Performitis

Klaus Marquardt
Kéthe-Kollwitz-Weg 14
23558 Liibeck
Germany

Email: marquardt@acm.org or pattern@kmarquardt.de

Copyright © 2003 by Klaus Marquardt.
Permission is granted for the purpose of EuroPLoP 2003

Large software systems and projects develop a high degree of internal
complexity by their sheer size, and are bound to trouble. Experienced
software architects have learned to detect problems before they have
become critical, and apply a variety of different measures in different
situations. This knowledge of early symptom recognition and selection of a
reaction can be collected in the form of diagnoses and therapies.

PERFORMITIS is a kind of architectural approach that arises from an overly
narrow focus on performance during development. While it appears a
technical issue at first, closer examination exhibits that its foundations are
people and process issues. Accordingly, PERFORMITIS should be treated by
technical as well as team and process therapies, where a combination of
both is typically most successful.

Introduction

There is no commonly accepted definition of the profession of a software
architect yet. Most approaches focus on the initial up-front activities needed
for large projects. Nowadays, agile development suggests that most of the
architecture is defined while the system is already under development.

In many projects, few if any participants can view and understand the
system from different perspectives at the same time, and find a common
language with developers, managers and other stakeholders. A technical key
person in such a position is typically called architect, and fills both technical
and political roles. An architect is able to detect technical, structural, and
organizational deficiencies, predict their impact on the project, and has an
attitude towards solving the underlying problems.

Common views on software development use the metaphor of civil
engineering for the architect, which works well for a blue-print like
approach. This matches up-front work and the visionary work, but it does
not hold for the problem solving and integrating attitude an architect needs
to complete a project. Complementing architecture with a different
metaphor offers new perspectives for this broader scope: architects work
similar to medical doctors.

The software architect is encouraged to take a role similar to a medical
doctor. He examines the system for symptoms, makes a diagnosis, identifies
the underlying causes, starts with a treatment and continuously adapts to
effects and changes. This work approach also matches nicely for projects
practicing agile development and for projects in crisis, as most doctors are
primarily called in these situations.

To a “medical” architect, a catalogue of diagnoses, examination techniques,
medications and therapy schemes can be a great help to spot arising
problems and give hints to effective countermeasures. As in medicine, a
successful therapy scheme requires constant monitoring, refining the
diagnosis and adapting the therapeutic measures to the patient’s state.

The patterns in this submission are part of a larger effort to collect existing
knowledge in the form of diagnoses and therapies. Some have been
workshopped at previous EuroPLoP and VikingPLoP conferences (see the
respective references).

The specific pattern forms used are explained in the appendix. All diagnosis
names are written in UNDERLINED SMALL CAPITALS and all therapy names in
SMALL CAPITALS. Diagnosis and therapy names used but not listed in this
paper are marked (7) and can be found in the references.

Diagnosis: Performitis

Every part of the system is directly influenced by local performance tuning
measures. There is either no global performance strategy, or it ignores
other qualities of the system such as testability and maintainability.

Tuned Trabant 601 “Rennpappe”, GDR 1986, 19kW [Trab03]

The developers use every opportunity to optimize their code, and are eager
to discuss different performance measures with their peers. While each
single measure may be perfectly justifiable, check whether you observe the
majority of the strategies from the following list:

Usage of C or C++ and its language specific low level features.

Extensive and early usage of language specific constructs that favor
local performance gains over other qualities like encapsulation,
reusability or portability. Examples would be public attributes, or
inlining (C/C++).

Avoidance of indirections, on the expense of tighter coupling,
limited extensibility and increased effect of individual changes.
Examples for indirection range from virtual functions to entire
encapsulation layers.

Keeping control on implementation details by preferring hand
written code over advanced language or library features. E.g.
extensive usage of pointer arithmetics instead of advanced specific
data types (C/C++).

e Avoidance of code libraries that are not controlled within the
organization, due to the expectation that its performance will be less
optimal than when implemented for the specific project.

e Responsibility of code modules is clustered according to execution
threads rather than to consistent logical responsibilities.

e Wide-spread usage of environment specific features, like direct calls
to OS, DB triggers and stored procedures, linker directives, or
scheduling priorities.

e Application specific code contains knowledge of technical issues and
their optimization. Examples would be knowledge of network
package size and frequencies, or database structure and joins.

These techniques are applied by more than a small minority of the
programmers involved, and all over the source code. Trying to introduce
other qualities that are oppressed by the performance tuning measures
would cause expensive changes to large portions of the code.

The most significant observation is that there is no overall evaluation or
strategy in place that determines where and when which of the above
measures are taken. All decisions for tuning measures are made individually
on a local scale.

The project is staffed with experienced developers that are familiar with the
domain and the task at hand. This is not the first project the key team
members work at, and they have learned some important lessons in their
previous projects. The key developers all agree that performance is the
single property that is hardest to achieve, and that it could cause a project to
fail even when it is presumably almost completed. They exhibit a strong
desire to get the performance aspects right first, paying merely lip services
to other quality aspects.

When new colleagues join the project, or some contractor gets insight into
the system, discussions about the way to ensure performance and other
intrinsic qualities will arise. These discussions tend to become emotional
quickly because they are at the heart of the individual working style and
value system — and they could potentially exhibit deficits in large systems
design. PERFORMITIS is only resident in projects that are either closed
against outside influences, or have developed mechanisms to terminate
discussions that raise inconvenient questions. Look out for the closed
project society (if you have the chance).

PERFORMITIS infected systems are unstable with respect to technology or
requirement changes. Due to the structure ignoring logical separations, the

changes have a large impact and are costly and timely. The effort related to
such changes sometimes exceeds the effort required for initial feature
development. Look out for fear of changes and explicitly scheduled, often
postponed technology updates.

The negative effects of PERFORMITIS are also visible to upper management.
For all but the most experienced teams the system becomes instable with
respect to delivery dates. Performance oriented development neglects
qualities like testability, and creating tests is an expensive endeavor. The
project typically provides little tests on code level and integrates late in the
development cycle. The spread-out local tuning measures make it difficult
to fix the problems that arise with testing and integration while preparing
the delivery. Irony has it that the measures taken then may dramatically
degrade performance. Look out for more than one seemingly surprising
schedule slip immediately before releases, or for an extremely high effort in
test and integration of limited functionality.

Symptoms checklist

M A number of different practices is used to increase local
performance on the expense of other qualities

These practices are not limited to a dedicated portion of the code,
but spread all over the project

There is no strategy which local tuning practices are applied where
Performance is considered the by far most significant system quality
The project closes itself against external influence

Changes occupy large parts of the schedule and are frequently
postponed

Either a lot of effort is spent in tests and integration, or several
milestone dates have not been met with very little warning time

N RREREEM H

Diagnosis: PERFORMITIS', also known as PERFORMANCE BLOAT

Not all of these symptoms are unique to PERFORMITIS, and some only
become visible in late states of the disease. Early and sufficient signs is the
combination of spread local optimizations, lack of a global strategy, and the
team attitude.

' A term closer to the medical nomenclature would be “performance related softwareosis”.
Any chronic disease is called an ~osis. Furthermore, it is not the performance that is
infected but the system itself. However, “performitis” is a more popular name.

The pathogen is the limited experience of key developers. Humans tend to
remember their failures better than their successes, and many developers
have learned particular painful lessons. Mostly in distributed or embedded
systems, project can miserably fail due to lacking performance — which
none of the participants will ever forget. The limitation in their minds is like
a Pavlov reflex that happens especially to developers with extensive
experience in a particular domain only. They are bound to ignore that
systems are solutions that need to balance different qualities.

Caveat There are rare systems where the absolute dominance of
performance is not pathological but a conscious and justifiable
decision. Hold on a minute — most likely this is not your situation.
To find out, make your priorities of different qualities explicit as in
the VISIBLE QUALITIES therapy. Even if you are there, these
technical therapies offer some suggestions for improvement:
PERFORMANCE-CRITICAL COMPONENTS, ARCHITECTURE TUNING,
and MEASUREMENT-BASED TUNING.

Note that while PERFORMITIS appears to be a technical diagnosis at first, its
real causes are with people and their socialization. While the technical
symptoms can be attacked by some therapeutic measures or suppressed by
extensive processes, these require continued effort and can at best maintain
a state of remission. Curative therapies need to address the pathogen.

The first set of therapeutic measures address the technical symptoms from
an architectural level. Separating the PERFORMANCE-CRITICAL COMPONENTS
is the basic architectural technique to avoid performance bloat. Selecting the
most efficient places for performance tuning is the topic of ARCHITECTURE
TUNING.

Other therapies intend to limit and control the effect that performance gets
by explicitly assigning room for performance in the development process.
VISIBLE QUALITIES allows making a case for performance, but opens room
for other qualities as well. A TEST-ORIENTED PROCESS may soothe most of
your symptoms, especially when you prepare for a release. TIME BOXED
RELEASES allow for healthy little time to early, detailed performance
considerations. MEASUREMENT-BASED TUNING can become a relief from
thinking too much about tuning up-front and probably at the less relevant
places.

Some therapies can only come into place when some of the developers are
open-minded and willing to learn. REVEALED SUPERSTITION is an
intellectual way to try to change the developers’ habits. ARCHITECT ALSO

COACHES complements this for developers who can stand somebody
working closely together with them.

Infections in living organisms cause a kind of fever that is meant to attack
the pathogen, even before it is identified. In PERFORMITIS infected teams,
experience from other cultures causes such a fever. Discussions about the
way to ensure performance and other intrinsic qualities will arise. These
discussion cause friction and result in a learning process that helps to
improve the balance between different qualities. Feverish therapies are
STAFF EXCHANGE and DEDICATED ARCHITECT. Be aware that high fever
might well kill an organism, and that its degree needs to be controlled.

Combine the feverish therapies with any process or technical therapy of
your choice. No combination of the suggested therapies can be harmful to
the project, they all have mutually increasing effect. However, too many
therapeutic changes at the same time might break morale and the team
structure. Take your time to introduce one after another, and anticipate
which one brings the most effect in the current situation.

Therapy Overview

Applicability Effect Related therapies
PERFORMANCE- | Early in the project Preventive; Works best with a
CRITICAL remission possible | DEDICATED ARCHITECT
COMPONENTS
ARCHITECTURE | Any time during the Remission possible | The essential strategic
TUNING project performance tuning
VISIBLE Preferably early in the | Preventive; Works best with a
QUALITIES project remission possible | DEDICATED ARCHITECT
TEST-ORIENTED | Preferably early in the | Palliative; remission
PROCESS project possible
TIME BOXED Preferably early in the | Palliative; remission | Combine with TEST-
RELEASES project possible ORIENTED PROCESS
MEASUREMENT- | Any time during the Palliative. Works best with a
BASED TUNING | project Preventive when DEDICATED ARCHITECT

applied early

REVEALED Any time during the | Remission possible
SUPERSTITION project

* While these measures are surgery rather than infection, its effects on the team are more
adequately described with the fever metaphor

Applicability Effect Related therapies
ARCHITECT Preferably early in the | Remission possible | Requires a DEDICATED
ALSO COACHES | project. Whenever ARCHITECT
(EMPHASIZE team composition
~ILITIES) changes
DEDICATED Preferably early in the | Remission possible | Combine with process or
ARCHITECT project technical therapies
STAFF Any time during the Curative, or Combine with process or
EXCHANGE project remission possible | technical therapies

Suggested Treatment Schemes

Provided the project is already well under its way, you should focus on
therapies that can be used any time during the project.

Project on its way

Dedicated Architect ,,,,,,,,,,,,,,, might foster therapy acceptance
Measurement-Based Tuning A/ basic therapy, easily accepted
‘ Architecture Tuning address the technical problem
‘ Dedicated Architect | helpful to free necessary time
and to strengthen formal position
‘ Visible Qualities ‘ create awareness
‘ Test-Oriented Process ‘ ,,,,,,,, address the process problem
‘ Time-Boxed Releases ‘ influence beyond development team
Revealed Superstition ‘ explicit the learning experience
[

]]

If you already are in a strong inter-personal position, you may even skip
DEDICATED ARCHITECT. MEASUREMENT-BASED TUNING is one of the easily
accepted. When you start ARCHITECTURE TUNING on basis of the gathered

observations and their interpretation, you can prove to the key developers
that you take performance serious and cover their concerns.

The following steps depend strongly on whether you perceive a growing
personal acceptance. If you fail to get that acceptance, you should consider
addressing a missing DEDICATED ARCHITECT very soon. In case the key
developers still ignore you, consult with technical management and suggest
process changes to them that help them reach their goals, like TIME BOXED
RELEASES, possibly on the expense of the developers’ motivation.
Alternatively, try to influence QA to demand a TEST-ORIENTED PROCESS.
You need to consider that such a therapeutic schema against the team’s
adopted habits might lead to a STAFF EXCHANGE rather early, and possible
drawbacks will be attributed to you.

With growing personal acceptance, you can in parallel introduce VISIBLE
QUALITIES to start a team learning process. Over time, those developers
eager to learn will notice the REVEALED SUPERSTITION between the different
qualities, and will have learned for their professional life. Depending on the
learning curve, be relaxed on the timing you care for the VISIBLE QUALITIES.
It might be OK to check them with every release only.

Whenever the team composition changes, take your time to coach new
members for a while, and EMPHASIZE the ~ILITIES of system architecture.

Project on its way

Team composition change

‘ Architect also Coaches ‘ ,,,,,,,,,,, well spent effort

]
[] []

Performance-Critical Components

Applies to projects in domains that require high system responsiveness.

A development team that is aware of performance tuning needs to prepare
the tuning measures before they are actually done.

It is hard to foresee where changed

will become necessary later in the

project, ...but preparation early in development
saves restructuring effort and time
later.

Performance can be attacked on

every level of development, ...but initiatives on architectural level
likely have the most impact.

Incremental development can

proceed fastest when the user-visible

functions are developed

independently, ...but shared libraries and common
infrastructure can become more
mature and efficient than dispersed
items all over the system.

Therefore, factor out the performance critical components, and limit
preventive tuning measures to these. Start by dividing the system according
to 2DIVIDE ET IMPERA in a way that business logics, display, distribution and
technical infrastructure are independent of each other and can be tuned
individually. Ensure that all applications use the same infrastructure so that
central tuning measures become possible.

In systems that have been found to waste performance, these areas were
good candidates where a responsiveness gain by an order of magnitude was
possible:

e Inefficient use of system resources or infrastructure.
e Multiple repetitions of identical calls without functionality gain.

e Badly designed or agreed interfaces requiring multiple data copying
or data format conversion.

e Extensive tracing and logging; error handling strategies that pollute
the standard flow of operation.

To avoid these pitfalls, your system needs to be prepared to change all
internal access strategies and rearrange all call sequences. Make sure that
you can start with ARCHITECTURE TUNING whenever you need to. Refactor
to the degree that all changes can be made most easily [Fowl99]. To avoid
large and late refactoring efforts, start with a piece-meal growth approach
and a “clean desk” policy that includes refactoring in the daily work.

Within each of the components above, again distinguish between published
and internal functionality. Factor everything specific to your particular
environment into distinct components, like services, calls to technical
services, database queries, and handle acquisition. Make sure that the
responsibilities among all components are clear and concise. Separate the
logical contents from the physical execution, with few explicit linkage
points.

/ PERFORMANCE-CRITICAL COMPONENTS is a preventive therapy that

increases the system’s adaptivity to further therapies such as
ARCHITECTURE TUNING. It fosters many qualities, but does not
directly affect performance in and by itself.

The entire development team and technical management need to be
involved. PERFORMANCE-CRITICAL COMPONENTS increase the costs
you would spend on architectural decomposition. Though the initial
costs will pay off if you really run into performance problems,
consider PERFORMANCE-CRITICAL COMPONENTS as a risk reduction
strategy.

<S\ Do not apply PERFORMANCE-CRITICAL COMPONENTS when your
system is very small, or applies standard technology only. Though
you gain valuable experience, the costs hardly pay off in these cases.
Another counter indication is a weak position of the architect in the
project. Side effects include an improved logical structure of your
system. Overdose effects would be #2DESIGN BY SPLINTER if you
drive the separation to an unbalanced extreme, or a micro-
architecture similar to micro-management violating your 2DEFINED
NEGLECTION LEVEL.

PERFORMANCE-CRITICAL COMPONENTS is the preventive strategy to
later ARCHITECTURE TUNING. It can be one of your risk reduction
measures applied with VISIBLE QUALITIES. To motivate
PERFORMANCE-CRITICAL COMPONENTS, it can be wise to REVEAL
SUPERSTITION first.

fu

Start with a useful separation that is most likely to support your actual
needs. Keep the performance critical components as small as possible by
iteratively repeating the division.

From the experience the team has gathered in the domain, both application
and technology domain, you already know which parts of the system are
likely to become the bottlenecks. Run a retrospective to uncover which
areas have been performance relevant in previous projects. You will
experience a fair amount of support when you separate these from the
remainder of the system, and apply 7EXPLICIT DEPENDENCY MANAGEMENT.

In a real time patient information system, all transient data was
stored in shared memory. This was hidden from the clients to this
data; some opaque access classes provided an interface
independent of implementation issues. Tuning the performance of
data access and locking granularity was located within the access
layer classes.

Architecture Tuning

Applies to projects that need performance tuning.

A development team experiences severe performance problems, and needs
to decide how to tackle them.

Local tuning efforts based on

profiling help to improve the

system’s responsiveness, ...but you’d need to have a lot of local
improvements to push the overall
performance by orders of
magnitude.

Performance can be attacked on

every level of development, ...but initiatives on architectural level
likely have the most impact.

Therefore, tune the system on architectural level. Before you initiate any
other improvement efforts, make sure that the architecture itself helps the
system responsiveness, and exhibits no obvious flaws or “black holes” in
which processing power vanishes.

Ignoring the architecture level might get you lost in an endless sequence of
severe battles. Your actual goal is not only to win the performance war but
to win your peace with performance.

Looking at the architecture, experience from large projects shows that
performance is mostly decreased due to one or more of the following
mechanisms:

e Inefficient use of system resources or infrastructure.

e Inappropriate locking of shared resources, or inappropriate
transaction granularity.

e Multiple executions of identical calls without functionality gain.
e Extensive network or inter process communication.
e Blocking operations in tasks supposed to be responsive.

e Inappropriate distribution among clients and servers (e.g. query
result sets).

e Inappropriate database schemas (too little or too much
normalization).

e Extensive error checking, tracing and logging.

e Error handling strategies that pollute the standard flow of operation.
e Interfaces requiring multiple data copying or data format conversion.
e Doing everything doable as soon as possible, or as late as possible.

A few changes to the architecture or top-level design can increase the
performance by orders of magnitude. Performance tuning typically follows
a few fundamental principles [Marq02c].

If your system does not allow to implement the changes you have identified
being necessary, you need to refactor it in advance. Typical refactorings for
tuning the architecture are the introduction of shared technical components,
separation of resource maintenance from resource usage, and separation of
performance critical tasks into distinct components.

While the system is developed, it is good practice to make these late
changes as convenient as possible. As PERFORMANCE-CRITICAL
COMPONENTS explains, this is most efficiently done by maintaining a design
with a clear separation of responsibilities, and a dependency structure with
no (if any) compromises. Such a structure also helps during development
with respect to testing and task assignment, and to maintenance in later
project phases.

/ ARCHITECTURE TUNING is a process to find curative technical

solutions to technical symptoms. If the related diagnosis indicates
that the pathogen is beyond the technical scope, it can lead to
remission.

ARCHITECTURE TUNING involves the architect and every developer
assisting in analysis and implementation of the performance tuning.
Its cost are hardly predictable, they depend on the necessary
refactoring effort and the actually implemented changes to the
architecture. However, in large projects they are lower than the costs
of numerous attempts for local optimizations, and it is more likely to
be effective.

Q\ There are no counter indications to ARCHITECTURE TUNING — given
that you do not consider to abandon tuning or the project at all. The

fu

side effect is a well-structured system. No overdose effect is
currently known.

ARCHITECTURE TUNING comes with the least cost when you separate
the PERFORMANCE-CRITICAL COMPONENTS early in the project.

“A contractor had managed to become the mind monopole at one
of my customers. He motivated his queer data model with reasons
such as ‘using DB/2, comparing integers shows higher
performance than comparing strings’. (The effect exists, but can
be neglected compared to the costs of disk access or joins.) When
the system went productive, it needed 1.7 seconds per transaction,
which would have caused annual operation costs of several
100,000 €. Tuning measures saved around 10-20%, but to reach a
performance comparable to similar systems a factor of 100 would
have been necessary. I was asked to evaluate the architecture for
optimisation possibilities, and found sufficient opportunities to
save a factor of 1000 — starting from simple measures like
skipping consistency checks of large data structures with every
internal call (the much too large structures contained several 100
sets of data), up to fundamental changes to the architecture.”

Visible Qualities

Applies to projects whose team focuses all work and thoughts on a few essential
ideas, but ignores all other issues that might also be or become important to the
project’s success.

In a development team that focuses on a particular quality of the product,
you need to address further important system qualities that are essential to
adequately manage the system architecture.

Neglecting internal qualities can

cause a large system to break under

its own weight, ...but the value they add to the
software is hidden and becomes
visible only in the long term.

Internal qualities can be crafted

intentionally into the software, ...but they are hardly visible from a
bird’s eyes perspective.

Therefore, make your system’s internal qualities visible. Similar to sound
risk management practice, maintain a list of your top five qualities. Define
measures to achieve them, and determine frequently to what extend you
have reached your goal.

The key issue is to raise awareness for the existence of these qualities and
their relative importance in the team and in management. Especially when
the internal system qualities are unbalanced, ask the team come for a list of
possible qualities and discuss their value and advantages. The team should
order them according to their priority. Do not mind if your favorites are not
the topmost — you will go through the list every week or two and re-
evaluate.

Do the same process with the management, and make both lists visible.
While it is often not possible to resolve any conflict and come to consensus,
the fact that all qualities are there and considered important leads to
awareness, a more careful balancing and to an architecture and design that
addresses different qualities explicitly.

You need to maintain the lists, find criteria how to evaluate whether a
specific quality has been achieved, and define appropriate actions [Wein92].
This could become a part of a periodically scheduled team meeting.
Especially the evaluation criteria would be a tough job, as most qualities
show only indirect effect. Try to define goals that appear reasonable to the

project. If you or the team fails to define criteria, leave that quality at the
end of the list for the time being.

/ VISIBLE QUALITIES is effective through creating attention and a

positive attitude. The attention achieved by the top-five list causes
second thoughts, awareness, and potentially actions, while the
measurable achievement fosters a positive attitude that in itself
already could improve the quality of work.

The work and initial costs are with the architect, but VISIBLE
QUALITIES requires involvement of the entire team. In the mid term,
the effort required is comparable to mentoring or coaching, while in
the long term it pays off through improved development practices.

% There are no real counter indications to VISIBLE QUALITIES, but if
your team is resilient to learning other therapies might be more cost
effective for your project at hand. You might experience negative

side effects if you fail to explain the importance of different
qualities, and a continuous neglection of specific qualities might
finally break a large system. Prevent this by establishing a veto right

on certain priorities. An overdose could be injected if the team does

not get the idea at all, or is disgusted by the somewhat formal
process. Use the drive for discussion to come to an adequate dosage.

If you look for less formal approaches, look out for a ZMENTOR or
apply ARCHITECT ALSO COACHES. VISIBLE QUALITIES are
successfully accompanied by 7#ZARCHITECT ALSO IMPLEMENTS and
REVEALED SUPERSTITION.

i

For motivation of the team and management, the testability quality often is a
good starter. Its benefits towards risk reduction and customer satisfaction
are obvious, and it can be verified with concrete actions, namely
implementing the tests. For testability, the achievement criterion could be
“all classes are accompanied by at least one unit test” or, if you introduce
unit tests late in the project, “every fixed defect has to be accompanied by at
least one new test case”. If for some reason the unit testability is hard to
achieve, this is a potential hint for a design fault. To get away with a rule
violation, a developer should need to convince the architect. There are
situations e.g. in GUI development that are hard to become unit tested, but

improvement suggestions may enable to test at least parts of the
functionality, e.g. after a class has been split in distinct parts.

It is not important to maintain the list for a long time. If you introduce it,
and hold it up often enough so that the developers know that you are serious
about it, you might neglect the list and only check it at the start of a new
iteration or release period. The check to what degree you have reached the
internal qualities never becomes obsolete, but can be reduced to one check
with each iteration or release.

Some qualities are hard to measure by numbers. For the measurement of
few qualities commercial tools are available. As an example, the software
tomograph [Lipp04] supports a quantitative evaluation of the internal
software structure.

“The team was new to object-oriented design, so we discussed a
lot about the promised qualities it should deliver. We started to do
AJOINT DESIGN at the white board, and I showed on some
examples how a high extensibility could be reached, how
testability could be increased, and what amount of decoupling
required what effort. When the team size increased, ADESIGN
REVIEWS became an essential part of the project. Initially 1
participated in most, and we established an ordered catalogue of
criteria to check. With this catalogue, the process was accepted
and carried by the team. Closer to the end of the project, the team
decided to focus on other issues and reduce the formality of the
design reviews. By that time, the project lasted for more than two
vears,; all team members had significant expertise and shared a
common sense.”’

Test-Oriented Process

Applies to projects whose major implementation decisions are derived from the
developers’ guts feeling. No effort is made to find out whether these decisions are
appropriate.

In a development team that is overly concerned about specific system
properties, expensive measures are taken without evidence of necessity or
possible prove of effectiveness. Important aspects of the project goals are
hidden behind the self adopted blinders.

Experienced developers have gone

through extensive learning

processes, ...but every new project comes with
problems you have not yet
experienced.

It is unlikely that somebody learns

from theoretical lessons without a

match in the daily practice, ...but each project has stakeholders
whose practice differs from the
developers world and promotes

further foci.

Changing the development

methodology can be much harder

than changing some technology, ...but tackling a process issue with
process actions causes the least
friction.

Therefore, focus the development on testable achievements and create a
test for every development step. Consider no functionality completed until it
has been tested. Explicitly include things that are hard to test, like the
architecture, and the system performance.

Most blinders are based on previous experience. Typically the developers
can well describe what the actual problem back then was, how it has been
discovered, and what they would make differently to avoid similar problems
in future projects. From here, defining some kind of test is usually a small
step. Messed dependencies can be tested by evaluating generated
dependency graphs; insufficient or unfavourable architectures can be tested
by reviews according to self defined criteria; failed performance goals can
be tested by load tests and frequent profiling against estimated thresholds. If

a blinder cannot be expressed in terms of some test, it is probablyjust a
prejudice instead of an experience.

When changing the project’s way of working, make sure that the persons
with the greatest level of concerns feel as winner. If possible, push them into
suggesting tests themselves. Never insist that the idea comes from you, and
never fully expose why you were so eager to introduce tests.

/ TEST-ORIENTED PROCESS is effective against all diagnoses that stem

from process related blinders. Its mechanism is to base all
experiences on a common currency called “test” — similar to
business decisions that require all known influences to be converted
into “money” for comparism. This offers a global view on a lot of
different aspects of development, including missing ones as well as
blinding ones.

Changing the development process requires buy-in from all project
stakeholders. Like all changes to the way of working, the key costs
are proportional to the resistance they create. Agree on compromises
that help to reduce resistance. Suggest the changes early while the
team is still small, and the blinders have not had a severe effect.

% The only real counter indication against TEST-ORIENTED PROCESS
would be to introduce it near the end of the project, and it is not
definitely sure that it will fail without drastic measures. The side
effects are the reason you introduce it in the first place: attention to
previously blind spots, and time and effort spend there. The
overdose effect would be to test to an extend that is no longer cost
effective — but you are not very likely to experience it.

i

TEST-ORIENTED PROCESS goes well together with all other therapies
that do not change the development process. If you need to introduce
other methodology changes as well, like a focus on architecture, it
might be appropriate to find the common ground among the changes
first, and then change the process according to which risks are the
most important ones in the current situation.

This appears to be the obvious thing for every software developer who has
seen some kind of development methodology. Testing is the broadest
intersection between waterfall-like and agile ways of thinking.

Management and quality control will appreciate your initiative. The project
development progress becomes visible and easily traceable, while the
releases inherently bring a minimal level of quality that makes formal
testing much easier.

“We started to introduce unit tests for each completed
functionality that was available on multiple platforms. These
helped to limit the negative effect of changes to a common code
base that were impossible to test on all systems employing the
code with reasonable effort. Performance was an issue, so we
expanded the test framework with time measurement
functionality. A functionality that once caused a performance
problem became accompanied by an additional unit test with no
functional test criterion, but with an execution time criterion. The
code had to satisfy the timing requirements of the most
performance limited client, otherwise the test was not considered
passed.”

Time Boxed Releases

Applies to projects that consume their time by preparing for some future event that
might never come, thereby violating some practices of sound software
engineering.
In a development team that has lost focus of the project’s purpose or the key
architectural solution issues, you need to reinforce the main objectives of
the project.

Former experience leads to

anticipation of problems to come, ...but when the problems do not come,
you loose the effort spent on
anticipation.

Preparing for future possibilities

requires time, ...but the time is best spent on the
problems you have at hand, and on
increased customer value.

Time pressure reduces the

willingness to spend effort in quality

work, ...but adequately balanced internal
qualities enable the team to proceed
faster, and cope with yet unforeseen
situations.

Therefore, schedule the releases of your software in frequent, small
intervals. Convince your management that sticking to the release dates is of
major importance, just as important as keeping the internal VISIBLE
QUALITIES.

When the team remains unchanged, the only variable you allow for
negotiation is the scope, the expected functionality contained in each
delivery. However, all project stakeholders will strive to have as much
usable functionality with each release. This leads to a strongly perceived
lack of time to care for tiny details early in the project, including early
tuning measures except when well motivated as MEASUREMENT-BASED
TUNING.

/ The mechanism of TIME BOXED RELEASES is to focus the
development team, and spend only effort in those tasks that pay off

2

within the next weeks. Implicitly, everything that has only a vague
chance to pay off will not be started unless all alternatives are worse.

TIME BOXED RELEASES require management decisions and affects
the entire team as well as other project’s stakeholders. Its costs are
comparable to other substantial process change costs, and are not
caused by the mere measures themselves. Due to reduced project
risk and less effort spend in vain on irrelevant topics, it probably
pays off quickly

Counter indications to TIME BOXED RELEASES are violations to the
entry conditions. Internal qualities may be hard to achieve when
under time pressure, and the temptation to ignore them is high. Do
not start with TIME BOXED RELEASES unless you have established
some taboo on the internal qualities. Side effects are the desired
emphasis changes of the projects. Some developers might feel
uncomfortable with the increased time pressure, with their personal
ways of reaction blocked, so prepare for some demotivation and help
to establish a fearless environment. Overdose effects are reached
when the time boxes are so small that your development
environment does not allow for significant achievements, or when
you fail to mitigate the side effect risks and induce stress and fear to
individual team members.

Accompany with quality oriented process measures. It is necessary
to ensure that the VISIBLE QUALITIES are established and taken
seriously. A TEST-ORIENTED PROCESS helps with the necessary
frequent integration, to measure progress, and to achieve internal
qualities. Introduce MEASUREMENT-BASED TUNING as the standard
way to motivate tuning measures.

“TIME BOXED RELEASES are a two-edged sword. I have been at a
team that was forced to implement features, and ignore
performance for a long time. When performance had degraded to
a degree that the customer could no longer reasonably execute
his own tests, the next iteration became dedicated to performance
tuning alone. TIME BOXED RELEASES are a cure for many effects,
but you might experience situations where unintended scenarios
emerge. In that project, we were ignoring performance issues for
too long.”

Measurement-Based Tuning

Applies to projects in domains that require a high system responsiveness, when the
team is only partially familiar with the domain and its specific requirements.

Every developer knows that tuning the system for performance is necessary.
The key decisions are when to take measures, and then to know which
tuning measures are most effective.

Measures taken early are typically

most effective, ...but measures taken on assumptions
instead of proper knowledge are
often leading nowhere.

Being afraid is always bad advice, ...but being aware of possible
problems is wise.

Therefore, measure where the real bottlenecks are and start tuning
measures there. Do not take preventive measures against assumed
performance problems. Spend your performance tuning effort where you
know it is most effective.

Whenever you assume some problems, turn your assumptions into
knowledge. Critical architectural issues can be clarified by spike solution
projects [Beck99] or prototypes [Cock98] with the sole purpose of
identifying the actual performance issues. These spikes are most useful
when you have established load profile scenarios or performance budgets
[Marq01b].

Where you cannot gain knowledge for some reason, follow sound practices
and “proactively wait™. Resist the temptation to begin with micro tuning.
Instead, focus on other qualities, especially on testability and
maintainability. Most performance tuning measures on architecture or
design level require a clear distribution of responsibilities anyway, and you
can spend the structure clean-up effort now, when it hurts least.

To “proactively wait” is an important, but difficult virtue. Key to this
technique is not to miss the time when decisive action is necessary. This
technique requires self-consciousness and constant observation. When some
indication of performance problems becomes sensible, start over and turn

* To apply the right amount of waiting is an important virtue of a medical doctor [Marg99).
While the symptoms have not become severe and the patient does not suffer, at lot of
diseases are left to mere observation until a serious change occurs.

your impression into knowledge. The thresholds when to take action are
typically subject to personal taste and working style and require significant
experience. However, discussing them openly with colleagues helps not to
miss important indications, and the rarely absent lack of time prevents from
being overly responsive.

2

MEASUREMENT-BASED TUNING is not directly effective in a curative
way, but frees attention and effort to be put on relevant topics of the
project.

All development team members and technical management needs to
be involved with MEASUREMENT-BASED TUNING. Interestingly, the
costs of MEASUREMENT-BASED TUNING are often negative. It
prevents effort being put in mislead measures, and enables you to
proceed faster during initial development as well as during
performance tuning phases. The costs spend on convincing other
stakeholders of the validity of this approach, and of constant
observation are typically low.

There are no counter indications to MEASUREMENT-BASED TUNING.
The side effects are desired: the team pays more attention to other
qualities, measures are taken in an informed manner, and the project
proceeds faster. Overdose effects would be to ignore the obvious,
common sense in your domain, or to wait too long before you take
corrective action.

MEASUREMENT-BASED TUNING can be combined conveniently with
ARCHITECT ALSO COACHES, as both therapies emphazise to care for
things beyond performance. One of the key practices to prepare for
late tuning measures is to separate PERFORMANCE-CRITICAL
COMPONENTS.

“When we first used an object oriented database, we put all data
in it that needed to be shared between different clients. This
design lead to a highly consistent system. Unfortunately, it was
also horribly slow. We lived with that fact for some time, hoping
that increasing our knowledge about the OODBMS would provide
us with counter measures. After two iterations, the GUI team
decided to stub the database and leave the process of continuous

integration. This was a severe warning, and we checked for the
database performance.

“It turned out that the most expensive data the OODBMS was
occupied with was transient data; it was distributed among
different clients but did not require persistency. Two concrete
actions were initiated. First, the distribution mechanism became
separated from the database access. Second, for the sake of
consistent class interfaces, the classes meant to become persistent
were no longer derived from the OODBMS base class. Instead we
provided a distinct persistence service that we passed the objects
to, and maintained the database schema by generating the
persistent classes from the application’s class model.”

Revealed Superstition

Applies to projects in domains that require a high system responsiveness.

In a development team that is blinded by a particular experience and tends
to ignore or even deny all issues that do not fall into the selected category,
you need to address architectural needs that are critical to the success of the
project.

People tend to concentrate on a

single issue, neglecting everything

else, ...but a broad overview uncovers
connections among different system
qualities.

Some external qualities are more

relevant to reach than other external

or internal ones, ...but in most cases achieving some
quality does not necessarily prevent
other qualities.

Therefore, identify the relation between different qualities, and separate
actual contradiction from developers’ superstition. Outline which means
would foster which internal and external qualities, and which would prevent
you from achieving them. Initiate those actions that help multiple quality
aspects of your system and that complement each other. Teach your peers
about the assumed or perceived contradictions that are not existent in
reality.

In particular, performance and the qualities fostered by separation of
concerns can go nicely together. However, you need to separate along the
lines that help increase responsiveness — which is probably not the way you
would initially decompose a system.

REVEALED SUPERSTITION works by focusing attention at the
unspoken assumptions that are blinders to developers, and proving
them wrong.

All developers need to be involved, and it is helpful to include
technical management as well to avoid contradicting your efforts by
restrictive management policies. The costs come from the two

phases of the therapy. Identifying measures and effects to qualities
require some preparation that depend on the architect. The ongoing
teaching is a mentoring effort that needs to last for some time; its
effort is similar to other mentoring or coaching techniques.

<s\§ There are no counter indications to REVEALED SUPERSTITION.
Possible side effects or overdose effects cannot be attributed directly
to REVEALED SUPERSTITION.

i

Combine REVEALED SUPERSTITION with VISIBLE QUALITIES.
PERFORMANCE-CRITICAL COMPONENTS gives some concrete
examples of frequently perceived contradictions.

The therapy patterns PERFORMANCE-CRITICAL COMPONENTS and
ARCHITECTURE TUNING exhibit one of the most popular virtual
contradictions. If you choose a clear, concise structure, you are (a) more
likely to quickly locate performance relevant issues, and (b) be able to fix
them with much less effort. In the end, you get a system that runs faster and
shows a better internal structure, increasing testability and maintainability.*

“Some years ago I worked for a business unit that was supposed
to build both a domain specific framework, and the first product
based on that framework. My role was product family architect,
so I was in close contact to the management and to future users of
the framework. Sensing tough decisions, I asked the management
for their priorities. Of the choices I offered to them, they selected
two things being both on top of the list: quality, and time to
market. At first, I was frustrated from not getting a clear priority.
After some time [learned that this priority combination
strengthened the position of the architecture a lot, and was a
perfect motivation to emphasize a healthy, consistent, respected
system architecture — the best thing one could do to reach both
goals.

“Due to political difficulties, the business unit and the idea of a
domain specific framework were abandoned later. All projects

*I"d like to recommend some course that teaches about the virtual contradictions,
and how different qualities can be achieved synchronously. If you are aware of
such a learning offer, please let me know.

were stopped, and the developers had to find new positions in
other parts of the company. The intellectual property and most of
the framework team became absorbed by the project that
originally was supposed to build the second product based on that
framework. Released of political pressure, the architecture and
the team building started to pay off. The project became more
successful than expected. Currently, its results are evaluated for
reuse in other products as well, maybe forming the basics of a

framework.”

Architect Also Coaches

Also known as: Emphasize ~llities

Applies to project teams that focus their work and thoughts to a few essential
ideas, but ignore all other issues that might also be or become important to the
project’s success.

In a development team that has an informal design and architecture process
without a dedicated role assignment, and that focuses on a particular issue of
development, you need to address further important system qualities that are
essential to adequately manage the system architecture.

People’s experience is valuable to

the project, ...but the experience needs to fit the
current project’s size and criticality;
building a large system requires
attention to issues that hardly matter
in smaller systems.

Education opportunities for

developers are readily available in

courses and classes, ...but learning as you do your job is
more efficient, and has the potential
to teach lessons that you never
forget.

An architect’s experience and view

on the software world is limited, ...but the architect has the broadest
view of the developers.

Neglecting internal qualities can

cause a large system to break under

its own weight, ...but the system can not become any
better than the architect and the team
know how to build it.

Therefore, the architect becomes responsible to coach the development
team about the internal qualities (the “~ilities”) that are essential to crafting
large software systems. This is an efficient way to succeed in his core duties
— maintain the »BIG PICTURE ARCHITECTURE, support management and
development, balance the different forces on the architecture, ensure
consistency, and broaden the architectural view — because it involves all
developers and avoids resistance.

This sounds simple, but its implementation requires serious effort. While
most project situations can live with a developer informally taking that role,
ARCHITECT ALSO COACHES requires significant time and effort. You need to
have the architect’s role defined and assigned, as in DEDICATED ARCHITECT.

The internal qualities the architect needs to emphasize correspond to the size
and complexity of the solution under construction. Testability is a favorite
one that pays off quickly. Ensuring testability is closely related to a design
with a clear distribution of responsibilities and strict adherence to
dependency rules. These two are also needed to allow parallel development
of several tasks and potentially several teams. Maintainability is another key
quality for large project, as during initial development the first of its
components are already being maintained.

/ The mechanism behind ARCHITECT ALSO COACHES is respect and

trust, and spread knowledge. The team will respect an architect that
knows the system, has a stake in it, and solves the day-to-day
problems. Trust is necessary to learn and to change the own
behavior. Spreading the knowledge helps convincing developers and
avoiding resistance.

ARCHITECT ALSO COACHES involves the architect and potentially all
team members. The costs can become significant because you need
to dedicate a lot of time to it. However, the costs for education and
consistency will reduce the project risk and likely pay off over the
project’s course.

<S\< If individual developers send signals that they would not accept
coaching, this might be a counter indication. ARCHITECT ALSO
COACHES has side effects on the work load that the team can
manage. It will decrease in the short term, but eventually increase in

the mid to long term.

The acceptance of the architect coaching is likely fostered when you
apply 7ARCHITECT ALSO IMPLEMENTS. Pair programming [Beck99]
or 2JOINT DESIGN are good opportunities to start coaching. When
some team members do not accept any coaching, consider STAFF
EXCHANGE.

i

After the business case was established, the project had to
change. The effort and schedule estimations demanded that the

team of initially ten developers, located in two sites in different
countries, had to grow to sixty within one year. While one
department started growing the way management expected, the
other team just grew to sixteen developers within thirty months.
Most developers came straight from university, and the local
architect and his manager took significant time to coach them.
Years later, that team was still working with a high quality and at
a good pace. The other department had collapsed due to the
mismatch between expectations and fulfilment, and most of the
developers were fired.

Dedicated Architect

Applies to projects that have no dedicated architect and experience trouble with
their architecture, either in quality of the architecture itself, in incoherent visions,

or in uncovered effort.

In a development team that has an informal design and architecture process
without a dedicated role assignment, the lack of a dedicated architect can
cause one or more of the following problems:

e The development focus is on management goals only. A technical
focus is not present, or is randomly selected by individual

developers.

e Important internal system qualities that are essential to adequately
manage the system are not addressed.

e Developers who take over significant parts of the architectural tasks
fall behind their schedule and get low performance ratings.

e Questions concerning the architecture are not consistently answered.

e Different people address different expert developers for technical

1ssues.

An acknowledged architect has less
time available for real programming,
and is potentially expensive,

Small projects can come along

without much effort on architecture, ..

Any architect’s experience and view
on the software world is limited,

...but dealing with inconsistencies and

the derived system failures is even
more expensive,

.but building a large or reuseable

system requires attention to issues
that hardly matter in smaller
systems; neglecting internal qualities
can cause a system to break under its
own weight.’

...but an architect has the broadest

view of the developers, and he can
still delegate.

> Like a stranded whale who chokes because of its own weight

Newly assigning an architect within

a given team might cause personal

conflicts, ...but each such conflict would be
present anyway, and would
otherwise express itself in technical
inconsistencies.

Therefore, ensure that an architect’s role becomes defined and assigned to a
key developer. The architect becomes responsible to create a common
vision of the system, ensure technical consistency, broaden the architectural
view, re-balance the different forces on the architecture, and to coach the
development team about the internal qualities (the “~ilities”) that are
essential to crafting large software systems. In turn, all developers,
managers and technical leads pass their decision competency in these areas
to the dedicated architect, and provide sufficient resources — namely the
working time of the architect.

Most project situations can live with a developer informally taking the
architects’ role; especially agile development methods advocate having no
explicit assignment [Beck99, Agil0I]. However, a developer’s slack time is
not sufficient to cover all architectural tasks. You can compromise on how
the role is called, but the architect needs to be able to spend significant
effort without troubling his boss or career. The architect will need
dedication, explicit empowerment and time to become accepted among his
peers. Much less time can be devoted to “real work™ such as coding, and
this needs to be reflected in the project schedule and the performance review
criteria.

The obvious candidate for the assignment is the informal architect.
Convince your manager to establish the architect’s role by indicating the
risk reduction it could bring to the project, and by comparing the
consequences of not having a consistent architecture against the costs of
having an architect. This process will likely take some time. Try to get
support from other developers in advance, especially from external
contractors that happen to be around. Their opinions will be valued higher
than those of employees will.

When the team has several informal architects, the one of them who is most
frequently asked is the right candidate. A team of architects can also work
when each member has a distinct key area. However, one person must have
the final decision.

If there is no informal architect, this means that the team creates the
architecture by consensus or accident, though with the best intentions. In

this case you should consider asking for an outsider to join. The same
applies if there are too many architects in the team, and picking one of them
would break the project.

F=1

The mechanism behind DEDICATED ARCHITECT is acknowledgement
by management. Only an acknowledged architect is able to devote
sufficient time, and receive sufficient respect from the team.

DEDICATED ARCHITECT involves management, the architect, and
potentially all team members. The costs can become significant
because you need to dedicate time to architectural issues as well as
to establishing the new role in the first place. Contracted architects
are even more expensive than internal ones. However, the costs for a
good architect will reduce the project risk and likely pay off several
times, while the costs for a bad one will lead to further cost
explosion.

DEDICATED ARCHITECT has no counter indications, given that you
find a capable architect. Its side effects are on the workload that the
team can manage. It will decrease in the short term, but eventually
increase in the mid to long term. Another side effect is the positive
influence on the career of the assigned architect.

The trust in the architect is likely fostered by ZAARCHITECT ALSO
IMPLEMENTS, when the developers perceive that the architect still
knows how to express ideas in code. When the team would not
accept any architect, consider STAFF EXCHANGE with a significant
number of people.

Staff Exchange

Applies to projects stuck with old ideas that work to some extend, but lead to
unsatisfying results.

In a development team that is stuck, caught within their own ideas, and
blinded by their own limited experience, you need to bring in new ideas.

People’s experience is valuable to

the project, ...but repeated similar experiences can
blind you and let you ignore new
possibilities.

Changing the staff of your project is

risky both socially and by means of

the technical and organizational

learning curve, ...but new people bring new ideas and
different blinders.

Therefore, suggest to exchange some members of the development team by
developers new to the domain or the company. Make sure that management
replaces at least one of the key team members, and looks for replacements
that are personally able to become key players within a short time. Look for
developers that bring experience, a strong personality and good
communication skills, so that the project really profits from their
knowledge.

Ensure that you have a stake in the job interviews. Be clear about your goals
and the difficult situation during the job interview, to avoid later
disappointment that could counter your intentions. Management could make
the first raise depending on the influence the newcomer gains during his
first months.

/ The mechanism of STAFF EXCHANGE is to influence the development

team by a factor they cannot ignore: new colleagues. These bring
new knowledge and different experience and inject this into the
developers’ minds while the entire team is going through all team
building phases.

To STAFF EXCHANGE is beyond the scope of an architect and can
only be suggested to management. There is no one-fits-all answer on

fu

the related costs, but the required learning curve and the intended
friction make it expensive.

A strong counter indication to STAFF EXCHANGE is when at least
some of the key developers are willing to learn and accept offered
opportunities. A side effect is that you run into more discussions
than you really desire. Besides all irrationalities of the newly started
team forming process, the arising discussions will cover
development practice and methods, coding and quality standards,
architectural ideas, just to mention a few. An overdose can cause the
team to get lost in discussions, break its motivation, and eventually
loss of the project and valuable employees. Another overdose effect
could be that the company loses the expertise it once had, without
being able to adequately replace it.

STAFF EXCHANGE is kind of an entropic therapy causing undirected
activities. You need to complement it by problem and goal oriented
therapies to focus the direction of its effect.

Before you consider exchanging the entire team, think of exchanging just
the architect. An architect in the wrong place can do more harm than good.
For indications of such a step, see the diagnoses in [Marg03b].

Another important variant is to expel the consultants. Having consultants in
the role of an architect is particularly dangerous as significant competency,
the reasoning behind decisions, and key knowledge will be gone at a time
you cannot predict. Consultants that follow their own agenda are more an
obstacle than an assistance.

A division of a consulting company specialized in technical
projects was particularly good at taking the entire technical
leadership of their customers projects. While about half the staff
in the development team was new to that kind of projects, a large
number of experienced developers were distributed over the
teams. They also came to join particular projects as senior
consultants when problems occurred. The internal turn-over
made sure that the knowledge was spread, and that new
developers became familiar with different projects quickly while
maintaining a common understanding and corporate identity with
the company.

“A contractor had managed to become the mind monopole at one
of my customers. He motivated his queer data model with reasons
about local performance gains. When the system went productive,
it was a factor of 100 slower than comparable systems, which
would have caused annual operation costs of several 100,000 €.
Confronted with radical ideas to save a factor of 1000, the
contractor reacted with denial, without being able to give
reasons. Due to cost saving measures, the contractor finally had
to leave the project, and system responsibility was passed to an
internal team. For political reasons, only the simplest of the
suggested changes became implemented, and these confirmed the
initial performance gain estimation.”

Appendix: Pattern Format

Diagnoses and therapies follow their own pattern format, which includes
additions specific to the medical metaphor.

Diagnoses explore the problem at hand and give means to clearly identify
what is going on and why. They also build a bridge across a variety of
therapies, explain their applicability and link them to a treatment scheme.

Their description starts with a small summary and a picture. The symptoms
are described in depth and finished by a symptoms checklist and the
diagnosis name. An introduction of the possible pathogens and the etiology
closes the diagnosis’ description.

Each diagnosis comes with a brief explanation of applicable therapies and
how each of them works. This includes possible therapy combination and
the kind of effect, curative, palliative or preventive. Finally, some treatment
schemes combining several therapies are described, that serve as a
suggested starting point for adaptation to the local situation at hand.

Therapies are measures, processes, sometimes medications you can apply to
one or several different diagnoses. Their description is closer to a canonical
pattern form, including problem, forces, solution, implementation hints and
an example or project report. Their context is kept rather broad, as they are
potentially applicable to a number of diseases or diagnoses.

In addition to the common pattern elements, therapeutic measures contain
additional sections containing the medical information. These are introduced
by symbols:

AN

The mechanisms of the therapy, why it works on which kinds of
diseases

Involved roles, and costs

Counter indications, side effects, overdose effects

Cross effects with other therapies

Acknowledgements

The first and foremost thanks go to Jens Coldewey, the shepherd of this
submission. His remarks helped to outline the patterns and keep them
consistent, to refine the usage of the medical metaphor, and to straighten
many details of individual patterns.

The workshop participants at EuroPLoP gave valuable and encouraging
feedback. Thanks go to Frank Buschmann, Arno Haase, Kevlin Henney,
Wolfgang Herzner, Michael Kircher, Alan O’Callaghan, Kristian Sérensen,
Markus Volter, Nicola Vota, and Tim Wellhausen.

Further thanks to many unnamed colleagues who sometimes unintentional
contributed to this diagnosis, its therapies and the examples.

References
Referenced diagnosis, therapy, or pattern Referenced diagnosis, therapy, or pattern
ARCHITECT ALSO Copl9s, DIVIDE ET IMPERA Marq02d
IMPLEMENTS Marq02d
BIG PICTURE ARCHITECTURE Marq02d | EXPLICIT DEPENDENCY Marq02d
MANAGEMENT
DEFINED NEGLECTION Marq02d | JOINT DESIGN Marq02b
LEVEL
DESIGN BY SPLINTER Marq0Ola | MENTOR Marq02b
DESIGN REVIEW Marg0Ola
Agil0l] http://www.agilemanifesto.org
”The best architectures [...] emerge from self-organizing teams”
Beck99 Kent Beck: Extreme Programming Explained: Embrace Change.
Addison-Wesley 1999
Cock98 Alistair Cockburn: Surviving Object-Oriented Projects. Addison-
Wesley 1998
Copl95 James Coplien: A Generative Development-Process Pattern

Language. In: Pattern Language of Program Design, Addison-
Wesley 1995

Fowl99 Martin Fowler: Refactoring. Addison-Wesley 1999

Lipp04

Marq99
Marg0Ola

Marq01b

Marqg02a

Marq02b

Marq02c

Marq02d

Marq03b

Trab03

Wein92

Martin Lippert, Stefan Roock: Refactorings in groBen Software
Projekten. To be published by dpunkt, 2004 (in German)

Dr. Kerstin Marquardt, private communication

Klaus Marquardt: Dependency Structures. Architectural
Diagnoses and Therapies. In: Proceedings of EuroPLoP 2001

Klaus Marquardt et al: Performance Pattern Language. Report of
Focus Group. In: Proceedings of EuroPLoP 2001

Klaus Marquardt: Architecture and Organizations: Structure,
Problems, and Solutions. In: Proceedings of EuroPLoP 2002

Klaus Marquardt: Supporting the Software Architect: Selected
Patterns Covering Different Perspectives. In: Proceedings of
EuroPLoP 2002

Klaus Marquardt: Principles of Performance Tuning. In:
Proceedings of EuroPLoP 2002

Klaus Marquardt: Patterns for the Practicing Software Architect.
In: Proceedings of VikingPLoP 2002

Klaus Marquardt: Neglected Architecture. In: Proceedings of
VikingPLoP 2003

Picture available at http://www.tuning-scene-
droyssig.de/601maikl.jpg

Jerry Weinberg: Software Quality Management Series. First-
Order Measurement. Dorset House 1992

	Performitis
	P
	Performance-Critical Components
	Architecture Tuning
	Visible Qualities
	Test-Oriented Process
	Time Boxed Releases
	Measurement-Based Tuning
	Revealed Superstition
	Architect Also Coaches�Also known as: Emphasize ~Ilities
	Dedicated Architect
	Staff Exchange

	Acknowledgements
	References

