
Software Visualisation of Java Programs in

InspectJ

Rilla Khaled, James Noble

Victoria University of Wellington, New Zealand
{rkhaled,kjx}@mcs.vuw.ac.nz

Robert Biddle
Carleton University, Canada

{robert biddle}@carleton.ca

Abstract

Visualisation is a powerful method for explaining how programs work.

However, while it is advantageous in theory, it is not used as frequently as it

might be. Patterns may be used to describe architectures, so in this paper

we present a pattern language in two parts. The first part describes a set

of patterns for approaching the development of program-specific visualisa-

tions. The second focusses on actual implementation of the visualisations

using the InspectJ framework, which uses AspectJ to monitor programs at

run time. The patterns step through the process of building a visualisation

from start to finish, featuring a running example of the development of a

visualisation for a simulation program. After reading these patterns, you

should be able to use InspectJ to create visualisations for your own Java

programs.

Introduction

Visualisation is a powerful method for explaining how programs work. Nonethe-
less, while it is advantageous in theory, it is not used as frequently as it might
be. In particular, software developers seem particularly wary of developing their
own visualisations for software they come across. This could be partly related to
developers not wanting to expend unnecessary effort. Almost certainly however,
another major reason why visualisation is not used as much as it could be is be-
cause many programmers just do not know how they might approach the task of
developing a visualisation.

This paper presents a pattern language in two parts, the first part focussing
on how to approach the development of visualisations, and the second part pro-
viding a set of implementation patterns for InspectJ, which is a visualisation

framework for building visualisations. After reading these patterns, program-
mers should be able to use InspectJ to develop their own visualisations for Java
programs, or at least have ideas about how to develop visualisations in general.
The patterns, the problems they address and the solutions they provide are sum-
marised in Table 1. Figure 1 shows the relationships between the patterns: the
boxes outlined in bold represent general visualisation patterns, while the others
represent InspectJ implementation patterns. The directional arrows denote the
path of usage, where a straight line signifies a concrete relationship while a dot-
ted line signifies a more implicit relationship. Loosely based on the structure of
the Coplien form (Coplien 1996), these patterns feature Motivation, Example,
Problem, Forces, Solution, Example Revisited, Resolution of Forces and
Related Patterns sections. These patterns are aimed at programmers who are
sufficiently knowledgeable about object-oriented programming concepts and ide-
ally reasonably experienced Java programmers. InspectJ makes use of AspectJ
(Kiczales, Hilsdale, Hugunin, Kersten, Palm & Griswold 2001), so it is assumed
that programmers have the necessary AspectJ tools, which may be obtained from
the AspectJ website (http://www.eclipse.org/aspectj/).

Visualise

Tell a Story

Give the Low

Down

Witness and

Report

Watch this

Variable

Watch this

Flow

Watch this

Creation

Watch this

Method

Make Pix

InspectJ

Figure 1: A map of the pattern language.

General Forces

Throughout the process of developing a visualisation for a program, there are
certain forces that make themselves apparent again and again. These general
forces are:

• The visualisation code should be well organised, to aid understandability.
As a consequence, the effort and complexity of the task of visualisation can
be controlled and reduced, thus making visualisation development a more
viable option.

Pattern Problem Solution
1.1 Visualise How can you improve your

understanding of a running
program?

Develop a visualisation of the pro-
gram.

1.2 Give the Low
Down.

What will your visualisation
depict?

Give the low-down on raw run
time information by doing the
bare minimum to communicate
this information.

1.3 Tell a Story What will your visualisation
depict?

Tell a story about the program by
identifying characters and events
that will make up a storyline.

1.4 Make Pix How do you create pictures? Make pix by breaking down the
overall visualisation into small
pieces.

2.1 InspectJ How do you go about visu-
alising a Java program?

Use the InspectJ framework to vi-
sualise the Java program.

2.2 Witness and Re-
port

How can you structure mon-
itoring code to track a range
of features of a target pro-
gram?

Divide the monitoring code into
Witness and Report blocks.

2.3 Watch this Vari-
able

How do you monitor modifi-
cations made to a variable?

Watch this variable by declaring
a pointcut for any situation in
which it changes.

2.4 Watch this
Method

How do you monitor
method invocations?

Watch this method by declaring
a pointcut for situations in which
the method gets called.

2.5 Watch this Cre-
ation

How do you monitor the in-
stantiation of objects?

Watch this creation of a new ob-
ject by declaring a pointcut that
describes the situation in which
any of the object’s constructor
gets called.

2.6 Watch this Flow How do you monitor the
flow of control?

Watch this control flow by using
the cflow mechanism of AspectJ.

Table 1: Summary of the patterns

• The visualisation code should be well organised, to facilitate later mainte-
nance. In certain systems, visualisation code is scattered throughout a range
of program components, which makes later modification difficult as it poten-
tially requires all of these components to be changed when the visualisation
needs to be updated. Therefore the organisation of the code significantly
affects the amount of time and effort needed for maintenance.

• The target program should be left unmodified. Certain visualisation ap-
proaches require modification of the target program source. This is undesir-
able as it is intrusive: in other words, it is necessary to change the original

program code in ways that it was probably not designed to be extended in.
Furthermore, changing the source for visualisation purposes may restrict
how the program can be modified later on.

Running Example

These patterns feature a running example of the development of a visualisation
for a Java simulation program based on the DESMO-J framework (Lechler &
Page 1999). DESMO-J utilises container structures and events to model constraint
and availability problems.

Currently, applications of this framework may provide textual traces of all
program events. However, generated traces tend to be overly long and hard to
follow. A visualisation might be more effective at explaining program events.

The steps involved in the development of the visualisation include deciding
what to visualise, specifying what information needs to be monitored, defining
visualisation behaviour and image rendering.

Suppose you have an application of this framework that models ships entering
and leaving a port for the purpose of obtaining loading slots alongside a quay.
There are a limited number of loading slots, so if a ship cannot obtain the required
number as soon as it pulls into the port, it joins a waiting queue and waits for
the required number of slots to become available.

General Visualisation Patterns

1.1 Visualise

Motivation You have a program that you would like to understand more clearly.
There are many reasons why you may want to do this. Maybe it is a program
that you developed yourself and you would like to explore exactly how it works.
Perhaps this program code has been developed by someone else and you have been
assigned the task of developing it further, debugging, or testing it. Or maybe you
are working on a similar program and therefore you are interested in seeing how
this program works. Then again, perhaps you are just curious about the program.

Problem How can you improve your understanding of a running program?

Forces

• The program code may be lengthy and unwieldy.

• There may only be certain features of the program you want to understand
better.

• Learning can often be enhanced by using various explanatory devices.

Therefore: Develop a visualisation of the program.

Visualisation has been used to control and explain software complexity by provid-
ing mappings between program elements and cognitive representations of these
elements. Noble defines it as the application of computer graphics techniques to
computer programs, in the same way that scientific or engineering visualisation
applies these techniques to scientific data or engineering artifacts (Noble 1995).
Visualisation, which often presents a high level view of a system, can assist pro-
grammers in constructing, debugging and maintaining programs. It has also been
found to be a useful teaching aid, particularly for describing data structures and
explaining algorithms (Oechsle & Schmitt 2002, Najork 2001).

Typical existing visualisation systems range from providing general types of
information views, for a wide range of programs, such as UML class and sequence
diagrams, to very domain-specific information views for programs from a certain
domain. The advantage of using the generic visualisation tools is that they can
be used to visualise many types of programs, yet their visualisations are often
fairly abstract. As for the domain-specific visualisation systems, while their visu-
alisations may be more readily understandable, these systems are often difficult
to customise. By developing your own visualisation system, you have control
over what types of pictures you end up seeing. Furthermore, if you develop it
with reuse in mind, you can make the code generic enough to suit other, similar
applications.

Example revisited Applying the solution to the running example, to better
understand the internal workings of the simulation framework, develop a visu-
alisation for the port simulation application. This will involve extracting run
time information about what the simulation application is doing, and depicting it
graphically. A suitable technology needs to be chosen for the graphical component:
for this application, we use a Tcl/Tk display, Tcl (Tool Command Language) be-
ing a scripting language that makes use of Tk, a graphical user interface toolkit
(Ousterhout 1994).

Resolution of Forces By building a visualisation tool for the program you are
interested in, you can avoid having to read through pages and pages of poten-
tially confusing code. Furthermore, if you already know which behaviour you are
interested in, or which program components you want to pay attention to, you
can tailor visualisations to communicate only this information at a level of de-
tail that is relevant to you. Finally, having a different perspective of the internal
operations of the program (aside from the code) may clarify your understanding
of the program, as visualisations are useful for teaching and learning (Oechsle &
Schmitt 2002, Najork 2001).

Related Patterns If your target program is in Java, consider using InspectJ
(2.1) as a visualisation system implementation. Independent of the visualisation
implementation, you will need to decide what you want the visualisation to show.
If you are interested in no-frills run time information, you could Give the Low
Down (1.2). Or perhaps you are interested in the causal relationships in the
program, in which case you could use the Tell a Story (1.3) pattern.

1.2 Give the Low Down

Motivation Software visualisation is all about explaining information about the
software through the use of pictures of some form. So to develop a visualisation
for the target program, it is necessary to decide on what pictures you want to
show.

Problem What will your visualisation depict?

Forces

• The visualisation needs to relay certain run time information.

• Aesthetic appeal is not of high importance.

• Time and development cost should be kept to a minimum.

• The visualisation should be easily understandable.

• Semantic meanings cannot be associated to the program because they would
be too abstract.

• Attention needs to be focussed only on a portion of the program.

Identify raw run time information from the program that will be of interest
to the viewer of the visualisation. Perhaps this might consist of a program trace,
identifying flow of events. Perhaps it will be changes to certain variables as the
program progresses.

Decide on a “bare-bones” way to communicate this information. Standard
visualisation formats include UML diagrams and flowcharts. Simpler representa-
tions can be used as well. If text is chosen as the representation format, ways
to illustrate that changes have taken place might consist of special formatting or
changing text on a text pane. Another way to represent program information
is by use of simple shapes. These shapes, which may be associated to any as-
pect of a running program, may be changed in order to communicate that the
corresponding program aspect has also changed.

The idea that a largely data-driven display counts as a visualisation may seem
counter-intuitive at first. If we consider however that visualisation presents a spe-
cific “view” of a system, displaying only certain numerical or textual information
also counts as a view.

Example revisited Applying the solution to the running example, suppose
you are interested in the average waiting time per ship, and whether congestion
increases as time progresses. This will involve measuring waiting time for Ship
objects within the target program waiting queue, which involves noting when the
ship enters the queue and when it leaves the queue. Devise a simple numerical
view that periodically outputs average waiting time for the last ten ships, along
with a cumulative overall waiting time that averages over all ships so far. Figure
2 shows such a view.

Figure 2: Numerical view of average waiting time for ships

Resolution of Forces The bare-bones visualisation format relays the relevant
target program information in a simple and direct manner, without resorting to
forcing it into a story form. The simple format usually also means that the time
and effort spent are kept to a minimum. Since information about the overall
program is not necessarily being communicated by the visualisation, it is possible
to focus the desired amount of attention on arbitrary points of interest in the
target program.

Related Patterns Next, program monitoring code needs to be written that will
obtain relevant program information. If your target program is in Java, consider
using the Witness and Report (2.2) pattern. This information can then be
used to Make Pix (1.4).

1.3 Tell a Story

Motivation Software visualisation is all about explaining information about the
software through the use of pictures of some form. So to develop a visualisation
for the target program, it is necessary to decide on what pictures you want to
show.

Problem What will your visualisation depict?

Forces

• The visualisation needs to relay run time information.

• Object-oriented programs often relate to real world objects and interactions.
However, visualisations rarely “semantically” depict these real world rela-
tionships.

• The visualisation should be easily understandable.

• Time and effort are not too limited.

• The visualisation should be interesting: it should present graphics as op-
posed to simple numerical views and these graphics should not be graph-
based pictures or standard views.

Therefore: Tell a story about the program components and their interactions

with each other.

Identify the characters in the program. Perhaps they are important recurring
concepts in the program, or objects that carry significant responsibility. Maybe
they have real-world counterparts. The characters should be vital components in

explaining what it is that the program does. Decide on some visual representation
for each character.

Next, identify the events that happen to the characters. An event can be
thought of as anything major that happens to a character, or anything major
that the character causes. Decide on some way of representing the event such
that it is clear how it affects the character or how the character causes it.

This combination of characters and their related events forms a story.
This approach is reminiscent of Rehearsal World, which is a visual program-

ming environment which involves moving “performers” around “stages” (Finzer
& Gould 1993).

Example revisited Applying the solution to the running example, the main
characters in this story are ships, the ship waiting queue, the quay side and the
port. Events that need to be modeled are ships entering the port, ships leaving the
port, ships entering the queue, ships leaving the queue, ships obtaining loading
slots and ships that have completed the loading process. You can use cartoon
representations for the ships (see Figure 3) and divide the Tk canvas into port
entry, port exit, loading and queuing areas (see Figure 4). Depict events by
moving ships in and out of these areas.

Figure 3: Planned ship representations for ships of different sizes

Resolution of Forces Run time events are represented by the story-line. By
carrying through information about relationships between objects from the target
program through to the visualisation, semantic meaning inherent in the target
program is not lost. Story telling has been used for a long time to explain ex-
isting concepts: visualisation by way of story telling should therefore be easy to
understand, since story telling is a conventional form of communication. While
development of this type of visualisation might take slightly more time than a
more data-oriented view, with experience it will take a story-teller less and less
time to develop these visualisations, as they will establish good techniques and
potentially reusable code. Finally, although raw data displays can be unquestion-
ably useful sometimes, watching a visualisation that contains some type of plot is
often more interesting than watching a raw data display!

Quay-side area: 8 available slots

Harbour entry area
 Harbour exit area
Waiting queue area

Figure 4: Areas of movement for the ships

Related Patterns Next, program monitoring code needs to be written that will
obtain relevant program information. If your target program is in Java, consider
using the Witness and Report (2.2) pattern. This information can then be
used to Make Pix (1.4).

1.4 Make Pix

Motivation After deciding what the visualisation will show, and writing the
monitoring code to obtain the necessary information, the only step that remains
is to develop the graphical side of the visualisation.

Example Carrying on with the port simulation example, the visualisation for-
mat chosen was “Tell a Story”, and the important characters and events have been
identified. Using “Witness and Report” blocks, monitoring code has been written
that will collect information about these characters and events. This information
needs to be displayed now.

Problem How do you create pictures?

Forces

• Each program element being monitored contributes different data to the
overall picture.

• The picture needs to be updated regularly to reflect the changing state of
the program.

• Time and effort expenditure should be kept to a minimum: taking the entire
process of developing a visualisation into consideration, this stage is most
likely to consume the most time and effort.

Therefore: Make pix by breaking down the overall visualisation into small pieces.

The “break-down” approach can be applied both to information acquisition and
organisation tasks and also to drawing tasks. In other words, have methods or
procedures which are responsible for receiving certain types of information. Their
responsibilities include performing any final data translation and triggering draw-
ing of this information.

One way to organise these procedures might be to align procedures with events
that are related to characters: the procedures may take information about the
event and related characters as arguments.

If the visualisation is small, the drawing triggered by the method or procedure
might occur within the method or procedure itself. However, for more complicated
visualisations, have methods or procedures which explicitly deal with the task of
drawing specific elements of the visualisation. The “drawings” themselves may be
created using the graphics facilities of the visualisation component, or they might
be existing pictures that get changed somehow to illustrate program changes.

Example revisited Applying the solution to the running example, since the vi-
sualisation component is Tcl/Tk, write procedures that receive information about
new ships and departing ships (responsible for depicting new ships entering the
harbour and leaving the harbour respectively). Write procedures that deal with
adding and removing ships from the waiting queue, and one that deals with re-
drawing the queue. Analogous to the waiting queue procedures, write procedures
for adding and removing ships from the loading area, as well as a procedure that
draws the loading area. Write a generic procedure that moves an object from one
part of the canvas to another. Use hand drawn representations of ships as objects.
Figure 5 shows a screen capture from this visualisation.

Resolution of Forces Applying the “break-down” principle, writing proce-
dures that receive information about different monitored elements allows them to
act independently. Since it is these information receival procedures that control
the triggering of information drawing, visualisation redrawing does not have to
occur all at once. Different parts of the picture change at different rates, accord-
ing to relevant triggers. These triggers directly correspond to the occurrence of
relevant events in the target program, so the overall picture does update to reflect
the change of state in the program. In fact, if written generically enough, these
procedures may be reused for other visualisations for different target programs.

Figure 5: DESMO-J visualisation

Finally, identifying exactly what needs to be done in the form of small tasks (to
be achieved by procedures) should help maintain some sort of upper bound on
the amount of work that needs to be done.

InspectJ Patterns

2.1 InspectJ

Motivation You have a Java program that you would like to understand more
clearly. Live visualisation can be used to provide a graphical explanation of pro-
grams at run time, so you have decided to use visualisation to improve your
understanding.

Problem How can you dynamically visualise a running Java program?

Forces

• Modification of the source is undesirable as it may introduce bugs into the
source.

• Time and effort expenditure should be kept to a minimum since the visual-
isation is probably not the main goal to achieve.

Therefore: Use InspectJ to visualise the Java program.

Target

program

Mapping

aspect advice

Web-based or

Tcl/Tk

visualisation

pointcuts
 sockets/runtime

objects + Tcl procs

Figure 6: InspectJ

InspectJ (Khaled 2003) is a program visualisation framework that is based on a
modified Program Mapping Visualisation (PMV) model (Jerding & Stasko 1994),
which was developed by Stasko, Roman and Cox. The model is a fairly standard
program visualisation conceptual architecture, and consists of three components:
a Program component, which deals with representing the target program to the
visualisation system, a Mapping component, which acts as an information filter
and also as a translator, and a Visualisation component, which handles image
rendering. The separation of the components means that reusability can be in-
creased, since changes in one component will not necessarily cause changes in
another.

It can however be time consuming to build multiple sets of three components.
The InspectJ version of the PMV model, shown in Figure 6, harnesses the fact
that AspectJ may be used to monitor running Java programs and extract run
time information about it. This is achieved by combining AspectJ code with
target program code at compile time.

While conceptually it consists of three components like the PMV model, since
the AspectJ code is used in combination with the target program itself to obtain
information, effectively the target program ends up playing the role of the Program
component. Thus the main components to be developed consist of the Mapping
and Visualisation component. The Mapping component is mostly AspectJ code,
while the Visualisation component can be assembled from whichever platform best
suits the visualisation needs of the application.

Example revisited Applying the solution to the running example, to better
understand the internal workings of the simulation framework, use the InspectJ
model to develop a visualisation for the port simulation application. This will
involve using AspectJ to extract run time information about what the simulation
application is doing, and passing this information on to a visualisation compo-
nent. A suitable technology needs to be chosen for the visualisation component:
for this application, we use a Tcl/Tk display, Tcl (Tool Command Language) be-

ing a scripting language that makes use of Tk, a graphical user interface toolkit
(Ousterhout 1994).

Resolution of Forces By virtue of InspectJ being aspect-oriented (Kiczales,
Lamping, Menhdhekar, Maeda, Lopes, Loingtier & Irwin 1997), the program
source code itself is left unmodified. Since modification is avoided, introduction
of modification-related bugs is also avoided. Visualisation code is constrained
within visualisation-related aspects, which means that later modification of visu-
alisation code is more feasible. If constructed well, entire visualisations can be
reused for different applications, due to the insularity of the model and of aspects
themselves. Assuming that the developer of the visualisation system is familiar
with the Java programming language, as a consequence of AspectJ being similar
to Java, development of visualisation code should not take long since technology
learning time no longer needs to be factored in.

Related Patterns Decide what you want the visualisation to show. If you
are interested in no-frills run time information, you could Give the Low Down
(1.2). Or perhaps you are interested in the causal relationships in the program,
in which case you could use the Tell a Story (1.3) pattern. Once you have
decided, you will need to use the Witness and Report (2.2) pattern to obtain
relevant program information at run time.

2.2 Witness and Report

Motivation Visualisations portray information about a range of features of the
target program. Depending on the type of visualisation on display, the program
needs to be monitored for different information.

Example Continuing with the example from Tell a Story (1.3), the port
simulation program needs to be monitored to capture events dealing with ships,
the queue, or the quay side. Additional visualisation-specific behaviour needs to
be specified upon “seeing” these events.

Problem How can you structure monitoring code to track a range of features
of a target program?

Forces

• Modification of the source is undesirable as it may introduce errors.

• Each feature may need to be monitored in different ways, with different
resulting behaviour for each important event.

Therefore: Divide the monitoring code into situations for information capture,

and corresponding visualisation program behaviour in those situations: in other

words, use Witness and Report blocks.

A Witness and Report block specifies what to do if a certain situation in the
target program occurs. For example, there may be a Witness and Report block
specifying visualisation related behaviour if a certain method in the target pro-
gram gets executed. Witness and Report blocks make use of AspectJ syntax —
the “Witness” portion consists of the conditions in which to activate the special
behaviour (otherwise known as a pointcut) while the “Report” portion, which
describes the resulting action, corresponds to the AspectJ version of a method
(otherwise known as advice, which gets triggered from appropriate pointcuts).

AspectJ pointcuts can be used to describe almost any well-defined point of
execution within the target program (Kiczales et al. 2001). This means that
“Witness” points can be set up for almost any point of execution in the target
program. Pointcuts can be composed of other pointcuts, allowing reuse of “Re-
port” behaviour for different points of execution.

These Witness and Report declarations are contained within a program mon-
itoring aspect.

Example revisited Applying the solution to the running example, make a
program monitoring aspect for housing Witness and Report blocks for the port
simulation. Declare Witness pointcuts for the following situations: creation of a
new Ship object, when a ship enters the port, when a ship joins the waiting queue,
when a ship leaves the queue, when a ship obtains quay slots for loading, when a
ship has finished loading, when a ship leaves the port. For each pointcut, define
a corresponding Report: notify the visualisation component of the event. Figure
7 shows how Witness and Report blocks relate to target program source code.

Resolution of Forces Witness and Report blocks relate target program con-
ditions and consequential actions together, thus making visualisation code under-
standable. Furthermore, since these blocks are separate from each other, they can
be easily modified to specify new conditions or new consequential actions. How-
ever, in the event that visualisation code needs to be largely rewritten, since all
Witness and Report blocks are constrained to one area by being grouped together
within a program monitoring aspect, overall modification is still fairly straight for-
ward. Finally, since aspects are completely external to the target program code,
the target program source does not need to be altered at all.

Related Patterns Each kind of Witness and Report block achieves a specific
monitoring task, that will help you Make Pix (1.4). If variable watching is the
goal, Watch this Variable (2.3) may be used. If the task is method monitoring,
Watch this Method (2.4) may be used. Watch this Creation (2.5) is useful

Figure 7: Code interspersed with Witness and Report blocks

if the task is monitoring object initialisation, while Watch this Flow (2.6)
captures program control flow.

2.3 Watch this Variable

Motivation Variable state makes up program state. Consequently, a useful
way to trace how the target program is changing is to track how its variables
are changing. Some variables offer useful program run time information all on
their own, while others give useful comparative information in relation to others.
Depending on what the visualisation is going to show, different variables need to
be focussed on.

Problem How do you monitor modifications made to a variable?

Forces

• The target program should be left unmodified, as modifications may intro-
duce errors.

• Java variables may have an access level of public, protected or private.

Therefore: Watch the variable by declaring a pointcut for any situation in which

it changes.

This involves defining a Witness and Report block that uses a pointcut for its

Witness portion that specifies the name of the variable, the type of object it
belongs to, along with the new value of the variable.

before(int tns, SimProcess s): set(int SimProcess.totalNumShips) &&

args(tns) && this(s){

writeToVisComp(tns);

}

In the above example, the totalNumShips variable is being monitored. Its new
value gets captured in the tns parameter, which gets passed through to the visu-
alisation component via the writeToVisComp method.

In some situations, the new value does not need to be immediately reported
to the visualisation component but rather needs to be recorded for later use. If
the variable is private, AspectJ introduction may be used to add “dummy”
variables to objects for the purpose of holding mirror values. In the example
below, introduction is used to add a private variable called numShips to the
SimProcess class. numShips acts as a dummy variable for totalNumShips.

aspect SimTracker {

private int SimProcess.numShips = 0;

.

.

before(int tns, SimProcess s): set(int SimProcess.totalNumShips) &&

args(tns) && this(s){

s.numShips = tns;

}

.

.

}

Resolution of Forces The Witness and Report block format facilitates under-
standing and later modification. By capturing whenever the variable is about to
change, along with the new value it is about to receive, the access level of the
original variable does not matter.

Related Patterns If you are interested in everything that happens to objects
of a certain type, perhaps you should use Watch this Method (2.4) and Watch
this Creation (2.5) on objects of the right type.

2.4 Watch this Method

Motivation Program methods embody program behaviour, so monitoring the
execution of methods gives an idea of how the program is behaving. As with vari-
ables, depending on what the visualisation will show, sometimes certain methods
will yield more relevant information than others.

Problem How do you monitor method invocations?

Forces

• The target program should be left unmodified, as modifications may intro-
duce errors.

• Depending on the visualisation representation format, special method infor-
mation may be needed either just before or just after the method has been
called.

Therefore: Watch the method by declaring a pointcut for situations in which

the method gets called.

The method call pointcut makes up the Witness portion of a Witness and Report
block. To specify when a specific method gets called, usually it is necessary to
specify the name of the method as well as the type of object it is being called
upon.

If the visualisation component needs to be notified about the method call
immediately before it has actually occurred in the target program, the pointcut
may take the following form:

before(Ships s): call(void lifeCycle()) && target(s) {

..

}

If the visualisation component needs to be notified after the method call, the
pointcut may be structured as follows:

after(Ships s): call(void lifeCycle()) && target(s) {

..

}

Resolution of Forces The Witness and Report block format facilitates un-
derstanding and later modification. The before and after AspectJ mechanisms
allow for the Witness portion of a Witness and Report block to specify appropriate
activation points for the corresponding Report advice.

Related Patterns While constructors are a form of method, AspectJ does not
consider them to be methods, therefore constructor monitoring cannot be achieved
via method monitoring. To monitor initialisation, use Watch this Creation
(2.5).

2.5 Watch this Creation

Motivation Objects are fundamental building blocks in object-oriented pro-
gramming. They model concepts in the application domain, so monitoring their
creation sheds some light on how the program works. Object creation information
may be helpful in locating program bugs, or showing patterns of memory usage.

Problem How do you monitor the instantiation of objects?

Forces

• The target program should be left unmodified, as modifications may intro-
duce errors.

• Depending on the visualisation representation format, special object cre-
ation information may be needed either just before or just after the object
has been created.

• You only want to know about the creation of certain types of objects, not
all objects.

• The class that the object belongs to may have multiple constructors.

Therefore: Watch the creation of new objects by declaring a pointcut that de-

scribes the situation in which any of the object’s constructors get called.

This object constructor pointcut, which will make up the Witness portion of
a Witness and Report block, gets called whenever new objects are created. Some
objects may have multiple constructors, which are differentiated in the number of
parameters they take. This means that one object may possess constructors with
different signatures.

Declaring a pointcut to capture object initialisation involves specifying what
class the object belongs to. To make this pointcut applicable for all constructors
of this class, AspectJ “wildcard” syntax needs to be used. This allows construc-
tor matching to occur for constructors of the given class with any number of
parameters.

In many cases, it will be useful to be notified just after a new object has been
created, which is specified using after syntax.

after(ContainerModel cm): (execution(* .new(..)) && target(cm)) {

..

}

The code featured above is an example of some after advice which captures
the execution of all constructors where the targeted object is of type
ContainerModel.

Sometimes, the visualisation requires some sort of preparatory work to be done
for new objects. In these cases it is useful to be notified just before the object has
been created. This is specified using before syntax.

before(ContainerModel cm): (execution(* .new(..)) && target(cm)) {

..

}

Resolution of Forces The Witness and Report block format facilitates under-
standing and later modification. Specification of the object type allows focus to
be placed on the right type of object. The before and after mechanisms allow
flexibility in object creation monitoring. The wildcard constructor syntax allows
further flexibility in constructor signature matching.

Related Patterns If you are interested in a very specific object of the given
type, Watch this Variable (2.3) is a reasonable alternative.

2.6 Watch this Flow

Motivation If the program is relatively small, then attempting to pay attention
to its behaviour in an overall sense is a feasible goal. One way in which an overall
view of behaviour can be gained is by obtaining a trace of control flow, or program
event flow. Since object-oriented programming focusses on the interaction between
objects, these events include constructor calls and method calls.

Problem How do you monitor the flow of control?

Forces

• The target program should be left unmodified, as modifications may intro-
duce errors.

• Even for a relatively small program, since all methods and constructors are
of interest, it quickly becomes unreasonable to use “Watch this Method”
and “Watch this Creation” to trace events.

Therefore: Watch the control flow by using the cflow mechanism of AspectJ.

The cflow pointcut, which will form part of a Witness and Report block, picks
out every well-defined point of execution in the target program. To narrow down
the scope of the cflow declaration, part of the Witness pointcut should specify
that only method calls and constructor calls should be looked at. This is specified
using the following syntax:

call(* *(..)) || call(* .new(..))

As well as narrowing down the scope of the cflow, the Witness pointcut needs to
specify which part of the program the control flow should start being monitored
from, in other words, which method the control should be in before monitoring
begins. This is specified as below, with methodName modified as appropriate:

cflow(withincode(* methodName(..))

cflow is a recursive mechanism: it gets called repetitively, from the point of
current control. To avoid stack overflow, resulting from infinite looping caused
by the aspect recursing on itself, the pointcut should exclude the aspect from
the cflow declaration, by specifying that control must not be within the aspect
definition.

!within(AspectName)

Below is a complete example of a Witness pointcut that uses cflow to capture
all constructors and methods called from within the control of the
startExperiment() method. The aspect that houses the pointcut definition is
called ProgramMonitor.

pointcut cthisflow(Object o): cflow(withincode(* startExperiment(..)))

&& ((call(* *(..)) || call(* .new(..)))

&& target(o)) && !within(ProgramMonitor);

Resolution of Forces The Witness and Report block format facilitates un-
derstanding and later modification. Given that the AspectJ cflow mechanism
provides a fairly generic way for “capturing” all run time events, it can be har-
nessed within a Witness pointcut to focus on constructor and method calls that
occur from the control of any specified method.

Related Patterns This pattern is effectively Watch this Method (2.4) and
Watch this Creation (2.5) tied together recursively. If recursing is to be
avoided, either because multilevel recursing in unnecessary or the program needs
to run faster, those patterns should be used instead.

Acknowledgments

I would like to thank my shepherd, Alejandra Garrido, and my ever-helpful su-
pervisors James Noble and Robert Biddle, for helping me get this paper into a
respectable form. I would also like to thank everyone who participated in my
writers’ workshop for providing useful comments and insights on the paper.

References

Coplien, J. (1996), Software Patterns, SIGS Books.

Finzer, W. F. & Gould, L. (1993), Watch What I Do: Programming by Demonstra-

tion, The MIT Press, chapter Rehearsal World: Programming by Rehearsal.

Jerding, D. F. & Stasko, J. T. (1994), Using Visualization to Foster Object-
Oriented Program Understanding, Technical Report GIT-GVU-94-33, At-
lanta, GA, USA.

Khaled, R. (2003), InspectJ: Program Monitoring for Visualisation using AspectJ,
in ‘Proceedings of the Twenty-Sixth Australasian Computer Science Confer-
ence (ACSC2003)’.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. & Griswold,
W. G. (2001), ‘An Overview of AspectJ’, Lecture Notes in Computer Sci-

ence 2072, 327–355.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier,
J.-M. & Irwin, J. (1997), Aspect-Oriented Programming, in M. Akşit &
S. Matsuoka, eds, ‘Proceedings European Conference on Object-Oriented
Programming’, Vol. 1241, Springer-Verlag, Berlin, Heidelberg, and New
York, pp. 220–242.

Lechler, T. & Page, B. (1999), DESMO-J : An Object Oriented Discrete Simula-
tion Framework in Java, in ‘Proceedings of EUROSIM ’99’.

Najork, M. (2001), Web-based Algorithm Animation, in ‘Design Automation Con-
ference’, pp. 506–511.

Noble, J. (1995), Abstract Program Visualisation, PhD thesis, Victoria University
of Wellington.

Oechsle, R. & Schmitt, T. (2002), JAVAVIS: Automatic Program Visualization
with Object and Sequence Diagrams Using the Java Debug Interface (JDI),
in ‘Software Visualization’, pp. 176–190.

Ousterhout, J. K. (1994), Tcl and the Tk Toolkit, Addison Wesley.

