Facades
[GoF95] assume a proper separation of component interfaces from
component implementation. They also help to provide a location-
independent access to this implementation. The implementation’s
concrete design strongly depends on the component’s concrete

service_A

service_B
service_A_imp

service_B_impA client
Component interface

Component implementation
21

A component

purpose and responsibility. Domain-specific patterns and pattern
languages can help with a proper component decomposition.

There are also infrastructure aspects to consider when partitioning a
component. Typically, its entire implementation resides in a single
physical location. This can incur penalties in a distributed system,
however, from to latency, jitter, or remote method call failure. To op-
timize for quality of service it may therefore be beneficial to deploy the
component across multiple network nodes. One option is replication:
component instances are installed in multiple locations, for example,
organized as an Object Group [Maf96]. Another option is to split com-
ponent implementations into several distinct, yet cooperating parts—
for example into Whole-Part [POSA1], Composite [GoF95], Master-
Slave [POSA1], or Half-Objects plus Protocol [Mes95] arrangements—
and to distribute these parts across the network. The quality of ser-
vice of components can also benefit from concurrency: it allows them
to handle multiple client requests simultaneously. Active Objects
[POSA2] support the concurrency of large and complex components,
Monitor Objects [POSA2] that of small, single class components. Half-
Sync/Half-Async [POSA2] and Leader/Followers [POSA2] arrange-
ments support the design of concurrent components that process
network I/O. Using Wrapper Facades [POSA2] for accessing the oper-
ating system and platform-specific libraries helps to implement por-
table components.

Several options exist for expressing interfaces and implementations
in terms of them. For example, Java and C# support the concept of
an Explicit Interface in the core language, and classes can implement
them directly. In other statically typed languages, such as C++, an Ex-
plicit Interface can be expressed as a fully abstract class. An imple-
menting class is free to make other decoupling decisions, such as us-
ing a Bridge [GoF95], an Adapter [GoF95], or a Mediator [GoF95].

A component is often associated with an Abstract Factory [GoF95] or
Builder [GoF95] that allows clients to obtain access to the
component’s interface and to transparently manage its lifetime. On
platforms like the CORBA Component Model (CCM) [OMG99] and
Enterprise JavaBeans (EJB) [MaHa99] components also come along
with Annotations [VSW02]. Annotations specify how a particular
component should be handled by a Container [VSW02].

Object Manager **
Object Manager **

We must manage a set of objects or resources explicitly and with care.
Or we are managing server resources in a Broker [POSA1]
architecture or connections in a Client-Dispatcher-Server [POSA1]
arrangement. Or we are handling objects in Thread-Specific Storage
[POSA2], or event handlers in a Reactor [POSA2], or Asynchronous
Completion Tokens [POSA2]. Or we are maintaining views in a View
Handler [POSA1], or locations of remote peers in a Forwarder-Receiver
[POSA1] configuration. Or we are managing components in a
Container [VSW02]. Or we are controlling the lifetime of components
managed by a Component Configurator [POSA2], or the lifetime of, and
access to, Singletons [GoF95].

Certain kinds of objects within an application—in particular
server-side components, system resources, and singletons—
require access control and a managed lifecycle. It is otherwise
hard to maintain and use them efficiently, correctly, and without
degrading the application’s quality of service. However,
implementing such functionality within the objects themselves
overloads them with peripheral responsibilities and makes their
simple and uniform use harder rather than simpler.

Likewise, clients should not be responsible for controlling the access
to, and the lifecycle of, such objects: this would only make them
dependent on the objects’ internal structure, access constraints, and

maintenance policies. Ultimately, such dependencies result in less
encapsulated objects and in an increased coupling within the
application. Ideally, therefore, a client should depend only on an
object’s usage interfaces and not its house-keeping obligations.

Different applications may also require different object management
policies, which should therefore be configurable and changeable
transparently for both the managed objects and their clients. In
addition, the optimal management of a set of objects often depends on
certain operational factors, such as the available memory. Object
management must consider and embrace these factors.

Therefore:

Separate object usage from object lifecycle and access control.
Introduce a separate object manager whose sole responsibility is
to manage and maintain exclusively a given set of objects.
Clients can use the object manager to gain access to objects with
specific capabilities.

Where a client requests an object that does not yet exist, the object
manager can create it on demand. Clients may also wish to request
creation of objects explicitly via the object manager. In some
situations the client may already have created the objects of interest,
and may wish to hand custody of them over to an object manager. The
manager should also control the disposal of the objects it manages,
either transparently or in response to explicit client request. Let the
object manager maintain ‘its’ objects on basis of appropriate policies
that also take into account available computing resources such as
memory, connections, and file handles.

create_object An object

Object

1
service

service

Another
object

delete_object

insert_object

remove_object

find_object

object_iterator

service Yet another
object

A client

2

3

manager

find a
particluar
object

return a reference
to the requested
object

invoke services
on the object

Object Manager **
An Object Manager frees both the managed objects and their clients
from the task of detailed management. An Object Manager also
introduces a localization–globalization trade-off: it concentrates and
centralizes object management within an application while
decentralizing and decoupling the management policy. Some
applications provide only one Object Manager for a given type of
managed object, sometimes—but not always wisely—implemented as
a Singleton [GoF95]. Alternatively, an application can provide multiple
Object Managers for different purposes and different contexts, for
example, an Object Manager for handling threads and another for
handling connections, or an Object Manager per thread to grant
access to file resources. In general, there should be one Object
Manager per group of objects that must be managed according to a
specific set of policies. If an Object Manger is shared between multiple
threads, it should offer a Thread-Safe Interface [POSA2].

Clients can request access to objects maintained by the Object
Manager via its retrieval services. Lookup [POSA3] services allow a
client to search for a specific object, for example, based on object
names, object properties, or (index) keys. Iterators [GoF95] support
manual traversal of multiple objects.

Internally, the Object Manager has several options to maintain the
objects it manages. Pooling [POSA3] can be used to keep a fixed
number of objects constantly available. This strategy is in particular
useful for managing critical computing resources like processes,
threads, and connections, because they must be readily accessible.
Caching [POSA3], in contrast, keeps objects available in memory only
for a certain amount of time. Caching is mostly applied for application
tasks. Once the application tasks have been performed, participating
components are not needed until the same tasks are executed again.
To avoid degrading an application’s quality of service, it can therefore
be helpful to drop unused objects and make the resources they
occupy available for objects that are in use.

An Evictor [POSA3] allows for a controlled removal of less frequently
used objects from the cache. Yet, objects that are evicted may still be
referenced by clients. If the clients access the objects again, they
must be re-activated. An Activator [Stal00] helps to provide the
necessary object re-activation infrastructure.

To prevent the release of still-referenced objects, an Object Manager
can choose from two other object removal policies. Leasing [POSA3]
enables the Object Manager to specify the time that references to
objects are valid, and to offer clients the opportunity to renew their
leases. The Object Manager can destroy these objects safely once the
lease has finally expired. Counting Handles [Hen01], in contrast,
initiate the removal of an object as soon it is no longer referenced.

Objects maintained by an Object Manager must be created internally
or passed in by clients. Registration functionality allows clients to
hand over externally created objects into the custody of the Object
Manager whereas Factory Methods [GoF95] support explicit object
creation. Objects can also be created transparently for clients. Pooled
resources are often created up-front during the initialization of the
Object Manager using either Eager Acquisition [POSA3] or Partial
Acquisition [POSA3]. Eager Acquisition creates an object completely
and before it is ever accessed—thus it is readily usable after its
creation. However, it can take a long time to fully create large objects.
Partial Acquisition—which is also applicable to cached objects—
reduces up-front creation time via step-wise object assembly. A third
strategy is Lazy Acquisition [POSA3]: the complete creation of an
object is deferred to the point it is first accessed. Lazy Acquisition is
commonly applied with cached objects.

Objects maintained by an Object Manager must also be diposed of at
some point in time. Deregistration functionality allows clients to take
over the responsibility for objects from the Object Manager; Disposal
Methods [Hen02b] to request the deletion of objects explicitly. When
shutting the application (process) down, the Object Manager often
disposes of all remaining maneged objects before it terminates,
ensuring proper release of all resources used by these objects.

A set of Lifecycle Callbacks [VSW02] common to all objects allows the
Object Manager to control their lifecycle uniformly, that is their initial
creation, eviction, re-activation, and final disposal.

References
[Fow03] M. Fowler: Patterns of Enterprise Application Architecture, Addison-Wesley,

2003

[GoF95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns – Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995

[LGS99] D.L. Levine, C.D. Gill, D.C. Schmidt: Object Lifetime Manager – A
Complementary Pattern for Controlling Object Creation and Destruction, C++
Report, vol. 12, Number 1, January 2000,
http://www.cs.wustl.edu/~levine/research/ObjMan.ps.gz

[Hen01] K. Henney: C++ Patterns — Reference Accounting, Proceedings of the 6th

European conference on Pattern Languages of Programming, EuroPLoP 2001,
Irsee, Universitätsverlag Konstanz, July 2002

[LGS99] D.L. Levine, C.D. Gill, D.C. Schmidt: Object Lifetime Manager – A
Complementary Pattern for Controlling Object Creation and Destruction, C++
Report, vol. 12, Number 1, January 2000,
http://www.cs.wustl.edu/~levine/research/ObjMan.ps.gz

[Maf96] S. Maffeis: The Object Group Design Pattern, Proceedings of the 1996 USENIX
Conference on Object-Oriented Technologies, USENIX, Toronto, Canada,
June 1996

[MaHa99] V. Matena, M Hapner: Enterprise JavaBeans, Version 1.1, Sun Microsystems,
1999

[Mes95] G. Meszaros: Half-Object plus Protocol, in [PLoPD1], 1995

[Mey97] B. Meyer: Object-Oriented Software Construction, 2nd edition, Prentice Hall,
Englewood Cliffs, NJ, 1997

[OMG99] Object Management Group: CORBA Components Final Submission, OMG TC
Document orbos/99-02-05, February 1999

[PLoPD1] J.O. Coplien, D.C. Schmidt (eds.): Pattern Languages of Program Design,
Addison-Wesley, 1995 (a book publishing the reviewed Proceedings of the
First International Conference on Pattern Languages of Programming,
Monticello, Illinois, 1994)

[PLoPD3] R.C. Martin, D. Riehle, F. Buschmann (eds.): Pattern Languages of Program
Design 3, Addison-Wesley, 1997 (a book publishing selected papers from the

References
Third International Conference on Pattern Languages of Programming,
Monticello, Illinois, USA, 1996, the First European Conference on Pattern
Languages of Programming, Irsee, Bavaria, Germany, 1996, and the
Telecommunication Pattern Workshop at OOPSLA ’96, San Jose, California,
USA, 1996)

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern-
Oriented Software Architecture—A System of Patterns, John Wiley and Sons,
1996

[POSA2] D.C Schmidt, M. Stal, H. Rohnert, F. Buschmann: Pattern-Oriented Software
Architecture—Patterns for Concurrent and Networked Objects, John Wiley and
Sons, 2000

[POSA3] P. Jain, M. Kircher: Pattern-Oriented Software Architecture—Patterns for
Resource Management, John Wiley and Sons, 2004

[Som97] P. Sommerlad: Manager, in [PLoPD3], 1997

[Stal00] M. Stal: The Activator Design Pattern, http://www.posa.uci.edu/, 2000

[VSW02] M. Völter, A. Schmid, E. Wolff: Server Component Patterns — Component
Infrastructures illustrated with EJB, John Wiley and Sons, 2002

	Explicit Interface **
	Object Manager **
	References
	[Fow03]
	[GoF95]
	[LGS99]
	[Hen01]
	[LGS99]
	[Maf96]
	[MaHa99]
	[Mes95]
	[Mey97]
	[OMG99]
	[PLoPD1]
	[PLoPD3]
	[POSA1]
	[POSA2]
	[POSA3]
	[Som97]
	[Stal00]
	[VSW02]

