
A Set of Patterns for Secure Agent Systems

Haralambos Mouratidis1, Paolo Giorgini2, Markus Schumacher3

1 Department of Computer Science, University of Sheffield, England
h.mouratidis@dcs.shef.ac.uk

2 Department of Information and Communication Technology,

University of Trento, Italy
paolo.giorgini@dit.unit.it

3 IT Transfer Office (ITO), Department of Computer Science,

Darmstadt University of Technology
ms@ito-tu-darmstadt.de

Abstract. Security patterns capture the experiences of experts, allowing novices to
rely on expert knowledge and solve security problems in a more systematic and
structured way. So far, literature provides many examples of security patterns for
object-oriented systems, but no attempt has been made to document security patterns
for multiagent systems. In this paper we present a set of patterns for secure agent
systems that, currently, consists of four patterns.

1 Introduction

Over the last two decades multiagent systems are used in different domains of the
human society from auctions [Byd02] to military systems [Tid99] and are considered
one of the most active research areas in Computing. As a result security plays an
important role in the development of such systems, since a security failures might
lead to many dangers ranging from financial to sensitive military information losses.

Although it has been argued [Dev00] that security concerns should inform every
stage of the development process, security is usually considered after the definition of
a multiagent system [Mou03], leading to the development of systems afflicted with
security vulnerabilities [Sta99].

One of the main reasons for this situation is that non-security experts are involved
in the development of systems that require knowledge of security. The application of
patterns within the security domain can provide a promising solution to this problem
and it could be an easy and effective way to improve the understanding of security
issues. A security pattern describes a particular recurring security problem that arises
in specific contexts and presents a well-proven generic scheme for its solution.
Moreover, the advantages of security patterns are that novices can rely on expert
knowledge and solve problems in a more systematic and structured way.

The overall goal of this paper is to present a set of patterns that can be applied in
the development of secure agent-based systems. The rest of the paper is structured as
follows. Section 2 discusses the motivation behind the development of the proposed
set of patterns and also provides an overview of the set. Section 3 provides a roadmap
of the proposed set and Section 4 describes the patterns. In Section 5 we describe
with the aid of an example how the proposed patterns can be applied in the
development of agent-based systems, and in Section 6 we present some concluding
remarks and direction for future work.

2 Motivation

The idea of developing a set of patterns or a pattern language for capturing proven
security solutions is not new. Essmayr et al. [Ess97] introduced object-oriented access
controls (OOAC) as a result of consequently applying the object-oriented paradigm
for providing access controls in object and interoperable databases. Fernandez et al.
[Fer93] proposed an authorisation model for object-oriented databases based on
methods that correspond to access types in the access rule. Yoder and Barcalow
[Yod97] proposed a set of patterns that can be applied when developing security for
an application and F. Lee Brown et al. [Bro99] proposed a pattern, called
Authenticator, which performs authentication of a requesting process before deciding
access to distributed objects. In addition, Fernandez and Pan proposed a pattern
language for security models [Fer01]. Although this review is by no means complete1,
most of the proposed security-related patterns and languages have been developed
having object orientation in mind. As stated by Fernandez and Pan [Fer01] “ Our
intent is to specify the accepted models as object-oriented patterns”.

However, we believe that a different direction, one that will have agent-orientation
in mind, should be explored. This is necessary since if patterns and pattern languages
are to realise their potential in the development of agent-based systems, then it is
required to develop patterns and pattern languages that are specifically tailored to the
development of agent-based systems, and use agent-oriented concepts.

It is worth mentioning that many of the above-mentioned object-oriented security
patterns display similarities with possible agent-oriented security patterns. These can
be exploited in such a way that object-oriented patterns can be turned into agent
patterns by identifying agent-specific additions (such as mobility, trust, or
cooperation) that can put the security of an agent-based system at risk. Although,
examples of such exploitation cannot be found, the literature provides examples of
social Object-Oriented patterns turned into Agent-Oriented patterns. For example, the
Master-Slave pattern is listed as a pattern in both the POSA1 book [Bus01], as well as
in Lange’s book [Lan98]. One distinction between these patterns is that the agent
version of the pattern explicitly accounts for mobility [Deu01].

In this paper a set of four patterns is proposed that documents how an agency can
be protected from malicious agents/agencies. The patterns are categorised into two
main categories: Patterns that deal with agency’s access issues, such as authentication,

1 See http://www.securitypatterns.org for a complete review of security related patterns

authorisation, and access control, and patterns that deal with communication issues of
the agency, such as secure communication with other agencies, and repudiation. To
model our patterns we employ agent-oriented concepts used in the development of
agent based systems. We feel this is necessary in order to make the patterns
applicable to agent developers.

Agent orientation is based around the concept of an agent. According to Yu [Yu95]
an agent as a modelling construct demonstrates the following characteristics:

− Intentionality. An agent can be modelled in terms of its intentional properties,

such as goals, tasks, resources, beliefs and capabilities, without having to know
its specific actions in terms of processes and steps. Although such a high level
abstraction does not provide a complete specification for the implementation
of the system, it provides developers the ability to model the functional and
non-functional requirements of the system and distinguish between different
alternatives at an initial stage of the development.

− Autonomy. Agents are autonomous and can act independently. Because of the
autonomy and independence agents are free to choose from a variety of
different actions to perform. Using the concept of a goal helps to model this
kind of behaviour since a goal implies that they might be many ways of
achieving it.

− Sociality. An agent most likely participates in relationships with other agents.
In many traditional software engineering techniques, relationships are focused
only on the exchange of data and intended functions. However, agent
relationships are similar to human relationships and thus much more complex.
Agent relationships involve conflicts amongst the relationships, multi-lateral
relationships, and delegation of relationships.

− Identity and boundary. Agent orientation does not necessarily bounds the
modelling concept of an (abstract) agent to that of a physical agent. Agents can
be described across a range of physicality and abstractness. For example,
social agents can often create new abstractions such as roles, and positions to
help to define each others responsibilities and functionality.

We believe it is necessary to employ the above concepts when describing patterns for
agents based systems. In doing so, we feel it is essential to describe the structure of a
pattern not only in terms of the collaborations and message exchange between the
participated agents but also in terms of the social dependencies and intentional
attributes, such as goals and tasks, of the agents involved in the pattern. This way we
can achieve a complete understanding of the pattern’s social and intentional
dimensions, two factors very important on agent-based systems.

To describe our patterns we employ the Tropos [Cas01] methodology. Tropos is
characterized by three key aspects [Cas01]. Firstly it deals with all the pahses of
system requirements analysis and system design and implementation adopting a
uniform and homogeneous way. Secondly, Tropos pays great deal of attention to the
early requirements analysis that precedes the specification of the requirements,
emphasizing the need to understand the how and why the intended system would meet
the organizational goals. This allows for a more refined analysis of the system
dependencies, leading to a better treatment not only of the system functional

requirements but also of its non-functional requirements, such as security, reliability
and performance. Thirdly, Tropos is based on the idea of building a model of he
system that is incrementally refined and extended from a conceptual level to
executable artifacts, by means of a sequence of transformational steps.

Tropos adopts concepts from the i* modelling framework [Yu95]. The main
modelling concept is that of an actor. An actor has intentional properties
(Intentionality) and is autonomous (Autonomy). Thus, actors can be (social) agents
(organisational, human or software), positions or roles (Identity and Boundary) that
have social dependencies (Sociality) for defining the obligations of some actors
(dependees) to other actors (dependers). The type of the dependency describes the
nature of an agreement (called dependum) between dependee and depender. Goal
dependencies represent delegation of responsibility for fulfilling a goal; task
dependencies are used in situations where the dependee is required to perform a given
activity; and resource dependencies require the dependee to provide a resource to the
depender. By depending on others, actors are able to achieve goals that will be very
difficult or impossible to achieve on their own. To make the above-mentioned
concepts more clear, we consider a small example and we consider three actors:

− Agency. An agency represents the environment in which an agent runs. At

least one agency must be active on each host computer to enable it to execute
agents.

− Security Manager. This actor represents an agent that is responsible for the
security of the agency.

− External Agent. It is an agent that does not belong to the Agency that wishes to
access some information of the agency.

Figure 1 represents the relationships between those actors in terms of their social
dependencies. The main goal of the external agent is to access agency information.
However, the agency will allow only authorised agents to access information. To
fulfil the secure agency access goal the agency depends on the Security Manager. The
security manager on the other hand, depends on the External Agents in order to obtain
his access detail and be able to decide to allow or deny access to the agency
information.

Figure 1: An example of representing social dependencies between different actors of

the system

3. Pattern Roadmap

In this paper we present only a subset of patterns in the context of secure agent
environments. Figure 2 illustrates the relations between these patterns as well as
existing patterns. The diagram is a slight variant of a UML class diagram (the analogy
to UML breaks down sooner or later. For example, the pattern name often echoes the
solution and can be about dynamic actions, while a class name tends to be a “thing”,
not an action). Each box indicates a pattern where a solid-line box indicates a pattern
discussed in this document and a dashed-line box indicates a related, existing pattern.

The arrows between the boxes have the following meaning: the dashed lines refer
to a “specialize/generalize” relation and the solid arrows refer to a “uses/requires”
relation between the patterns.

Figure 2: Patterns Roadmap

That way a hierarchy or a sequence of the patterns is build, respectively. The

AGENCY GUARD is a variant of the EMBASSY and the PROXY patterns. Besides,
the AGENCY GUARD is the starting point of applying the patterns described in this
paper. It uses the SANDBOX pattern in order to restrict the actions of agents.
Furthermore, the AGENT AUTHENTICATOR is required in order to ensure the
authenticity of the agents. Moreover, the ACCESS CONTROLER is used in order to
restrict the access to the system resources. The SANDBOX pattern can implement the
CHECKPOINT pattern. The AGENT AUTHENTICATOR can use the SESSION
pattern in order to store credentials of the agent. Besides, CRYPTOGRAPHIC KEY
GENERATION and CRYPTOGRAPHIC KEY EXCHANGE is needed as a basis for
further cryptographic actions.

4. A Set of Patterns

Name: AGENCY GUARD (AG)

Intent: Provide a single, non-bypassable, point of access to the agency. The
AGENCY GUARD defines a structure that makes unauthorized access to the agency
difficult to gain.

Context: A number of agencies exist in a network. Agents from different agencies
must communicate or exchange information. This involves the movement of some
agents from one agency to another or requests from agents belonging to an agency for
resources belonging to another agency.

Problem: Many malicious agents will try to gain unauthorized access to agencies. If
a malicious agent gains such an access, it can disclose, alter or generally destroy the
data resided in the agency. Additionally, depending on the level of access the
malicious agent gains, it might be able to completely shut off the agency or exhaust
the agency’s computational resources resulting the denial of services to authorised
agents of the agency. The problem becomes greater if many “back-doors” are
available in an agency enabling malicious agents to attack the agency from many
places. On the other hand, not all agents trying to gain access to the agency must be
treated as malicious, but access should be granted based on the security policy of the
agency.

Solution: There must be a single point of access to the agency. When an agent
(Requester Agent) wishes to access resources of an Agency or even move to this
agency, its request are forwarded through the AGENCY GUARD that is responsible
to grant or deny the access requests according to the security policy of the agency.
The AGENCY GUARD is the only point of access in an agency and it is always non-
bypassable, meaning all the access requests are going through it.

Social Dependencies: A graphical representation involving the actors of the pattern
and their social dependencies is shown in Figure 3. The Agency depends on the
AGENCY GUARD to grant/deny access to the agency. The AGENT GUARD grants
/ denies access according to the security policy. To obtain the security policy the
AGENCY GUARD depends on the Agency. The Requester agent depends on the
AGENCY GUARD to obtain access to the agency. For the AGENCY GUARD to
provide access to the agency, a request must be sent from the Requester agent.

Figure 3: The AGENCY GUARD Dependencies

Consequences:

+ Only the guard should be aware of the security policy of the agency, and it is
the only entity that must be notified if security policy changes (Not all the
agents in the agency)

+ Only the guard must be tested for correct enforcement of the agency’s
security policy.

+ Only one point of access to the agency, not many backdoors.
− Only one point of access to the agency can degrade performance of the

agency
− Only point of security, if it fails the security of the whole agency is in danger.

Related Patterns: The AGENCY GUARD has concepts of both the PROXY [Nor96]
and the EMBASSY patterns [Kol01]. In addition, the AGENCY GUARD depends on
the AGENT AUTHENTICATION pattern, in order to authenticate (verify the
owner’s identity) the agent requesting access. On the other hand, even if the agent is
not authenticated the agency might decide to allow it to move to the agency but
restrict its actions. For this reason the SANBOXING pattern can be used. In
traditional terms the concept of an AGENCY GUARD is related to the SINGLE
POINT OF ACCESS [Yod97] and it is referred to as the REFERENCE MONITOR
[Amo94, Fer02]

Name: AGENT AUTHENTICATOR (AA)

Intent: Provide authentication services to the agency.

Context: Agents send requests to gain access to an agency or to the resources of an
agency; different than the one they belong. To allow access they must be
authenticated, i.e. they must provide information about the identity of their owners.

Problem: Many malicious agents will try to masquerade their identity when
requesting access to an agency. If such an agent is granted access to the agency, it
might try to breach the agency’s security. In addition, even if the malicious agent fails
to cause problems in the security of the agency, the agency will loose trust of the
agent/agency the malicious agent masqueraded the identity.

Solution: Agents have to be authenticated by the agency. By authenticating the agent;
the AGENCY GUARD makes sure it comes from an owner that is trustworthy for the
agency. Each agent’s owner and each agency have a public/private key pair. The
AGENT AUTHENTICATOR can authenticate the agent on two cases: Firstly, when
the agent is digitally singed with the owner’s public key and secondly when the agent
is digitally signed with the key of the agency that the agent resides. In the second
case, the agent’s agency would have authenticated the agent either if the owner signed
the agent or if the agent was signed by the sending agency. In order for the second
case to work, mutual trust must be involved between the sending and receiving
agencies (each agency can be set up so it has a list of “trusted” agencies). In case that
the AGENT AUTHENTICATOR does not trust the agency from which the agent
comes from, it can reject the agent, or accept it with minimal privileges

Social Dependencies: The graphical representation of the pattern dependencies is
shown in Figure 4. The Requester Agent depends on the AGENCY GUARD to obtain
access to the agency. However, the AGENCY GUARD cannot authenticate the
requester agent by itself, so the it depends on the AGENT AUTHENTICATOR to
authenticate the agent so the AGENT AUTHENTICATOR receives a request for
authentication from the AGENCY GUARD when needed. In order for the AGENT
AUTHENTICATOR to authenticate the Requester Agent, the requester agent should
provide evidence of its digital signature. The AGENT AUTHENTICATOR has to
send the notification to the AGENCY GUARD when the agent is authenticated.

Figure 4: The AGENT AUTHENTICATOR Dependencies

Consequences:
+ Authentication concerns are only dealt once. It is not necessary to make

the agents of the system more complex by providing each one of those
with an authentication mechanism

+ Ensures that an agent is authenticated before actually request a resource of
the agency

+ During the implementation of the system, only the AGENT
AUTHENTICATOR must be checked for assurance.

− A single point of failure. If the AGENT AUTHENTICATOR fails, the
security of the whole agency is in danger

Related Patterns: This pattern has some relations to patterns of the pattern language
for cryptographic key generation [Leh02]. For example, a CRYPTOGRAPHIC KEY
GENERATION is required. It is also important to have an appropriate
CRYPTOGRAPHIC KEY EXCHANGE. Furthermore, a SESSION can be used to
store the credentials of an agent for subsequent requests [Yod97]. Moreover, applying
the SANDBOX pattern can be used to restrict the set of resources available to the
agent.

Name: SANDBOX

Intent: Allow the agency to execute non-authorised agents in a secure manner.

Context: An agent requests to move to an agency but it is unable to provide
authentication certificates. This can be the case, when the agent either is not
authenticated, or it has been authenticated by an agency not trusted by the receiving
agency.

Problem: An agency is more likely exposed to a huge number of malicious agents
that will try to gain unauthorised access. Although the agency will try to prevent
access to those agents, it is possible that some of them might be able to gain access.
Thus it is necessary for the agency to operate in a manner that will minimise the
damage that can be caused by an unauthorised agent that gains access. In addition,
some unauthorized agents might be allowed access by the agency in order to provide
services the agency’s agents cannot provide. Thus, the agency must be cautious to
accept such unauthorised agents without put in danger its security.

Solution: Execute the agent in an isolated environment that has full control over the
agent’s ingoing and outgoing messages. Implementing such a sandboxing principle
prevents any malicious code from doing something is not authorised to do. The code
is allowed to destroy anything within the restricted environment but it cannot touch
anything outside. The concept is similar to the Java programming language's use of a
virtual machine environment and the chroot environment in UNIX. Malicious code
cannot do anything without first interacting with the operating system. Thus,
SANBOX observes all system calls made by the code and compare them to the
agency-defined policy. If any violations occur, the agency can shut down the
suspicious agent.

Social Dependencies: The graphical representation of the pattern dependencies is
shown in Figure 5. The agency depends on the SANDBOX agent for observing and
controlling the agent’s activities, and the SANDBOX depends on the Agency to
know adopted policies.

Figure 5: The SANDBOX Dependencies

Consequences:
+ Agents not authorised but valuable for the agency can be executed without

compromising the security of the agency
+ Agency can identify possible attacks (by observing the actions of the agents

in the SANDBOX)
− Some computational resources of the agency might be taken for non-useful

actions (when non-useful agents are sandboxed)
− Introduce an extra layer of complexity on the agency

Related Patterns: A CHECKPOINT should be implemented within the SANDBOX
in order to keep track of the exceptional actions and to decide what actions have to be
taken based on the severity of the violation of the security policy (which defines what
is allowed and what isn’t). The SANBOX pattern is related to a similarly-named Java
pattern [Jaw00].

Name: ACCESS CONTROLER (AC)

Intent: Allow the agency to provide access to its resources according to its security
policy.

Context: Many different agents exist in an agency. Those agents most likely will
require access to some of the agency’s resources in order to achieve their operational
goals. However, different agents might have different access permissions and are
allowed access only to specific resources of the agency.

Problem: Agents belonging to an agency might try to access resources that are not
allowed. Allowing this to happen might lead to serious problems such as disclosure of
private information or alteration of sensitive data. In addition, more likely different
security privileges will be applied to different agents on the agency. The agency
should take into account its security policy and consider each access request
individually. How can the agency make sure that agents access resources that are
allowed to access?

Solution: An ACCESS CONTROLER exists in the agency. The ACCESS
CONTROLER controls access to each resource. Thus, when an agent requests access
to a resource, the request is forwarded to the ACCESS CONTROLER. The ACCESS
CONTROLER checks the security policy and determines whether the access request
should be approved or rejected. If the access request is approved the ACCESS
CONTROLER forwards the request to the RESOURCE MANAGER.

Social dependencies: The graphical representation of the pattern dependencies is
shown in Figure 6. The Requester Agent depends on the Resource Manager for the
resource, and the Agency depends on the ACCESS CONTROLER for checking the
request. ACCESS CONTROLER depends on the Agency for receiving the security
policies and for forwarding the request, which is forwarded to the Resource Manager
in case it is approved.

Figure 6: The ACCESS CONTROLER Dependencies

Consequences:
+ Agency’s resources are used only by agents allowed to access them
+ Different policies can be used for accessing different resources
− One point of attack, if this fails the system access control system fails

Related Patterns The ACCESS CONTROLER pattern has been inspired by the
ROLE-BASED ACCESS CONTROL pattern presented by Fernandez [Fer01]. It is
very similar (it can be thought of as a specialisation) to the AGENCY GUARD, but it
focuses on access at resources within the agency rather than access to the agency.

5. Applying the Patterns

To illustrate the use of the proposed set of patterns we are employing the electronic
Single Assessment Process (eSAP) case study [Mou03b], an agent-based health and
social care information system to deliver an integrated assessment of health and social
care needs of older people2. In previous work [Mou03] we have analysed the security
issues of the system using the Tropos methodology and we have identified the need
for the system to perform authentication and access control checks. Figure 7
illustrates how the AUTHENTICATOR, the ACCESS CONTROLER and the

2 The eSAP has been extensively described in the literature [Mou02, Mou02b, Mou03,

Mou03b]

AGENCY GUARD patterns can be used to satisfy those security goals of the eSAP
system. Let us consider the scenario that an Older Person agent (requester agent)
wishes to obtain information about their Care Plan (resource).

Figure 7: An example of using the patterns

To obtain such information the Older Person depends on the eSAP Guard agent to
grant them access to the system. After the eSAP Guard grants access to the Older
Person (by obtaining an authentication clearance from the Authenticator agent) the
Older Person depends on the Care Plan Manager agent to receive information about
their Care Plan. The Care Plan Manager forwards the care plan request to the Access
Controler agent, which depends on the eSAP System agent to obtain the security
policy.

By using the above-mentioned patterns the developer is able to identify fast, and
efficiently the agents needed to satisfy the system’s security goals and delegate the
responsibility of the system’s security goals to the actors defined by those patterns.
For example, the eSAP Guard agent checks each agent that tries to access the system,
the Authenticator agent satisfies the security goal by authenticating each agent that
tries to access the system, and the Access Controler controls access to the resources
(care plans) of the system.

6. Conclusions

As mentioned in the Introduction, security is usually considered after the definition of
a multi-agent system leading to the development of systems afflicted with security
vulnerabilities. A promising solution to this problem is to apply the pattern approach
within the security domain.
In this paper we have point out need to develop security patterns for the development
of secure agent-based system and we have argued that such patterns must be based on

agent-oriented concepts, such as goals and social dependencies, which are common in
agent-based systems. Towards this direction, we have proposed a set of patterns based
on such concepts. Our patterns could be well integrated in the existing landscape of
security patterns.
Currently, we are working to expand the proposed set of patterns into a pattern
language by providing more patterns related to secure agencies.

References

[Amo94] Edward Amoroso, “Fundamentals of Computer Security Technology”, Prentice Hall,
1994.

[Bro99] F. Lee Brown, James DiVietri, Graziella Diaz de Villegas, Eduardo B. Fernandez,
“The Authenticator Pattern”, PLoP, 1999.

[Bus01] F. Buschmann, R. Meunier, H. Rohnert, P. Soomerlad, M. Stal, “Pattern Oriented
Software Architecture: A System of Patterns”, Willey, 2001.

[Byd02] A. Byde, C. Priest, N. R. Jennings, “Decision procedures for multiple auctions”,
Proceedings of 1st Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems,
Bologna, Italy, 613-620, 2002.

[Cas01] J. Castro, M. Kolp and J. Mylopoulos. “A Requirements-Driven Development
Methodology,” In Proc. of the 13th Int. Conf. On Advanced Information Systems
Engineering (CAiSE’01), Interlaken, Switzerland, June 2001.

[Dev00] P. Devanbu, S. Stubblebine, “Software Engineering for Security: a Roadmap”,
Proceedings of the conference of The future of Software engineering, 2000.

[Ess97] W. Essmayr, G. Pernul, A.M. Tjoa, "Access controls by object-oriented concepts",
Proceedings of 11th IFIP WG 11.3 Working Conference on Database Security, August 1997.

 [Fer01] Eduardo B. Fernandez and Rouyi Pan. A Pattern Language for Security Models. PLoP,
2001.

[Fer02] E.B.Fernandez, "Patterns for operating systems access control", Proceedings of PLoP
2002

[Fer93] E.B.Fernandez, M.M.Larrondo-Petrie, E.Gudes, "A method-based authorization model
for object-oriented databases", Proceedings of the OOPSLA 1993 Workshop on Security in
Object-oriented Systems, pp 70-79.

[Jaw00] J. Jaworski and P.J. Perrone, Java security handbook, SAMS, Indianapolis, IN, 2000.
[Kol01] M. Kolp, P. Giorgini, J. Mylopoulos. A Goal-Based Organizational Perspective on

Multi-Agent Architectures. Eighth International Workshop on AGENT THEORIES,
ARCHITECTURES, AND LANGUAGES (ATAL-2001) Seattle, USA, August 1-3, 2001.

[Lan98] D. Lange, M. Oshima, “Programming and Deploying Java Mobile Agents with
Aglets”, Addison Wesley, 1998.

[Leh02] Sami Lehtonen and Juha Pärssinen. A Pattern Language for Cryptographic Key Man-
agement. EuroPLoP, 2002.

[Mou02] H. Mouratidis, G. Manson, P. Giorgini, I. Philp. Modelling an agent-based integrated
health and social care information system for older people. Proceedings of the International
Workshop on Agents applied in Health Care (at the 15th European Conference on Artificial
Intelligence), Lyon-France, July 2002

[Mou02b] H. Mouratidis, P. Giorgini, G. Manson, I. Philp. Using Tropos methodology to
Model an Integrated Health Assessment Systems. Proceedings of the 4th International Bi-
Conference Workshop on Agent-Oriented Information Systems (AOIS 2002), Toronto-
Ontario, May 2002.

[Mou03] H. Mouratidis, P. Giogini, G. Manson, “Modelling Secure Multiagent Systems”, (to
appear) in the Proceedings of the 2nd International Joint Conference on Autonomous Agents
and Multiagent Systems, July 2003.

[Mou03b] H. Mouratidis, I. Philp, G. Manson. Analysis and Design of eSAP: An Integrated
Health and Social Care Information System. Journal of Health Informatics 9 (2), pp 93-96,
2003

[Nor96] Norman L. Kert, John M. Vlissides, James O. Coplien, Pattern Languages of Program
Design 2, Addison Wesley Publishing, 1996

[Sta99] W. Stallings, “Cryptography and Network Security: Principles and Practice”, Second
Edition, Prentice-Hall 1999.

[Tid99] G. Tidhar, C. Heinze, S. Goss, G. Murray, D. Appla, I. Lloyd. “Using Intelligent
Agents in Military Simulation or Using Agents Intelligently". In Proceedings of Eleventh
Innovative Applications of Artificial Intelligence Conference, Orlando, Florida, 1999.

[Yod97] Joseph Yoder and Jeffrey Barcalow. Architectural Patterns for Enabling Application
Security. PLoP, 1997.

[Yu95] E. Yu. Modelling “Strategic Relationships for Process Reengineering”, Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada, 1995.

