
Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 1 of 21

Encapsulated Context Pattern
Formerly known as Encapsulate Context

(c) Allan Kelly - allan@allankelly.net
http://www.allankelly.net

Abstract
A system contains data that must be generally available to divergent parts of the
system but we wish to avoid using long parameter lists to functions or global
data. Therefore, we place the necessary data in a Context Object and pass this
object from function to function.

Audience
Encapsulated Context is principally written for software developers designing and
writing programs. The pattern was originally written for C++ developers, however
examples have been reported from other languages such as Java and Smalltalk. It is
believed that users of any language will find the pattern useful, although C++
developers may find the pattern of particular interest.

By exploring the pattern in depth this paper offers a rigorous explanation of where the
pattern occurs, the forces and the consequences of using the pattern. For reference
purposes a summary section has been included at the end of the paper. Experienced
developers may prefer to read the summary first before reading the entire paper.

Example
In traditional structured programming, global data is minimised by use of function
call parameters. This tradition has continued, with some modifications in object-
oriented programming. For example:

���������	

���	�����	�����	��	

��	���
����
����������������������������	���������	��
���	����
���������
������	�������	����
��������
���	��	����
����������������
������	����
��� �!�������"�
����	�
	�
��������
���	�# ���
����������������
������	�����
��� �!�������"�
$�%%�����	

���	�����	� �

We now decide that any trade which results in a negative quantity should result in an
error message, hence the function �	�� must have access to the log manager,
consequently a handle must be passed down. The code becomes:

���������	

���	�����	�����	��	

��	���
����
����������������������������	���������	��
���	���
�������������������������&����!��	�'��������
� �����
������	�������	����
� ����
���	��	�����
����������������
������	�����
��� �!������������"�
� �����
�(���	�����
�

Such changes have a habit of reoccurring, so, when we add a transaction history the
code changes again:

���������	

���	�����	�����	��	

��	���
���

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 2 of 21

����������������������������	���������	��
���	��
�������������������������&����!��	�'������
����������������������������!
�����!)�
������*�
��������
� �����
������	�������	����
� �
���	��	����
����������������
������	�����
��� �!���������
������������������������*�
�����"�
� �����!��
���!�����
�

Several problems are clearly apparent. First the parameter list is growing with a
negative effect on comprehensibility, even though the additional code is trivial it
increases the bulk. Secondly, we are breaking encapsulation. Initially �	�� was an
encapsulated function, by adding more and more parameters its inner workings are
being exposed.

More ominously, we have a ripple effect running through interface and
implementation code. The function that calls ����	

���	�����	 must itself have
access to &����!��	� and ���!
�����!)�
����, and in turn, the function that calls that
function, and so on. Even though these functions will only act as pass-throughs for
the handles they are affected.

Less obvious is the capacity for redundant code to enter the system. If at some future
date we dispense with the transaction history then removal impacts at least three
different functions. To be sure, the temptation would be to disable the code while
leaving it in place, hence we simply make it an anonymous parameter in �	��:

��������	�����	++�	����������������������	��,��� �!������-��
������������������������&����!��	�'���������!
�����!)�
���������
� �����
�

In choosing not to delete the history in full we are storing up complications for future
refactorings, we are also half-way to implementing the Poltergeist anti-pattern
(Brown, 1998).

These problems are exacerbated when a dependency inversion design is adopted. We
may decide to recast our market message processing as a Command pattern (Gamma
et al., 1994):

���

����	��	

��	�����!����
, (���+�
�������� ��������.����!����	���������	���&����!��	�'����/"�
���������
$"�
�
���

�# ��+�, (�������	��	

��	�����!����
, (���+�
�������� ��������.����!����	���������	���&����!��	�'�"�
���������
$"�
�
���

��	���+�, (�������	��	

��	�����!����
, (���+�
�������� ��������.����!����	���������	���&����!��	�'�"�
� ��������
$"� �
�

To ensure substitutability each ���	��	

��	�����!� must implement .����! with
the same signature as the abstract base class. Consequently commands such as # �
are complicated with parameters which are unused. Worse, the potential for ripple
effects is magnified across all objects in the hierarchy. If the exchange introduces a

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 3 of 21

programmatic way of signalling transition point in the trading day with an
enumeration such as:

	! �������!��������
�������
	�����	0,	!��0,	!���	���	�	!����
,	!�	��
$"�
�

A new market message is needed to handle this, but so too is a state variable:

���

������!�����*�!�	�+�, (�������	��	

��	�����!����
, (���+�
�������� ��������.����!����	���������	���&����!��	�'��
�����������������������������!���������������"�
���������
$"�
�

Since our new message can change the state activity a new parameter is needed, to
maintain a common signature this parameter must be added to ���	��	

��	�����!�
and all derived classes. Again, we are increasing the length of the parameter list,
introducing a ripple effect and adding complexity. Our main loop may look like:

�!�����!�����
�������	���������	����	�����"�
����&����!��	��'����&��1���������"�
���������!�����	2�*�!�	����
����
	��+�
�����	

��	�� ��	�
� ��	"�
����3*��	���� 	����
��������� ��4,��5���	��	

��	�����!�6�3�
� ��	�7	2��	

��	���"�
��������386.����!����	������������	2�*�!�	����
�"�
����$�
�����	�	�	����"�
�����	� �!�/"�
$�
�

Faced with the problem of adding yet more parameters we may be tempted to
consider global variables. After all, an exchange is open or closed, there is only one
instance of such a flag surely? A tempting solution, the exchange status is a simple
variable, initialisation is not a significant problem, and being stack based a memory
leak is a non-issue.

However, for &����!��	� a global variable is decidedly less tempting. The example
above strictly controls the use of ��� through scope and parameter passing, were the
same variable global it could potentially be accessed before creation, e.g. the
���	���������	 constructor may choose to log a message.

We would then be forced into the position of trying to enforce creation before use.
This is known to be problematic and the best known solution (access through a
function) suffers from known issues in multi-threaded systems. Further, the same
problems occur in reverse when cleanly ending the program.

While we may be able to survive one or two such global variables we quickly find the
number increasing, first the exchange status, then the log manager, what of our
transaction history? Have we loaded any DLL plug-ins? Better have a global list of
their handles. As we add more global variables it becomes harder to reason about the
initialisation sequence for each – particularly important when one makes use of
another. It is also more difficult to reason about the internal state of the program
because it is dispersed with no central point of reference.

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 4 of 21

Even with the best will in the world the old issues of globals still exist. Judicious use
of namespaces, and careful coding may afford us the luxury of a few globals but the
old issues have not gone away, merely repositioned or hidden for a while.

The solutions so far suggested do nothing to improve either the testability of our
system or the transfer of components to follow-on projects. Suppose we wish to use
our ���	��	

��	�����!� in a market simulator. Long parameter lists, and
global variables force us to implement plumbing around the hierarchy so we can use
the commands.

Likewise, if we wish to write a test harness for our hierarchy, or force test data
through the system we must implement the necessary plumbing to support the classes.

Each additional parameter or global variables makes the classes and methods more
specific and less of a commodity. Without such specifics, the ���	��	

��	�����!�
hierarchy implements generic, run-time polymorphic handling of messages. Longer
parameter lists increase coupling, tying classes closer to the environment, shorter
interfaces are more loosely coupled and result in a more general the class.

The nub of the problem is the ever-expanding parameter list. At first this appears
simply unsightly, however, as we can see, the need pass more and more parameters is
a real issue.

Problem
Access to common data is important to many systems. Many systems contain data
which must be generally available to divergent parts of the system, e.g. configuration
data, run-time handles and in-memory application data.

However, we wish to avoid using global data - such data is normally regarded as poor
engineering practice. Traditionally the problem is addressed by passing such data as
function call parameters but over time parameter list become longer. Long parameter
lists themselves have an adverse effect on maintainability and on object
substitutability.

While access to such data is a common requirement neither of the two common
techniques are without problems. Access to the data is not as trivial as it first appears,
and as any system grows the drawbacks of each solution become greater.

Forces
There are several forces that any solution to this problem must accommodate for it to
be widely applicable.

1. Substitutability
Software designs based on common interfaces, with object substitutability – either
run-time polymorphic or compile-time polymorphic – are restricted in the
parameters that can be easily passed to an object because all objects must conform
to a common interface with common function signatures to ensure commonality
of access - i.e. the Liskov Substitution Principle - LSP (Liskov, 1988, Martin,
1996b).

However, were all data is supplied to objects and function via call parameters, if
any object requires additional data it must be passed via a call parameter, to keep

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 5 of 21

LSP all similar objects must also accept this parameter even if they have no
functional requirement for it.

For an object, changing any function-method call signature, whether by addition,
revision or removal breaks LSP. The object in question can no longer be
substituted for other similar objects. The compiler should refuse to compile the
resulting program. Typically we must either change every class in the same
hierarchy to match the new signature, change every call to the function-method, or
both.

Having broken LSP we are forced to restore LSP by changing other parts of the
system. This creates ripple effects through the code base. A good solution to the
overall problem would ensure that LSP is not broken, and consequently, ripple
effects within the code base are minimised.

2. Encapsulation
Good software practice values encapsulation, however, traditional solutions
threaten encapsulation:

• Over-long parameter lists to function calls reduce encapsulation because the
parameters suggest the internal workings to developers.

• Global variables break encapsulation by definition. They are considered poor
programming practice, leading to side-effects and increased coupling.

• Within C++ systems there are additional problems associated with
instantiation and destruction - particularly in multi-threaded developments.
Although C++ namespaces allow better management of globals they do not
resolve instantiation and coupling problems.

A good solution would preserve encapsulation thereby minimising side effects and
coupling.

3. Coupling to the environment
The parameters passed to a function, or method, define the state of the system
external to the object in question. An object receiving a method call knows its
own state (even if this is stateless), what it does not know is the state of the rest of
the system, i.e. the context in which it is called. If global data is used it becomes
harder to reason about the state of the system at the point of call.

Likewise, a simple function maintains little or no state between calls, the external
state is everything, the result of the function call depends on the context in which
it is called.

The more tightly coupled an object is to its environment the more difficult it is to
use the object in a different setting. Opportunities for using the object in a
different environment, e.g. within a test harness, or re-used in a different system,
are much reduced. At the same time, the amount of consideration developers
must pay the object’s environment is increased. Thereby, reducing readability,
understandibility and maintainability.

A solution that minimised coupling would do much to improve understandibility,
maintainability and improve the opportunities for alternative uses.

4. Avoid data copying

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 6 of 21

One solution to the global v. parameter conflict would be to retain a copy of such
data in individual objects. Unfortunately, this is not always practical, especially
when the system has a large number of small objects and/or objects exist in
difference execution threads.

Reasons for not copying pieces of data may include, but are not limited to:

• Data may be changing rapidly, e.g. equity market prices, and needs to be
available in several different locations in the program

• Data and operations on the data may overwhelm the class, e.g. a simple
command class used in a Command pattern may only have one significant
method, to additionally store data, handles, and accessors would rob the class
of its simplicity.

• Overhead of a copy operation both in terms of time and memory used – this is
particularly so if the data is seldom accessed, e.g. command line options.

• Data may be singleton in nature, or encounter problems when copied, e.g. a
handle to a log file may be easily copied but we do not wish to store multiple
copies of the handle to prevent dangling pointers (or references) when the file
is closed. However, use of the Singleton (Gamma, 1995) pattern may not be
appropriate.

Since these potential solutions are unavailable they represent forces in their own
right. Further, as modern systems frequently end up with a large number of small
objects these problems are increasing.

Solution
Provide a Context container that collects data together and encapsulates common data
used throughout the system.

For example:
�
���

���!�	2����
����&����!��	�'������������4"�
��������!�&�!	0,���!
������0,�
4"�
����.,,�������!����'����
���	4"�
�����
$"�

Rather than supply multiple parameters, we supply a Context object. The object acts
as a container for program state data, a central repository for widely used data within
the system. The Context object provides few, if any, functions itself. The object is
passed, or more likely a reference is passed, to functions when they are called -
utilising the “parameterize from above” paradigm.

There are typically three types of data found in a context class:

• Configuration data, e.g. command line options.

• Application data, e.g. market data.

• Transient run-time data, e.g. handle to log manager.

The example given here uses one context class for simplicity. While the simplicity of
a single context has a lot to recommend it, without careful attention the class may
become a kitchen-sink, overwhelmed with any, and all, data in a system. When this
happens we start to see the emergence of a Blob anti-pattern (Brown et al., 1998).

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 7 of 21

To counter the drift towards Blob we can split the class into two or more discrete
classes, e.g. one for system data and handles with a second for application data.

�

Figure 1 Solution places context data in a single container

Specifically, we can distinguish three types of split:

• Temporal: data is separated on the basis of its lifespan, data which is short lived is
kept separate from data which exists for long periods. . It is better not to mix
transient data with persistent data lest expired data remains in the container.

• Horizontal: separating reference data from value data, usually needed when one
application becomes large itself, inflating the size of the context.

• Vertical: separating the context class into a small hierarchy, usually needed when
the same context is needed in a family of programs. This allows for specialisation
through inheritance to provide each family member with a specialised Context
object and common code to be shared across the family.

Such splits will mitigate the Blob tendencies but also detract from the pattern
simplicity. Splitting the context class should also help improve compile times, since
we can assume that although some functions will need to be passed all the fragments
of the original context, many will require fewer fragments thus reducing
dependencies.

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 8 of 21

However, while it may be desirable to split the Context class for a variety of reasons
this can be taken too far. The use of many fine-grained Context objects may return us
over long parameter lists.

Thus, any implementation of Encapsulated Context pattern should consider the
following issues:

• Is a single Context class the best answer? The initially simplicity of a single
Context may lead to difficulties as anti-patterns emerge.

• What is the life expectancy of the data? Bundling short-lived or rapidly changing
data together with constant data may lead to confusion or inaccuracies.

• Is there a family of programs under development? Is there benefit from creating
vertical hierarchy of Context facilitating technology transfers between programs?

• Are we creating problems by mixing reference and value data in the same
context? Could this data be split horizontally between several Context objects?

• Are we in danger of creating too many, fine-grained, Context classes?

These issues must be addressed together as the answers to each question influences
the others.

Resolution
Applying this solution to the example given at the start of this paper we get:

%%����	���!�	2��*,,�
���

�&����!��	�"�
���

������!�&�!	0,���!
"�
���

����	���������	"�
�
���

����	���!�	2����
����&����!��	�'�������������4"�
���������!�&�!	0,���!
����,�
4"�
�������	���������	'��������	�����4"�
, (���+�
�������	���!�	2���&����!��	�'�������!�&�!	0,���!
������	���������	'�"�
����&����!��	�'�&����"�
�������	���������	'����	�������"�
���������!�&�!	0,���!
�����0,���!
�����!
�"�
$"�
�

With this context class the presence or absence, of a ���!
�
���!&�� is abstracted to a
detail about ���	���!�	2�.

The class should take a minimal role in the lifetime of enclosed classes, it is better to
present these as ready constructed to the class. This removes life-cycle issues from
the domain of the context class, and, because enclosed classes are often just
references or pointers, the .hpp interface file should only need forward declarations
thereby reducing potential ripple effect.

(The decision on whether to use pointers or references to object is outside the scope of
this paper.)

Continuing this example the body of the program is refactored::

���

����	��	

��	�����!����
, (���+�
�������� ��������.����!����	���!�	2������/"�

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 9 of 21

���������
$"�
�
�!�����!�����
����&����!��	�'�����&��1���������"�
�������&�!	0,���!
��,���!
������������"�
�������	���������	����	�����"�
�������	���!�	2����!�	2��������,���!
������	������"�
�����	

��	�� ��	�
� ��	"�
����3*��	���� 	����
��������� ��4,��5���	��	

��	�����!�6�3�
� ��	�7	2��	

��	���"�
��������386.����!���!�	2��"�
����$�
�����	� �!�/"�
$�

The context provides access to data which otherwise may be made Singleton, global
or both, for example the &����!��	�.

In this example the Context object is passed to the .����! method, an alternative
would be to pass the Context to the ���	��	

��	�����!� constructor and store a
reference. This would allow .����! to be parameterless at the cost of adding state to
the class. Further, by renaming .����! to �,	������� the class acquires the
characteristics of a function object (Stroustrup, 1997, p.515) or functor. For example:

���

����	��	

��	�����!����
�������	���!�	2�����!�	2�4"�
, (���+�
�������	��	

��	�����!�����	���!�	2�������+���!�	2�4������$�
�������� ���������,	���������"�
���������
$"�

While this potentially increases the design’s flexibility more attention must be given
to lifetime management of the Context object in this case.

Variations
• Provide parent’s �*�
 pointer

The passing of �*�
 pointers to worker objects can be seen as a variation on this
theme, in effect the calling object is itself acting as a context object for the worker
objects. (One consequence of using Context classes is that the need to pass �*�

is usually reduced.)

• Provide forwarding functions to encapsulated data
Rather than expose an entire member class the ���	���!�	2� class could
implement forwarding methods, for example, the ���0,���!
 member could be
replaced with:

���

����	���!�	2����
��������
����(����9
:	�(�
	�����!
�����	� �!��,�
4�9
:	�(�
	��"�$"�
���������!����*	�����3����!��� !����!
�����
$"�

However, it is best to keep the class as lightweight as possible, to this end, the
class exposes the key objects encapsulated rather than implement pass through
calls onto the underlying data. It is the underlying class that decides what to

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 10 of 21

expose rather than the context class. Further, although such forwarding functions
may be convenient they contribute the tendency for the context class to become a
Blob (Brown, 1998) so are best avoided.

Consequences
As a result of the pattern, several of the forces detailed above are resolved or
balanced:

1. Substitutability
Parameters passed to a function call can be restricted to Context objects
containing system state data and parameters which specifically refer to the
function call task in hand, e.g. market trades. Functions signitures are free of the
clutter which can make them fragile - there is no longer a need for every class
method in the hierarchy to accept every parameter ever needed.

2. Encapsulation
The Context object effectively compacts the parameter list on a function call
signature, thereby abstracting state variables and promoting encapsulation of the
function. In addition there is a reduction in ripple effect as function signatures
become more stable.

Having relieved the problems of passing parameter to a function the attractions of
global data are reduced. Indeed, the Context object provides a natural home for
data with characteristics of global variables.

3. Coupling to the environment
The Context classes is encapsulated through its own, well-known, common,
interface. This allows the solution to be applied to compile-time and run-time
polymorphic designs, using either template metaprogramming or v-table dispatch
techniques.

By providing several context classes data is encapsulated along temporal,
horizontal or vertical lines further reducing coupling. It is difficult to eliminate all
coupling because some classes will always need other classes, to be sure, choosing
the granularity of the coupling is a design issue.

Additionally, by separating the classes implementing algorithms, from the
plumbing which supplies the data the classes themselves are less coupled and
more like commodities, making transfer to other developments easier.

4. Avoid data copying
Since the Context class contains common data with little overhead there is no
need to copy the data in local objects.

There may be multiple references to the Context object in the system, particularly
if multiple threads are being used. Hence some care must be taken to avoid
dangling references to Context objects.

In addition there are other beneficial consequences:

5. Reasoning
State data that needs to be shared or retained is factored, objects are left with
either transient data or completely stateless. By centralising the core data within a

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 11 of 21

system we have made it easier to reason about the system. We can halt the
program and look in one place to see what state the program is in rather than
having to look in multiple places.

6. Instantiation
Instantiation issues are simplified because objects must be created before being
placed in the context and are subsequently only accessed through the context.
Destruction issues are similarly handled because all access is via the context. The
life-span of the context can be clearly defined at a high level.

7. Uncluttered code
Pass-through code and long parameter lists have been minimised, and the potential
for future redundant code has been reduced – it is easier to add and remove
elements from the Context class. (This may entail a recompile of the whole
system when the interface to the Context class is changed but recompilation
should be well-defined procedure.)

8. Synchronisation point
The Context class can provide a useful place to add mutexes for multi-threaded
systems. In multi-threaded environments the Context object can hold all shared
data, acting as a gatekeeper with mutex control. This is reminiscent of the
Monitor Object pattern (Schmidt et al., 2000) with the same potential for
bottlenecks if lock access is not carefully considered.

Bottlenecks may be avoided if the data is either immutable (e.g. command line
options which do not change), or data elements manager their own locking (e.g. a
log manager which implements its own synchronisation) and application data is
absent.

However, there are several less desirable consequences:

9. Blob tendencies
As already mentioned, care must be taken as systems develop that a context class
does not become a Blob. Already in the example given we see the mixing of
value data and reference data. Without vigilance context classes may grow to
encompass far more data and functionality than is strictly necessary.

Invariably, the context class ends up touching most aspects of the system. It is
therefore best-placed low down the dependency hierarchy of classes – although
this can lead to its own dependency inversion problems and small changes
necessitate a major recompile of the system.

Once this happens we are in danger of implementing the Blob anti-pattern.

Fortunately, change to the Context class tends to by additive in nature so seldom
break other parts of the system, still, the friction of change is increased. One way
to minimise this is to ensure that no operations are placed inside the context class.
A second technique is to use multiple Context classes as described above,
however, introducing too many Context classes will introduce some of the original
problems we sought to revolve.

10. Hidden Globals

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 12 of 21

Blind use of Context classes can give rise to an abuse knows as “Hide Forbidden
Globals” (Green, 2001). This is characterised by a kitchen-sink approach to the
Context class were every second variable is listed. Typically we see Context
members which are referenced in only a few points within the system, usually
such data would be better embedded in specific classes rather than placed in
Context.

11. Dominant sibling
Program families may share a common root Context class, which they embellish
through inheritance. In this model the context underpins the common code of the
family. If one family member becomes dominant there will be pressure to
enhance the common root to facilitate the dominant member. This has a negative
effect on the other family members which start to see the common root as a Blob,
forcing upon them additional dependencies and complications they do not need.

In the program family we find elements of functional overlap, e.g. a market
trading system and a market simulation system. Both may use the
���	��	

��	������!� and hence rely on the ���	���!�	2� class as above. As
one program, say the simulation, becomes more important and bigger objects start
to appear in the command hierarchy which are specific to the one application,
eventually, one of these will require some data which is not available in the
context class. For immediate simplicity we are tempted to add this into the
context. Unfortunately, the trading system now has this data even though it is
never used. If continued, over time, the trading system will be inhibited by a
Context class which is obscured with unused functions.

More confusing too are the results if the trading system now develops its own
specialist message commands, and makes demands for specific fields on the
context class.

This is normally an indication that the Context class should be split vertically. We
may choose to create a hierarchy of three classes: a common base class, a derived
class with simulator enhancements and second derived class with the trading
system enhancements.

At this point we may compile different versions accepting either a
��� �������!�	2� or a �����!���!�	2�, or we may choose to down-cast the
provided context – assuming that the simulator message classes will only ever be
passed a ��� �������!�	2� by way of a ���	���!�	2� handle.

Known uses
• Chutney Technologies Apptimizer (C++)

Apptimizer uses a single Context object to store handles to important system
objects, e.g., ��!��� �����!, ���*	�����, ��!!	����!�	��	�, etc. These system
objects are accessed by polymorphic command objects, which receive the Context
as a parameter to their 	2	� �	�� method.

• Reuters Liffe Connect data router (C++)
This system uses two context objects, split horizontally. The first encapsulated
system data, log manager handles, a configuration cache, COM parameters, while
the second holds application data exclusively.

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 13 of 21

• Jiffy XML database server (C++)
The Jiffy server has three context objects split along temporal lines. One Context
object exists for the length of the program run, this encapsulates process wide
context, items such as: log manager handle, command line options and the
database store index. A second Context class is used to represent data associated
with connections. Each TCP connection is assigned a session context to hold
items such as the user id for the connection. Finally, the underlying database from
Sleepycat uses it’s own database-context object to maintain state between
database calls.

In this case, the database-context objects are short lived, each one is limited to
function call scope (although it will be passed to several underlying functions in
turn). A session context lives for the duration of the TCP connection, while the
process context is created shortly after the application starts running and is
destroyed at the end of the program run.

• Enterprise Java Beans
Enterprise Java makes use of Session Beans and Context Beans that encapsulate
program state information. Although the objective of Java Beans is to implement
component based transaction programming the most of the underlying forces are
the same, namely: substitutability of different beans, encapsulation of context
from server to client and clearly defined coupling.

However, the fourth force, avoid data copying, is absent. In the distributed
environment for which Java beans is designed data copying is essential.

Related patterns
• Command, Chain of Responsibility and Objects for States.

Although the Command pattern is cited here the same principles apply to any
design based on the dependency inversion principle using class hierarchies, e.g.
Chain of Responsibility (Gamma et al., 1994), Objects for States (Henney, 2002),
etc. Each of these the hierarchy provides the algorithm while the Context
object(s) provide the data.

• Singleton
Encapsulated Context may be a useful alternative to Singleton (Gamma et al.,
1994) in many program designs.

• Observer
Encapsulated Context may be contrasted with Observer (Gamma et al., 1994).
Like the Subject in Observer the Context class is a central repository of data. Like
Observer there is a many to one relationship. However, the critical difference lies
in the updating mechanics.

The subject in Observer knows its observers, when it is updated it will update all
its observers. This satisfies the motivation for the pattern that seeks to keep two,
or more, objects consistent. Thus, when one Observer changes, and hence
changes the Subject the other Observers must be informed. In effect, Subject is an
active participant in the execution of the program.

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 14 of 21

In Encapsulated Context there is no requirement on the Context class to inform its
clients that something has changed. Indeed, it doesn’t know who its clients are so
it cannot inform them. Encapsulated Context keeps the various objects consistent
by centralising the data. It is essentially passive during execution.

While there is obvious transformation for turning a Context object into a Subject,
and hence Encapsulated Context into an Observer pattern, and vice versa, there
are fundamentally different motivation and forces underlying two patterns.

• Monitor
As noted above (Consequences section), in multi-threaded systems mutex control
can be added to Encapsulated Context to assist with synchronisation issues. In
this the pattern is acting like Schmidt’s Monitor Object (2000). While this can
provide a simple way to synchronise access to resources it is not without a cost.

Firstly, by using the context class as a monitor introduces pressure to perform
more processing within the monitor class. This contributes to the Blob tendencies
already described.

Secondly, the consequences encountered by Monitor Object are introduced into
the design. Specifically, the liabilities associated with Monitor Object need to be
recognised, i.e. limited scalability, complicated extensibility semantics,
inheritance anomaly and nested monitor lockout.

Readers are strongly advised to read Schmidt before using Encapsulated Context
as a synchronisation point.

• Arguments Object
This pattern shares much in common with Nobel’s Arguments Object pattern
(Nobel, 1997). The key difference is that Nobel suggests the pattern as code level
pattern for reducing the number of parameters passed to a function, while
Encapsulated Context advocates using the same paradigm as a high level feature
to wrap the state of the system.

• Introduce Parameter Object
Both Encapsulated Context and Arguments Object pattern resemble Fowler’s
Introduce Parameter Object refactoring pattern (Fowler, 2000). However, Fowler
introduces this as only a refactoring pattern without discussion of the issues
involved in grouping data or alternative solutions. It is possible to view Fowlers
pattern as an application of either Encapsulated Context or Arguments Object
when refactoring code.

• Parameter Block
Some of the motivations of Encapsulated Context are shared with Parameter
Block (Patow and Lyardet, 2003). Both aim to provide a consistent interface
through which, diverse parts of a system may access parameters. The focus of
Parameter Block is internal mechanisms of the context object and how this object
may support a dynamic set of parameters at run-time. In contrast, Encapsulated
Context focuses on parameter passing at compile-time. Parameter Block considers
a parameter block which stored the various parameters, this has clear parallels
with the context class in Encapsulated Context. The two patterns do not exclude
one another, and under the right circumstances may be complementary.

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 15 of 21

Discussion

Separating data

At first glance Encapsulated Context may seem counter to the principles of object-
orientation, this is not so. Instead we are separating the data into that which (a) truly
belongs to a given object (e.g. market price and quantity) and (b) that which is owned
the system as a whole. There is a casual similarity with the separation of algorithm
and container used by the Standard Template Library.

Instantiation issues

While this paper notes the instantiation problems associated with global objects it
does not provide an in-depth discussion or offer detailed solutions. To do so is
beyond the scope of this pattern. However, it is suggested that some of these
problems can be alleviated by application of Encapsulated Context pattern.

Testing

With designs based on Encapsulated Context we may arrange for artificially
configured context objects to used for testing. For example, a test harness could
create a context object and populate with data to simulate a scenario we wished to
test, the test can then be run without to see how the system behaves in these
conditions.

Extending this ideas we can imagine two versions of the ���	���!�	2� class, one of
which validates all inputs and one that is optimised for speed. Alternatively, a context
class could load test data to create a specific test scenario, or dump their “state” to file
at the end of a test – or in the event of program failure.

Aspect oriented programming

Aspect oriented programming may provide an alternative means to resolving some of
the forces which produce this pattern. The data within the Context class certainly
seems to cross-cut the systems concerned. The logger functionality is both a core
example for both Aspect documentation and this pattern. Since C++ does not
currently support Aspects, nor are they a standard part of Java they cannot be
regarded as a common solution to this problem and forces.

The main difference appears to centre on the method of passing the context object to
the function. This pattern assumes that the context object is passed by way of a
function parameter, however, beyond this assumption the concept of bundling the
context into one object is still applicable. The key difference is the mechanism for
accessing the context object.

Pre and Post conditions

By their nature, context objects represent the state of the system. This makes them
very good places to make uses of pre and post conditions to validate system state.
Indeed, developers using context objects should be encouraged to use pre and post
conditions.

Use of such pre and post conditions is regarded by many ad good programming
practice. Used as comments these can help developers reason about the state of the

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 16 of 21

system, used as compiler enforced checks (e.g. macros in C++, conditionals in C#) the
system can perform a degree of self validation as well as helping programmers reason.

Pre and post conditions could be placed within the context objects “getter and setter”
functions to validate the state of the object, or used by functions accepting context
objects to ensure the program is in a suitable state for the function.

Use of such conditions to check state of the system is common practice formal
methods systems, e.g. VDM (Jones, 1986) and Z (Wordsworth, 1992). Such
languages specify a “state” for the system before and after and operation - the
program state in VDM parlance. Further research is need on whether Encapsulated
Context pattern can be useful in development of formal methods based systems.

Value data or reference data

The solution section above notes that care should be taken when reference and value
type data is mixed within a single Context object. Such mixing may be a signal that
refactoring may be required, and that the Context object should be split horizontally.

However, Context objects observed in actual system frequently mix these data types.
While this may indicate poor design it also reflects the fact that Context objects may
be required to group various types of data with different reference characteristics.
This fact may also indicate that the pattern has been introduced to a system as the
result of refactoring and that other parts of the system have not been refactored yet.

Further patterns

There is more that could be said about Encapsulated Context, most likely this is one
of several patterns in a sequence. At EuroPLoP 2005 Kevlin Henney presented
several patterns that follow from Encapsulated Context. These are Encapsulated
Context Object, Decoupled Context Interface, Role-Partitioned Context and Role-
Specific Context Object. These are available from his website
(http://www.curbralan.com/) and will be included in the conference proceedings in
due course.

Genesis of a pattern language - further research
Many of the issues raised in the discussion section suggest further variations of this
pattern beyond those outlined already. It is also possible to see how, taken together,
Arguments Object, Introduce Parameter Object, Singleton, Parameter Block and
Encapsulated Context may represent part of an entire pattern language. We may
tentatively label this pattern language Context objects.

For example, Singleton could be redefined as an example of Encapsulated Context
were there is only one instance of the Context object, and the object is accessed via a
global variable instead of via parameter passing.

There are four groupings within which to consider variation within the Context
objects pattern language:

• Access mechanism
Function parameter passing is used in Encapsulated Context to make the Context
object accessible. In contrast, Singleton uses a global access point. Thread local
storage has been suggested as an alternative access mechanism for multi-threaded

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 17 of 21

systems. A further access mechanism, were available, is the Point Cut provided
by AspectJ and other aspect oriented languages.

• Context lifetime
While Singletons are generally instantiated for the lifetime of a program run,
Nobel’s Arguments Objects are more ephemeral, being created and destroyed in a
short space of time. By extending the consideration of the temporal aspects -
described above for Encapsulated Context - more pattern variations are possible.

• Cardinality of context
Related to the discussion of lifetime is the issue of cardinality of Context objects.
Obviously in cases such as Argument Object it is of little importance whether one
or one hundred Context objects co-exist. However, in some cases it may be
important to limit the number of Context objects within a system, for example, we
may wish to limit each thread to one instance of an object, or limit a whole
program to one Context object corresponding to the mouse state.

• Internal implementation
Encapsulated Context assumes a fixed internal state were data elements are hard
coded and fixed at compile time. In contrast Parameter Block allows the content
of the Context to change at run time. As already noted both patterns share other
similarities and thus may belong to a common language. In this case, the internal
representation of data can have a significant effect on system design.

The creation of a Context objects pattern language is beyond the scope of this paper.
However, it is clear that such a language could unify existing patterns and probably
help identify more patterns.

The author looks forward to hearing about such a project and is more than willing to
participate in such an endeavour.

More examples
The examples presented are given in C++ although it is expected that the pattern is
generally applicable to all languages. The author looks forward to hearing of
implementations in Java and C# especially.

Summary
In any non-trivial system there will be a number of data elements that are widely used
throughout the program, e.g. log manager and the application data model. Typically
these will be classes in their own right and accessed through handles (references or
pointers.) Since global data is regard as poor practice it is likely that these handles
will be passed by way of function call parameters. However, this technique can soon
lead to long parameter lists which are not only difficult to understand but tend to
make the program more fragile.

Therefore, we create a context class that encapsulates these data element and pass a
handle to this object to the diverse functions.

While similar techniques has been suggested by others (e.g. Nobel, 1997, Fowler,
2000) this pattern discusses the forces and consequences when applied system wide.

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 18 of 21

This can bring considerable benefits to a design but if used recklessly can result in a
number of known anti-patterns.

Rather than use a single context class it may be appropriate to design a system with
several. These are divided along temporal, horizontal or vertical lines to ensure that
each is consistent and promotes good design.

Acknowledgements
This pattern was the result of a conversation on the ACCU-General mailing list
entitled: “overload 49 and state” with signification contributions from Kevlin Henney
and Josh Walker, running from 18th June 2002. I am grateful to Kevlin for acting as
initial pattern shepherd and Josh for reviewing the results and providing an additional
example. The paper was further shepherded by Frank Buschmann in April 2003 for
submission to EuroPLoP. Again, I am most grateful to Frank for his time and interest.

I am also most grateful to all in Workshop D at EuroPLoP 2003 for their many varied
and useful comments concerning the pattern, their support and their suggestions for
improvement.

In addition I am grateful to the two anonymous reviews who reviewed this paper in
preparation for Pattern Languages of Program Design volume 5 “PLoPD5”.

Principles and Patterns glossary
Pattern Name Description

Arguments Object

(Nobel, 1997)

“Large protocols [interfaces] are easy to use because they
offer a large amount of behaviour to their clients.
Unfortunately, they are often difficult or time consuming to
implement, and for client programmers to learn. ...

Therefore: make an arguments object to capture the
common parts of the protocol.”

Blob

(Brown et al., 1998,
p.73)

“The Blob is found in designs where one class
monopolizes the processing, and other classes primarily
encapsulate data. This AntiPattern is characterized by a
class diagram composed of a single complex controller
class surrounded by simple data classes, ...

Architectures with the Blob have separated process from
data; in other words they are procedural-style rather than
object oriented architectures.”

Chain of
Responsibility

(Gamma et al., 1994,
p.223)

“Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the request.
Chain the receiving objects and pass the request along the
chain until an object handles it.”

Command

(Gamma et al., 1994,
p. 233)

“Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log
requests, and support undoable operations.”

Dependency “A. High level modules should not depend upon low level

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 19 of 21

Inversion (Martin,
1996a)

modules. Both should depend upon abstractions.

B. Abstractions should not depend upon details. Details
should depend upon abstractions.”

Hide Forbidden
Globals

(Green, 2001)

“Since global variables are "evil", define a structure to hold
all the things you'd put in globals. Call it something clever
like EverythingYoullEverNeed. Make all functions take a
pointer to this structure (call it handle to confuse things
more). This gives the impression that you're not using
global variables, you're accessing everything through a
"handle". “

Introduce Parameter
Object

(Fowler, 2000, p.295)

“Often you see a particular group of parameters hat tend to
be passed together. Several methods may use this group,
either on one class or in several classes. Such a group of
classes is a data clump and can be replaced with an object
that carried all the data. It is worthwhile to turn these
parameters into objects and just to group the data together.
This refactoring is useful because it reduces long parameter
lists, and long parameter lists are hard to understand.”

Liskov Substitution
Principle

(Liskov, 1988)

“Functions that use pointers or references to base classes
must be able to use objects of derived classed without
knowing it.” (Martin, 1996b)

When using class hierarchies as a means of data
abstraction, sub-types must be able to fully substitute for
the super-types.

Monitor Object

(Schmidt et al., 2000,
p.399)

Synchronises concurrent method execution to ensure that
only one method at a time runs within an object. It also
allows an object’s methods to cooperatively schedule their
execution sequences.

Observer

(Gamma et al., 1994,
p.293)

“Define a one-to-many dependency between objects so that
when one object changes state, all its dependants are
notified and updated automatically.”

Objects for State

(Henney, 2002)

 “Allow an object to alter its behaviour significantly by
delegating state-based behaviour to a separate object.”

Parameter Block

(Patow and Lyardet,
2003)

“Open Arguments is used to create a generic interface for
parameter passing, decoupling the API declaration of the
procedures and functions from the type and number of the
parameters they receive.”

A parameter block is passed from function to function, the
block contains a dynamic store (often a map) of parameter
names and values.

Singleton

(Gamma et al., 1994,
p.127)

“Ensure a class only has one instance, and provide a global
point of access to it.”

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 20 of 21

History
Date Event

December 2005 Minor changes prior to inclusion in Hillside Europe’s
electronic archive: Increased font size and minor revisions to
abstract.

November 2005 Pattern name changed from Encapsulate Context to
Encapsulated Context.

Revised name tells you what you get rather than what you do.

May 2005 Pattern revised for Pattern Languages of Program Design
Volume 5 (forthcoming) after anonymous peer review.

Version for book has some changes to this version, mainly
these are cuts. Additions have been incorporated into this
version, the web-version will remain the complete pattern but
alternative versions may appear elsewhere.

October 2004 Published in ACCU Overload (63) magazine - minor changes.

June 2004 Published in EuroPLoP proceedings (Henney and Schütz,
2003)

Autumn 2003 Revised following conference feedback

June 2003 Work shopped at EuroPLoP 2003

Spring 2003 Pre-conference shepherding by Frank Buschmann

August 2003 Pattern written with help from Kevlin Henney (shepherding)
and Josh Walker (reviewing).

June 2003 Pattern proposed on ACCU-General mailing list

Bibliography
Brown, J. B., Malveau, R. C., McCormick, H. W. and Mowbray, T. J. 1998 Anti-

Patterns, Wiley.

Fowler, M. 2000 Refactoring, Addison-Wesley.

Gamma, E., Helm, R., Johnson, R. and Vlassides, J. 1994 Design Patterns, Addison-
Wesley.

Green, R. 2001 How to write unmaintainable code, http://www.web-
hits.org/txt/codingunmaintainable.html,

Henney, K. 2002 Objects for State, http://www.curbralan.com,

Henney, K. and Schütz, D., 2003, Proceedings of the 8th European Conference on
Patterns Languages of Programs 2003, EuroPLoP, Kloster Iresee, Germany,
UVK Universitätsverlag Konstanz GmbH,

Jones, C. B. 1986 Systematic Software Development using VDM.

Liskov, B. 1988 Data abstraction and hierarchy, SIGPLAN Notices, 23, 17-34.

Martin, R. C. 1996a The Dependency Inversion Principle, C++ Report,
http://www.objectmentor.com/resources/articles/dip.pdf.

Encapsulated Context 14-Dec-05

(c) Allan Kelly Page 21 of 21

Martin, R. C. 1996b The Liskov Substitution Principle, The C++ Report,
http://www.objectmentor.com/resources/articles/lsp.pdf.

Nobel, J., 1997, Arguments and Results, Pattern Languages of Programming (PLoP)
conference, Allerton Park, Monticello, Illinois, Washington University,
http://citeseer.nj.nec.com/107777.html.

Patow, G. and Lyardet, F., 2003, Parameter Block, EuroPLoP 2003, Irsee, Germany,
proceedings pending publication,

Schmidt, D., Stal, M., Rohnert, H. and Buschmann, F. 2000 Monitor Object In
Pattern-Oriented software architecture 3Wiley, pp. 399-422.

Stroustrup, B. 1997 The C++ Programming Language, Addison-Wesley, Reading,
MA.

Wordsworth, J. B. 1992 Software Development with Z.

