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Abstract

Fault containment is an important constituent of fault tolerance. Means for
fault containment allow a system to limit the impact of manifested faults to some
predefined system boundaries. This document presents some of the best known
techniques for fault containment formatted as design patterns. These patterns are
elicited from the areas of self-stabilization, specification closure and fault tolerant
OS kernels. The presented fault containment patterns are: the Input Guard pat-
tern which confines an error outside the guarded system boundaries; the Output
Guard which confines an error inside the guarded system boundaries; and the Fault
Container pattern which is the fault tolerant counterpart of the well-known Adapter
pattern and which combines the properties of the Input Guard and Output Guard
patterns.

1 Introduction

This paper describes a set of patterns that provide solutions to the fault containment
problem, i.e. how to prevent an error from contaminating other parts of a system besides
the place where it occurred. For the reader’s convenience, we provide a brief summary
of the basic fault tolerance terms and definitions taken from [7] that are necessary for
following the presentation of these patterns.

A system is an entity with a well-defined behavior in terms of output it produces and
which is a function of the input it receives, the passage of time and its internal logic.
By “well-defined behavior” mean that the output produced by the system is previously
agreed upon and unambiguously distinguishable from output that does not qualify as well-
defined behavior. The well-defined behavior of a system is called the system specification.
A system interacts with its environment by receiving input from it and delivering output
to it. It may be possible to decompose a system into constituent (sub)systems, often called
system components. A failure is said to occur in a system when the system’s environment
observes an output from the system that does not conform to its specification. An error
is the part of the system, e.g. one of the system components, which is liable to lead to a
failure. A fault is the adjudged cause of an error and may itself be the result of a failure.
Hence, a fault causes an error that produces a failure, which subsequently may result to
a fault, and so on. Let us consider the following example:
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A software bug in an application is a fault that leads to an error when the
application execution reaches the point affected by the bug, which in turn
makes the application crash which is a failure. By crashing, the application
leaves blocked the socket ports it used which is a fault and the computer
on which the application crashed has socket ports which are not used by any
process nevertheless not accessible to running applications which is an error,
and which in turn leads to a failure when another application requests these
ports.

Based on the above, an error caused by a fault in a system may propagate to the
system’s environment unless the fault is contained. A system is called fault tolerant when
it can deal with faults and their consequent errors in such a way that it does not violate its
specification, i.e. the environment of a fault tolerant system does not perceive a failure of
the system. Hence, a fault tolerant system does not propagate faults to its environment.
The distilled experience of three decades of developing fault-tolerant software systems, as
summarized in [10], indicates that fault tolerance has the following six constituents:

• error masking, which deals with the dynamic correction of the occurred errors;

• error detection, which spots and reports the occurrence of errors;

• fault containment, which prevents the error propagation across defined boundaries;

• fault diagnosis, which identifies the component where resides the fault that produced
a reported error;

• fault repair, which provides the means for the elimination, the replacement or the
bypassing of a component;

• system recovery, which ensures the re-establishment of a legitimate system state (i.e.
a state that is part of the system specification) after an error has been reported.

These constituents of fault tolerance are not independent from each other. For exam-
ple, a fault tolerance mechanism that implements roll back recovery (e.g. see [6]) where
upon the occurrence of an error the last checkpointed state of the system is restored, uses
means for error detection, fault containment, fault diagnosis and system recovery. An-
other fault tolerance mechanism that implements the State Machine Approach [16] with
dynamic system reconfiguration in order to eliminate faulty replicas, uses means for error
masking, error detection, fault containment, fault diagnosis and fault repair. A number
of design patterns for error masking, error detection and fault repair, and system recovery
which capture well-known fault tolerance techniques have been presented and classified
in our previous work [15].

This paper presents three design patterns for fault containment: the Input Guard

pattern which ensures that no error is propagated from the outside to the inside of the
guarded system boundaries; the Output Guard pattern which ensures that no error is
propagated from the inside to the outside of the guarded system boundaries; and the Fault
Container pattern which is the fault tolerant counterpart of the well-known Adapter
pattern and which will be shown to combine the properties of the Input and Output

Guard patterns.



2 Fault Containment

Means for fault containment are suggested by different directions in fault tolerance lit-
erature. Work on self-stabilization [17] as well as work on closure and convergence [1]
introduce the notion of guards. The implementation of those guards (e.g. see [3, 4])
provides the basic fencing material that stops error propagation beyond defined system
boundaries often called fault compartments. Work in fault containment is also done at
the OS kernel level, either for Mach [13] or for Chorus [14] or even for share memory
multiprocessors [12]. These cases introduce guards to ensure that the output values of a
system component belong to a valid set defined in the system specification. If an error
is detected by these guards, they stop the output of the guarded component from being
passed over to the rest of the system and contaminate it with the propagated error.

On the other hand, the concept of guards is not specifically introduced for fault tol-
erance purposes. Design by contract [9] introduces the notion of pre-conditions which
serve as guards for the execution of statements. Unless the pre-condition for a given
statement holds, the statement does not guarantee correct results or the behavior de-
scribed in the system specification. The design by contract principles compel a particular
way of describing the system specification. Namely, pre-conditions are used to describe
the conditions that the system input must satisfy (i.e. they describe the correct system
input), post-conditions are used to express the guarantees provided by the system upon
successful processing of correct input, and invariants are used to express the conditions
that will hold true while the system is processing correct input. This specific way of de-
scribing the system specification bears many similarities with the concepts of guards that
are introduced in this paper. However, this does not imply that the system specification
must be expressed in terms of pre- and post-conditions and invariants in order for these
patterns to be applicable.

The fault containment techniques captured in the patterns presented in this paper
stop the propagation of errors to (and from) the system on which they are applied. Such
errors have the form of erroneous input (and output respectively) with respect to the
system specification. However, if certain input or output is erroneous according to the
specification of the environment of a given system but not according to the specification
of the system itself, the fault containment patterns described in the subsequent sections
cannot stop the propagation of the corresponding error. Let’s consider the following
example, which clarifies both the cases where the presented patterns can effectively stop
the propagation of errors and where they cannot.

Consider a component called T2N that operates on strings of English words and
transforms numbers from their textual form (e.g. one, two, three) to their numeral form
(e.g. 1, 2, 3). The specification of this component defines that the input can be any string
of alphanumeric ASCII characters and spaces (e.g. “I have 4 eggs and one potato”) and the
output is the same string only with the numbers transformed from their textual to their
numeral form (e.g. “I have 4 eggs and 1 potato”). Another component, called GETIN ,
reads either the user input from the keyboard until they key 〈ENTER〉 is pressed or from
an indicated file until EOF is met and delivers in its output the stream of characters it
read. Finally, the system S is composed by connecting the output of component GETIN
to the input of component T2N , as shown in three instances in Figure 1. The specification
of S defines that the system takes its input either from a file until EOF is met or from
the keyboard until 〈ENTER〉 is pressed. The output of the system is identical to its
input modulo the transformation of numbers from their textual to their numeral form.
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Figure 1: Example of errors that may occur to system S and its constituent components.

Figure 1 shows three cases of errors that may occur in S. Case (a) graphically illus-
trates an error that is due to a design fault; the specification of GETIN allow output
that is not correct input for T2N and in the composition of S does not provide any
kind of filtering between GETIN ’s output and T2N ’s input. In case (a) the component
GETIN reads from a file the string “a six-pack” and passes it as input to component
T2N . This string however contains the dash character (“-”), which is not part of a correct
input to T2N . A mechanism that checks the specification of GETIN in order to stop
the propagation of errors that occurred inside GETIN , would not provide fault contain-
ment in this case, since both input and output of GETIN are legitimate according to its
specifications. On the contrary, a mechanism that checks the specification of T2N before
allowing any input to be processed by T2N would prevent the error propagation inside
T2N , since it would be able to identify the erroneous input (the dash character in the
string “a six-pack”). The application of the Input Guard pattern (Section 3) on T2N
will provide the desired fault containment for this case.



Case (b) shows an error that can be either due to a software bug in GETIN or due to
temporary anomalies in the operation of GETIN (e.g. electromagnetic disturbances, high
temperature, etc). Rather than delivering the user typed string “a six pack” as input to
T2N , component GETIN outputs the string “a four pack”. That is an error according
to the specification of GETIN but it is perfectly legitimate input for T2N . Hence, a
mechanism that checks the specification of T2N in order to stop error propagation inside
T2N would not provide fault containment in this case, since the string “a four pack” is
legitimate input for T2N . What can stop the propagation of the error from GETIN
to its environment is a mechanism that checks the specification of GETIN in order to
detect errors in its output. The application of the Output Guard pattern (Section 4) on
GETIN will provide the desired fault containment for this case.

Finally, case (c) depicts another error that is due to a design fault similar to case (a).
This time, the input that GETIN reads from a file is a stream of binary data, the first five
bytes are “a six” followed by the NULL character (ASCII code zero), followed by “ pack”.
This is a legitimate input according to the specification of GETIN and the produced
output in case (c) is also correct. The first six bytes of this output (“a six\0”) is a
proper string with alphanumeric characters, which makes it a legitimate input for T2N
(e.g. for the definition of string in the C programming language, where whatever follows
the first NULL character in a string buffer is just ignored). As a result, the propagation
of the error cannot be stopped by checking the binary stream “a six\0 pack” against the
specification of GETIN or T2N . The boundaries inside which the error propagation can
be stopped are the boundaries of system S. A mechanism that checks the output of S
(i.e. “a 6”) for the given input (i.e. “a six\0 pack”) against the specification of S will be
able to provide the desired fault containment for this case, and prevent the error occurred
in S from being propagated to its environment.



3 Input Guard

Often, large scale systems are an assembly of independently developed components, like
in the case of systems built out of Commercial off the Shelf (COTS) components. In such
cases the developer of an individual component wants to prevent errors that may occur
elsewhere in the system from infecting the component he developed. One way to achieve
this is to verify that every input fed to his component by the system conforms to the
input for his component as described in the system specification.

3.1 Context

The Input Guard pattern applies to a system which has the following characteristics:

• The system is composed from distinguishable components, which can play the role
of fault compartments and which interact with each other by feeding one’s output
into another’s input.

• It is possible, either directly or implicitly, to validate the input of a component
against the legitimate input described in the component’s specification.

• The errors that can be propagated into a system component have the form of er-
roneous input, i.e. input whose content or timing does not conform to the system
specification.

The second characteristic implies that internal errors (e.g. changes to the internal state
due to electromagnetic disturbances in the environment where the system operates) are
not considered by this pattern since they are not expressed as erroneous input according
to the system specification. Moreover, this pattern does not deal with cases where the
input to the system conforms with the system specification but it still contains errors
according to the specification of the system’s environment (e.g. see case (b) in Figure 1).

3.2 Problem

In the above context, the Input Guard pattern solves the problem of stopping the prop-
agation of an error from the outside to the inside of the guarded component by balancing
the following forces:

• A system may be composed of components that are developed independently from
each other, without keeping strict consistency with each others specifications.

• A system may be infected with errors from its environment even when the environ-
ment is not experiencing any errors according to its specification.

• Different systems have different requirements regarding size impact of the fault
containment mechanism.

• Different systems have different requirements regarding the time penalty of the fault
containment mechanism.

• Fault containment is usually integrated with other solutions provided for other fault
tolerance constituents (e.g. error masking, error detection, fault diagnosis and the
others mentioned in Section 1) in order to provide wider fault tolerance guarantees.



3.3 Solution

To stop erroneous input from propagating the error inside a component a guard is placed
at every access point of the component to check the validity of the input. Every input to
the guarded component is checked by the guard against the component specification. If
and only if the input conforms with that specification then it is forwarded to the guarded
component.

Notice that the above solution does not define the behavior of the guard in the presence
of erroneous input, besides the fact that it does not forward it to the guarded compo-
nent. This is intentionally left undefined in order to allow implementations of the Input

Guard to be combined with error detection mechanisms (e.g. when a check fails, an error
notification is sent to the part of the system responsible for fault diagnosis) or with the
implementations of error masking mechanisms (e.g. the comparator entity of the Active

Replication pattern [15]). Hence, the behavior of the guard when the checks performed
on the input fail depends on the other fault tolerance constituents with which the input
guard is combined.

3.4 Structure

The Input Guard pattern introduces two entities:

• The guarded component which is the part of the system that is protected against
the fault contamination from external errors propagated to it through its input.

• The guard which is responsible to check for errors in the input to the guarded
component against its specification.

There may be many instances of the guard entity for the same guarded component,
depending on the system design and on the number of different access points the guarded
component may have. For example, a software component with a number of interfaces
and a number of operations declared in each interface may have one guard per interface
or one guard per operation declared in its interfaces or any possible combination of those.
Figure 2a illustrates graphically the structure of the Input Guard pattern for a guarded
component with a single access point. Figure 2b contains the activity diagram that
describes the functionality of the guard.

One possibility is to implement the guards as separate components in the system. This
approach allows to have a number of guards proportional only to the number of the access
points of the guarded component. The time overhead introduced by this approach is quite
high since it includes the invocation of an additional component (i.e. the guard). Also,
the space overhead of this approach is rather elevated since it increases the number of the
components in a system by the number of guards that are implemented. Furthermore, in
the case where components are mapped to individual units of failure (i.e. each component
can fail as a whole and independently of other components) this approach introduces a
well-known dilemma in fault tolerance: “QUIS CUSTODIET IPOS CUSTODES?” (“who
shall guard the guards?”). This dilemma has also well-known consequences, which are
difficult and very costly to resolve (e.g. redundant instances of the guards, distributed
among the constituent components of a system, which have their own synchronization
protocol).

Despite the above inconveniences, this implementation approach is valuable in the
case of COTS-based systems composed from black-box components where the system
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Figure 2: The structure (a) and the activity diagram (b) of the Input Guard pattern.

composer does not have access to the internals of the components. Also, this approach
can be applied when fault containment comes as a late- or after-thought in the system
development and a quick fix is needed in form of a patch. This implementation approach
does not require any modification on existing components of a system; rather, guards are
introduced as separate add-on components to the existing system.

Another implementation approach is to make the guard part of the implementation
of the guarded component. This practice is often employed in programming where a
method checks its arguments before using them to perform its designated task. This
allows the coupling of the guard(s) and the guarded component. By integrating the guard
with theguarded component the space overhead of the Input Guard implementation is
kept low since it does not introduce another component in the system. Coupling the
guard and guarded component implementation is usually applied in the development of
COTS software where the developer has no knowledge about the rest of the system in
which the component will be integrated. Hence, in order to assure robust functioning of a
component, the developer checks the input of the component on every call. The drawback
of this implementation approach is the fact that the time overhead is high and fixed. This
is because the guard is engaged on every call to the guarded component, even when the
supplied input has already been checked by other fault tolerance means.

A third implementation possibility is to place the guard inside each of the components
which may provide input to the guarded component. This approach allows the integration
of the guard with other fault tolerance mechanisms (e.g. the guard of the Output Guard

pattern for each component that provides input to the guarded component ; see Section 4
for more details). Furthermore, this approach allows the elimination of redundant checks
for errors which can increase the time and space overhead of fault tolerance solutions
in a system. On the other hand, this approach is not applicable to COTS software.
Third party developers may not have information about the specification of the other
components to which they will feed their output, hence they do not know what conditions



to check in the guard. A drawback of this implementation approach is the elevated space
overhead; the number of guards is not only proportional to the access points of the guarded
component but also to the number of components that provide input to the guarded
component. Another drawback is that this guard cannot protect the guarded component
from communication errors that occurred during the forward of the checked input from
the guard to the guarded component. On the positive side however, this approach allows
the guard to be selectively integrated only with those components that are considered not
robust enough and subject to produce erroneous input for the guarded component. This
can be used to reduce the elevated space overhead of the approach.

3.5 Consequences

The Input Guard pattern has the following benefits:

+ It stops the contamination of the guarded component from erroneous input that does
not conform to the specification of the guarded component.

+ The undefined behavior of the guard in the presence of errors allows its combination
with error detection and error masking patterns, and fault diagnosis mechanisms.
Whenever this is applicable, the system benefits in terms of reduced run-time over-
head introduced by the implementation of the fault tolerant mechanism (e.g. the
combination of fault containment and error detection in the context of system re-
covery from errors).

+ The similarities between the guard entities of the Input Guard pattern and Output

Guard pattern (see Section 4) allow the combination of the two in a single entity.
This entity will operate on the same data and will perform two checks: one against
the specification of the component that produced the data as output and the other
against the specification of the component that will consume the data as input.
When applicable, this combination can provide significant benefits in terms of time
and space overhead since two separate checks will be performed by the same piece
of code.

+ There are various ways that the Input Guard pattern can be implemented, each
providing different benefits with respect to the time or space overhead introduced
by the guard. It is also possible to integrate the guard with an existing system
without having to modify the internals of the system components (first implemen-
tation alternative). That reduces significantly the amount of system re-engineering
required for applying the Input Guard pattern to COTS-based systems made of
black-box components.

The Input Guard pattern imposes also some liabilities:

- It is not possible to minimize both the time and the space overhead of this pattern.
To keep low the time overhead introduced by the Input Guard pattern, the func-
tionality of the guard must not be very time consuming. This results in a tendency
to introduce a separate guard for each different access point (e.g. one guard per
interface or even per operation declared in an interface) of the guarded component.
Each such guard checks only a small part of the specification of the guarded com-
ponent, minimizing thus the execution time of an individual guard. However, this



results in a large number of guards, hence in an elevated space overhead. On the
other hand, to keep low the space overhead introduced by the Input Guard pat-
tern, the number of guards needs to remain as small as possible. This implies that
each guard will have to check a lager number of input for the guarded component,
becoming a potential bottleneck and thus penalizing the performance of the system
with elevated time overhead.

- For certain systems that require guards to be implemented as components (e.g. sys-
tems composed from black-box COTS software), the Input Guard pattern results
unavoidably to an elevated time and space overhead. The space overhead is due to
the introduction of the new components implementing the guards. The time over-
head is due to the fact that passing input to the guarded component requires one
additional indirection through the component implementing the guard that check
the given input.

- The Input Guard pattern cannot prevent the propagation of errors that do conform
with the specification of the guarded component (e.g. see case (b) in Figure 1). Such
errors may contaminate the state of the guarded component if it has one. Although
these errors cannot cause a failure on the guarded component since it operates ac-
cording to its specification, they can cause a failure on the rest of the system. Such
a failure of the entire system will be traced back to an error detected in the contami-
nated guarded component. Unless the error detection and fault diagnosis capabilities
of the system allow to continue tracing the error until the initial fault that caused
it, it is possible that inappropriate recovery actions will be taken targeted only at
the guarded component, which, nonetheless, has been operating correctly according
to its specification.

- The Input Guard pattern can effectively protect a component from being contam-
inated by erroneous input according to its specification. However, unless it is com-
bined with some error detection and system recovery mechanisms, this pattern will
result in a receive-omission failure (i.e. failure to receive input) of the guarded com-
ponent. For certain systems, such a failure of one of their components may cause a
failure on the entire system. Hence, the Input Guard pattern has limited applica-
bility to such systems if it is not combined with other fault tolerance patterns.

3.6 Known Uses

The guard entity can be seen as one possible realization of the pre-conditions validation
prior to the execution of a piece of code, as this is described in the design by contract
principles [9]. The concept of conditions guarding the execution of tasks has been intro-
duced as monitors already in the ’70s [5]. Monitors, however, would not prevent the flow
of erroneous input to the guarded component; rather, they would prevent the guarded
task from being executed if the starting/input conditions were not met. Nowadays, the
majority of the books that introduce a programming or scripting language instruct also
the validation of input arguments upon the call of a function, procedure, method, routine
or whatever the name of the a functionality block in the corresponding language.



3.7 Related Patterns

The Input Guard pattern has similarities with the Output Guard pattern presented in the
following section. Also, the guard entity of this pattern complements the acknowledger
entity of the Acknowledgment pattern [15] in combining fault containment and error
detection. The acknowledger is responsible to inform the sender of some input about
the reception of it. The combination of the acknowledger and the guard will provide a
confirmation of the reception of correct input and a notification in the case of reception
of erroneous input.



4 Output Guard

Whereas the Input Guard pattern prevents an error in the input of the guarded compo-
nent from contaminating that component, it is often highly desirable stop the error when
it occurs rather when it is about to be propagated to another component. The Output

Guard pattern describes how to confine an error in the component that contains the fault
which led to that error. The technique described by the Output Guard pattern is very
similar to the one described by the Input Guard pattern: the output of a component
is checked against the specification of the component to ensure conformance. Despite
the similarity of the technique, these two patterns serve different purposes. The Input

Guard pattern prevents the contamination of a component from an error occurred else-
where while the Output Guard pattern confines an error inside the component where that
error occurred.

4.1 Context

The Output Guard pattern applies to a system that has the following characteristics:

• The system is composed from distinguishable components, which can play the role
of fault compartments and which interact with each other by feeding one’s output
into another’s input.

• It is possible, either directly or implicitly, to validate the output of a component
against the legitimate output described in the component’s specification.

• The errors that occur in a system are expressed as erroneous system output accord-
ing to its specification, i.e. output whose content or timing does not conform to the
system specification.

Similar observations as for the Input Guard pattern apply here. The second charac-
teristic implies that internal errors (e.g. changes to the internal state due to electromag-
netic disturbances in the environment where the system operates) are not considered by
this pattern unless they result in erroneous output according to the system specification.
Moreover, this pattern does not deal with cases where the output of the system conforms
with the system specification but it still contains errors according to the specification of
the system’s environment (e.g. see case (a) in Figure 1).

4.2 Problem

In the above context, the Output Guard pattern solves the problem of confining an error
inside the component where it occurs by balancing the following forces:

• A system may be composed of components that are developed independently from
each other, without keeping strict consistency with each others specifications.

• A system may infect with errors its environment when the environment is not able
to distinguish the erroneous output from a correct one.

• Different systems have different requirements regarding size impact of the fault
containment mechanism.



• Different systems have different requirements regarding the time penalty of the fault
containment mechanism.

• Fault containment is usually integrated with other solutions provided for other fault
tolerance constituents (e.g. error masking, error detection, fault diagnosis and the
others mentioned in Section 1) in order to provide wider fault tolerance guarantees.

4.3 Solution

To stop an error from being propagated outside the component where it occurred, a guard
is placed at every exit point of the component (be it message emission or invocation
return point). Each such guard checks the produced output against the specification of
the component. If and only if the output conforms with the component specification then
it is allowed to reach the component’s environment.

Notice the above solution does not define the behavior of the guard in the presence
of erroneous output, besides the fact that it does not allow it to reach the component’s
environment. Similarly to the Input Guard pattern, this behavior is intentionally left
undefined in order to allow implementations of the Output Guard pattern to be combined
with error detection mechanisms (e.g. when a check fails, a notification is sent to the error
detection mechanism [8]). Hence, the behavior of the guard when the checks performed
on the output fail depends on the other fault tolerance constituents with which the input
guard is combined.

4.4 Structure

Since the technique captured by the Output Guard pattern is very similar to the one
captured by the Input Guard pattern, it does not come as a surprise that the entities the
former introduces are similar to those introduced by the latter:

• The guarded component which is the part of the system which is guarded against
the occurrence of errors and in which occurred errors will be confined.

• The guard which is responsible to check for errors the output to the guarded com-
ponent against its specification.

Similarly to the Input Guard pattern, there may be many guards for the same guarded
component, depending on the system design and on the number of different exit points
the guarded component may have. For example, a software component with a number
of interfaces and a number of operations declared in its of them can have one guard per
interface, or one guard per message-send and return operation, or any possible combina-
tion of those. Figure 3a illustrates graphically the structure of the Output Guard pattern
for a guarded component with a single exit point. Figure 3b contains the activity diagram
that describes the functionality of the guard.

One way to implement the guards is as separate components in the system. This
approach has the same advantages and inconveniences as its counterpart in the Input

Guard pattern. It allows to have a number of guards proportional only to the number
of the access points of the guarded component. However, the time overhead is quite high
since it includes the invocation of an additional component (i.e. the guard). Also, the
space overhead of this approach is rather elevated since it increases the number of the
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Figure 3: The structure (a) and the activity diagram (b) of the Output Guard pattern.

components in a system by the number of guards that are implemented. Furthermore, in
the case where components are mapped to individual units of failure (i.e. each component
can fail as a whole and independently of other components) the problem of “guarding the
guards” raises again as for the Input Guard pattern. This dilemma has also well-known
consequences, which are difficult and very costly to resolve (e.g. redundant instances of
the guards, distributed among the constituent components of a system, which have their
own synchronization protocol).

Despite the above inconveniences, this implementation approach is valuable in the
case of COTS-based systems composed out of black-box components where the system
composer does not have access to the internals of the components. Also, this approach
can be applied when fault containment comes as a late- or after-thought in the system
development and a quick fix is needed in form of a patch. This implementation approach
does not require any modification on existing components of a system; rather, guards are
introduced as separate add-on components to the existing system.

Another implementation approach is to make the guard part of the implementation
of the guarded component. This practice is often employed in programming where a
method checks the validity of the output it produced before returning it to its environment
(e.g. to its caller). This allows the coupling of the guard(s) and the guarded component.
By integrating the guard with theguarded component the space overhead of the Output

Guard implementation is kept low since it does not introduce another component in the
system. Coupling the guard and guarded component implementation is usually applied
when developing software components that are meant to upgrade an existing system. In
these cases, the developer of the new software component wants to make sure that the
produced output will not introduce any errors to the existing system. To archive this, the
developer of the component introduces self-checking code for the output the component
produces (e.g. see [18] and [11] for more information on self-checking code). The drawback
of this implementation approach is the fact that the time overhead is high and fixed. This
is because the guard is engaged every time the guarded component produces output, even



when that output will be anyway checked as whether it is valid input for the component
which will receive it (e.g. see the Input Guard pattern in Section 3).

A third possibility is to place the guard inside each of the components which may
receive the output produced by the guarded component. This approach allows the inte-
gration of the guard with other fault tolerance mechanisms (e.g. the guard of the Input

Guard pattern for each component that receives the output produced by the guarded com-
ponent ; see Section 3 for more details). Furthermore, this approach allows the elimination
of redundant checks for errors which can increase the time and space overhead of fault
tolerance solutions in a system. This is the case when the guard entities of the Input

Guard and Output Guard patterns are integrated. Then, each guard will perform on the
same data its own checks with respect to different component specification: the former
guard checks the data against the specification of the component that produces the output
and the latter against the specification of the component that receives the input.

On the other hand, this approach is not applicable to COTS software. Third party
developers may not have information about the specification of the other components
from which they will receive input, hence they do not know what conditions to check in
the guard. A drawback of this implementation approach is the elevated space overhead;
the number of guards is not only proportional to the exit points of the guarded component
but also to the number of components that receive as input the output produced by the
guarded component. On the positive side however, when this implementation approach is
applicable it also protects the environment of the guarded component from communication
errors that occurred during the forward of the produced output to the guard. Attention
is required when this approach is combined with en error detection and fault diagnosis
mechanism, because it is difficult to deduce the source of the error, i.e. whether it is a
communication error or it is due to a fault in the guarded component. Another advantage
of this approach is the fact that the guard can be selectively integrated only with those
components which are not robust enough to resist the propagation of errors occurred in
the guarded component. This can be used to reduce the elevated space overhead of the
approach.

4.5 Consequences

The Output Guard pattern has the following benefits:

+ It confines an error to the component where it occurred by forwarding to the compo-
nent’s environment only output that conforms to the specification of the component.

+ The undefined behavior of the guard in the presence of errors allows its combination
with error detection and error masking patterns, and fault diagnosis mechanisms
(e.g. see [8]). Whenever this is applicable, the system benefits in terms of reduced
run-time overhead introduced by the implementation of the fault tolerant mechanism
(e.g. the combination of fault containment and error detection in the context of
system recovery from errors).

+ The similarities between the guard entities of the Input Guard and Output Guard

patterns allow the combination of the two in a single entity. This entity will operate
on the same data and will perform two checks: one against the specification of the
component that produced the data as output and the other against the specification
of the component that will consume the data as input. When applicable, this



combination can provide significant benefits in terms of time and space overhead
since two separate checks will be performed by the same piece of code.

+ There are various ways that the Output Guard pattern can be implemented, each
providing different benefits with respect to the time or space overhead introduced by
the guard. It is also possible to integrate the guard with an existing system without
having to modify the internals of the system components (first implementation al-
ternative). That reduced significantly the amount of system re-engineering required
for applying the Output Guard pattern to COTS-based systems made of black-box
components.

The Output Guard pattern imposes also some liabilities, similar to those of the Input

Guard pattern:

- It is not possible to minimize both the time and the space overhead of this pat-
tern. To keep low the time overhead introduced by the Output Guard pattern, the
functionality of the guard must not be very time consuming. This results in a ten-
dency to introduce a separate guard for each different exit point (e.g. one guard per
invocation-return or per message-send) of the guarded component. Each such guard
checks only a small part of the specification of the guarded component, minimizing
thus the execution time of an individual guard. However, this results in a large
number of guards, hence in an elevated space overhead. On the other hand, to keep
low the space overhead introduced by the Output Guard pattern, the number of
guards needs to remain as small as possible. This implies that each guard will have
to check a lager number of output for the guarded component, becoming a potential
bottleneck and thus penalizing the performance of the system with elevated time
overhead.

- For certain systems that require guards to be implemented as components (e.g. sys-
tems composed from black-box COTS software), the Output Guard pattern results
unavoidably to an elevated time and space overhead. The space overhead is due
to the introduction of the new components implementing the guards. The time
overhead is due to the fact that passing output from the guarded component to its
environment requires one additional indirection through the component implement-
ing the guard that check the given output.

- The Output Guard pattern cannot prevent the propagation of errors that do conform
with the specification of the guarded component (e.g. see case (a) in Figure 1). Such
errors are not due to a malfunction of the guarded component and do not affect
its internal state. Although these errors do not have their source in the guarded
component which is checked to produce output according to its specification, they
can cause a failure on the rest of the system. Such a failure of the entire system
will be traced back to an error detected in the guarded component. Unless the error
detection and fault diagnosis capabilities of the system allow the detection of faults
in the system design, it is highly probable that inappropriate recovery actions will
be taken targeted at the guarded component, which, nonetheless, has been operating
correctly according to its specification.

- The Output Guard pattern can effectively protect the component’s environment
from being contaminated by erroneous output produced by the component according



to its specification. However, unless it is combined with some error detection and
system recovery mechanisms, this pattern will result in a send-omission failure (i.e.
failure to deliver output) of the guarded component. For certain systems, such a
failure of one of their components may cause a failure on the entire system. Hence,
the Output Guard pattern has limited applicability to such systems if it is not
combined with other fault tolerance patterns.

4.6 Known Uses

Contrary to the relation of the Input Guard with the design by contract principles [9]
where the guard maps to the pre-conditions, the Output Guard pattern has little relation
with them. In the design by contract the post-conditions are properties guaranteed at
the end of a successful process execution, rather than being conditions checked to verify
whether the execution was successful or not. Applications of the Output Guard pattern
are found in Double Modular Redundant and Triple Modular Redundant systems where
the guard checks whether the output of two or three replicas of the guarded component
is identical and, if not, it does not deliver it to the environment of the guarded system.
A special case of application for the Output Guard pattern is the use of exceptions in
various programming languages (e.g. C++, Java) and distributed computing frameworks
(e.g. various implementations of the CORBA specifications). In those cases, the guard
explicitly knows about output of the guarded component that is exceptional and must be
treated by the exception handlers rather than been let through to the environment of the
guarded component.

4.7 Related Patterns

Besides the obvious similarities with the Input Guard pattern described in Section 3, the
Output Guard pattern relates to the Fail Stop Processor (FSP) pattern [15]. In the
FSP pattern a comparator entity receives the output of two or more identical processor
entities and compares it. If all output received is identical, then the output is forward
to the environment; otherwise the comparator stops delivering any further output to the
environment. A combination of the guard and comparator entities would enable the self-
checking code to identify which of the processors has failed and notify the error detection
and system recovery mechanisms in order for them to take the appropriate actions.



5 Fault Container

The Fault Container pattern aggregates the fault containment techniques described by
the Input Guard and the Output Guard patterns. This pattern proposes the use of a
wrapper that transforms a software component into its fault containing counterpart.

5.1 Context

The Fault Container pattern applies to a system which has the following characteristics:

• The system is composed from distinguishable components, which can play the role
of fault compartments and which interact with each other by feeding one’s output
into another’s input.

• It is possible, either directly or implicitly, to validate the input and output of a
component against the legitimate input and output described in the component’s
specification.

• The errors that occur in the system are expressed as erroneous input (i.e. input
whose content or timing does not conform to the system specification) or as erro-
neous output (i.e. output whose content or timing does not conform to the system
specification).

The second characteristic implies that the Fault Container pattern cannot deal with
the types of errors that are not addressed by the Input Guard and the Output Guard

patterns. In other words, this pattern does not deal with internal errors of a component
(e.g. changes to the internal state due to electromagnetic disturbances in the environ-
ment where the system operates). Moreover, this pattern does not address cases where
the input or the output of a component conforms to the component specification but
still contains errors according to the specification of the system in which the component
operates (e.g. errors due to design faults). For example, the Fault Container pattern
cannot provide fault containment when applied either to GETIN or to T2N components
in Figure 1(c).

5.2 Problem

In the above context, the Fault Container pattern solves the problem of prohibiting the
propagation of an error both from inside a component to the rest of the system and from
the component’s environment into the component itself, by balancing the following forces:

• A system may be composed of components that are developed independently from
each other, without keeping strict consistency with each others specifications.

• A system may infect with errors its environment or be infected with errors from its
environment despite the fact that the exchanged data that propagate the error not
be perceived as erroneous by the system’s environment.

• Different systems have different requirements regarding size impact of the fault
containment mechanism.



• Different systems have different requirements regarding the time penalty of the fault
containment mechanism.

• Fault containment is usually integrated with other solutions provided for other fault
tolerance constituents (e.g. error masking, error detection, fault diagnosis and the
others mentioned in Section 1) in order to provide wider fault tolerance guarantees.

• The system to which the Fault Container pattern is applied must be indistin-
guishable from the mechanism that implements the Fault Container pattern, i.e. it
must not be possible to address or access system without addressing or accessing
that mechanism at the same time.

5.3 Solution

As stated by its name, the Fault Container pattern provides a container that embraces
the system on which the pattern is applied. This container forms the fence that stops
the propagation of errors in both ways, from inside the container to the outside and vice
versa. Whenever the system receives input from its environment or produces output to
be delivered to its environment, the container checks it against the specification of the
system. If and only if the input (or the output) confirms with the system specification
then it is allowed to reach the system (or reach the system’s environment respectively).

A similarity of this pattern with the other two patterns presented previously in this
paper is the fact that the behavior of the container is not defined in the presence of
an error, besides the fact that it does not allow it to enter or leave the system. This
behavior is intentionally left undefined in order to allow implementations of the Fault

Container pattern to be combined with error detection, fault diagnosis and system re-
pair mechanisms. It is worth mentioning that in practice there has not been any pure
implementation of the Fault Container pattern as described here in the fault tolerance
literature. Rather, very often the functionality of this pattern is combined with other
functionalities. For example, the container functionality is combined with error detection
and fault repair through reflection functionalities to result in a mechanism that provides
fault containment and repair for the Chorus OS [14]. In another case, the container func-
tionality has been combined with the functionality described by the Adapter pattern [2]
in order to result in a fault containing Hive cell made out of four (or more) modified Unix
kernels for shared memory multiprocessor architectures [12].

Strictly speaking, from the fault containment perspective the Fault Container pat-
tern provides the same benefits as the combination of the Input Guard and the Output

Guard patterns, i.e. it prevents an error from being propagated inside and outside a given
component. From a conceptual perspective however, this pattern contains more than
the mere aggregation of the guarding of the access and exit points of a component. It
also contains the potential of coordinating these two functionalities, i.e. the possibility to
correlate an error in the output of the component to the input that, when processed by
the component, led to the erroneous output. This additional functionality becomes visible
when combining the Fault Container pattern with some fault diagnosis, error detection,
fault repair, or system recovery mechanism. In practical terms, an implementation of the
Fault Container pattern will provide to the environment of the contained component
an interface similar to the aggregation of the interfaces provided by implementations of
the Input Guard and Output Guard patterns. However, behind this interface and in ad-



dition to the functionality of the guards corresponding to the aforementioned patterns,
the functionality of their coordination may be provided.

5.4 Structure

The Fault Container pattern introduces two entities, similar to those of the Input

Guard and Output Guard patterns:

• The contained component, which is the part of the system that is shielded from
getting contaminated by errors propagated from its environment through its input
and from contaminating its environment with errors propagated through its output.

• The container, which is responsible to check against the contained component spec-
ification for errors in the input the component receives and in the output the com-
ponent produces. In addition, the container may correlate the output checks with
the checks of the input that led to that output in order to derive causal relations
between input and erroneous output.

In practice, the container is a new component in the system which embeds the con-
tained component and implements also the error fencing functionality. That makes the
container and the contained component a single addressable constituent in the system
composition. Figure 4a illustrates graphically the structure of the Fault Container pat-
tern for a contained component with a single access and a single exit point. Figure 4b
contains the activity diagram that describes the functionality of the container.

The implementation approach of the Fault Container pattern that is most widely
used is the tight coupling of the container with the contained component. This approach
is a straightforward application of the solution described above and it has appeared in
two variants. In the first variant, usually applied to custom-made software, the container
functionality is integrated with the contained component. Every time the latter receives
some input or is about to deliver some output, the container functionality is engaged to
check that input or output against the contained component specification. In the second
variant, usually applied to systems composed from black-box COTS software, the con-
tainer is a new component that embeds the contained component. Every input send to the
contained component and every output produced by it are intercepted by the container,
which checks them against the specification of the contained component. Both variants of
this implementation approach are applicable in many cases of software system develop-
ment, ranging the composition of the system from custom-made software component to
the use of black-box COTS software. As long as the specification of the contained com-
ponent is available, this implementation approach can be applied to transform a software
component into its fault containing counterpart. The main characteristic of this approach
is that the container introduces a fixed time and space overhead. In cases where the input
and output of a component is already checked by other means, the error fencing func-
tionality provided by the container is redundant. Consequently the system performance
is unnecessarily penalized in terms on time and space overhead.

Another implementation alternative is to integrate the container with the environment
of the contained component. This results in redundant instances of the container inside
the components interacting with the contained component, which introduce a higher space
overhead to the system compared to the first implementation alternative. Moreover, with
this approach the contained component is entirely shielded from its environment but only
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Figure 4: The structure (a) and the activity diagram (b) of the Fault Container pattern.

shielded from those parts of its environment that contain the container. At the same time
however, this approach allows to integrate the container only with selected component
from the environment of the contained component. Consequently, the system developer
has better possibilities for tuning the time overhead introduced by the Fault Container

pattern since the container functionality will not be engaged in every single interaction
of the contained component with its environment.

This approach has an important drawback: it allows the contained component to be
addressed separately from the container. This contradicts the second force of this pattern
which requires the contained component to be indistinguishable from its container and
results in a partially wrapped component. Nevertheless, this approach can be favored
in practice when performance issues are of primary importance. The choice and the
responsibility of partially wrapping a component in order to gain performance benefits
lies entirely with the system designer. Another drawback of this approach is the additional
communication overhead that is introduced by the coordination messages that need to
be exchanged among the distributed instances of the container in order to deduce the
causal relations between input and erroneous output of the contained component. Some
of this overhead can be amortized by integrating these messages with other coordination
messages for fault tolerance specific purposes (e.g. with acknowledge messages sent for
error detection purposes).

In theory, a third implementation alternative is to place the container in a separate
component which acts as proxy for the contained component. However, this approach is



very similar to the second variant of the first implementation alternative, and there are no
application cases where the first approach does not apply and this one does. On the other
hand, the implementation of the container as a separate component bears two drawbacks:
it has an elevated space overhead due to the additional component implementing the
container, and it also has an elevated time overhead due to the indirection through the
component implementing the container of every interaction of the contained component
with its environment. For these reasons, this implementation approach has very low
practical interest.

5.5 Consequences

The Fault Container pattern has the following benefits:

+ It stops of errors expressed as input and output content or timing that does not
conform to a component specification from entering or exiting that component.

+ The undefined behavior of the container in the presence of errors allows its com-
bination with error detection and error masking patterns (e.g. see [14] and [12]).
Whenever this is applicable, the system benefits in terms of reduced run-time over-
head introduced by the implementation of the fault tolerant mechanism (e.g. the
combination of fault containment and error detection in the context of system re-
covery from errors).

+ The eminent similarities of this pattern with the Adapter pattern [2] allow the
straightforward combination of the two patterns in the same implementation. Em-
ploying the Adapter pattern to adjust the interface of a component that is otherwise
incompatible with the interface its environment expects from it may introduce faults
in the system. The Fault Container pattern compliments the Adapter by ensur-
ing that the adaptation of the component interface to the interface expected by
its environment does not cause erroneous input and output to propagate from the
component to its environment and vise versa.

+ The different implementation alternatives allow the system developer to chose the
aptest way to apply the Fault Container pattern in a given system. By embedding
the contained component inside the container the former is completely shielded from
its environment for a fixed space and time overhead. When appropriate however,
the system developer may chose to integrate the container with selected parts of the
contained component ’s environment. This decreases the time overhead introduced
by the Fault Container pattern for the price of a higher space overhead (redundant
instances of the container) and for lower shielding guarantees since some selected
interactions of the contained component will not be checked by the container.

The Fault Container pattern imposes also some liabilities:

- It is not possible to minimize both the time and the space overhead of this pattern.
To keep low the time overhead introduced by the Fault Container pattern, the
functionality of the container can be integrated with selected components in the
environment of the contained component. In addition to reducing the fault contain-
ment guarantees only to those selected parts of the system, this approach increases
also the space overhead because of the redundant instances of the container. On the



other hand, to keep low the space overhead introduced by the Fault Container pat-
tern one container can be used, which will embed the contained component. Then,
every interaction between the contained component and its environment will have to
go through the container, causing an elevated and fixed time penalty for the system
execution.

- For certain systems that require the container to embed the contained component
(e.g. systems composed from black-box COTS software), the Fault Container pat-
tern results to an elevated implementation overhead. This is because the system
developer has to implement the code necessary for embedding one component into
another, in addition to the implementation of the container functionality.

- The Fault Container pattern cannot prevent the propagation of errors that do
conform with the specification of the contained component as is illustrated in Fig-
ure 1. Such errors are not due to a malfunction of the contained component. Despite
the fact that these errors do not have their source in the contained component which
is checked to receive input and to produce output according to its specification, they
can cause a failure on the rest of the system. Such a failure of the entire system will
be traced back to an error detected in the contained component. As a result recovery
actions targeted at the guarded component will probably be taken. However, such
recovery actions do not deal with the source of the problem, which is the fault that
caused the initial error (e.g. a design fault or an error in the input of the guarded
component). To allow effective system recovery, sophisticated (and thus space and
time consuming) error detection and fault diagnosis techniques must be employed
which will allow the error tracing to be continued through the guarded component
until the real source of the propagated error is revealed.

- The Fault Container pattern can effectively protect a component from being con-
taminated by erroneous input according to its specification. It also prevents the
component from delivering to its environment erroneous output according to the
component specification. However, unless it is combined with some error detection
and system recovery mechanisms, this pattern will result in send- or receive-omission
failures (i.e. failure to send output or receive input) of the contained component.
For certain systems, such a failure of one of their components may cause a failure on
the entire system. Hence, the Fault Container pattern has limited applicability
to such systems if it is not combined with other fault tolerance patterns.

5.6 Known Uses

The Fault Container pattern has been applied in practice in the implementation of fault
containing Hive cell made out of four (or more) modified Unix kernels for shared memory
multiprocessor architectures [12]. Other cases where the Fault Container pattern has
been used to shield the propagation of errors to and from an operating system kernel are
the cases of fault-tolerant Mach [13] and the Chorus kernel [14].

5.7 Related Patterns

The Fault Container pattern has obvious similarities with both the Input Guard and
Output Guard patterns presented in Sections 3 and 4 respectively. Also, the Fault



Container pattern complements the Adapter pattern [2] with fault containing properties.
Finally, this pattern can be seen as the customization of the Proxy pattern [2] to meet
the fault containment requirements of a system.



6 Summary

This paper has presented three design patterns for fault containment which are inspired
from a variety of applications domains: system specification (e.g. design by contract [9]),
self-stabilization [17], OS kernels (e.g. fault tolerant Mach [13] and Chorus [14]) and
shared memory multiprocessor architectures (e.g. the Hive system for the FLASH mul-
tiprocessor [12]). This work is a complement of our previous work on design pattern for
fault tolerance [15] and it can be used to extend the classification of the pattern system
presented there.

The variety of implementation approaches that can be employed when the presented
patterns are applied make them suitable for different cases ranging from systems built from
custom-made software components to systems composed from black-box COTS software.
For example, the Input Guard pattern is commonly used when integrating a new com-
ponent with an existing system whose specification is not available or not very clear. The
Output Guard pattern is usually applied on components liable to produce errors that
may contaminate the rest of the system (e.g. third party software). Finally, the Fault

Container pattern is especially useful for wrapping critical components for the overall
functionality of the system and to prevent errors from propagating into and outside from
those components.

When employing these patterns, the system developer must pay attention to certain
issues that play a major role in the overall performance of the system. The first issue is the
tradeoff between the time and space overhead introduced by these patterns: optimizing
one overhead results to a negative impact on the other. The system developer must make
a design decision on this issue keeping in mind the consequences this decision bears for
the system performance.

Another important issue is the risk of introducing redundant software that checks
the same conditions. For example, this may happen if the system developer integrates
the Input Guard with the environment of a third party component and that component
is eventually delivered having the Input Guard integrated in itself. That results in a
useless duplication of the guard functionality which penalized both the time and the
space performance of the system.

Last, but certainly not least, the system developer must face and resolve the well-
known dilemma of fault tolerance regarding the responsibility of “guarding the guards”.
In common practice this issue is dealt with in the following way. The failure model of the
system maps the units of failure to the system’s constituent components. Then, the guard
and container entities of the presented patterns are integrated with some of these com-
ponents. It follows then that the fault containment specific entities may fail only when
some component of the system fails. Thus their failures can be monitored by the error
detection mechanism that monitors the component into which they are integrated and
their recovery becomes part of the recovery of the failed component. However, some im-
plementation alternatives map the guard and container entities to separate components.
If the aforementioned failure model is applied again then the error detection mechanism
of the system must be extended to monitor also these new components. Moreover, the
error masking, fault repair and system recovery mechanisms must be also applied to these
new components. This is both a tedious implementation task as well as time and space
consuming since it requires additional acknowledge messages, replica groups, checkpoints
actions, etc.
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