
GAMA – A Pattern Language for Computer

Supported Dynamic Collaboration

Till Schümmer
Computer Science VI - Distributed Systems

FernUniversitaet in Hagen
Informatikzentrum, Universitaetsstr. 1, D-58084 Hagen, Germany

till.schuemmer@fernuni-hagen.de

Abstract

The GAMA pattern language provides patterns for supporting dynamic
teams with computer technology. In this document, a small subset of the
GAMA language is presented that deals with spontaneous group formation
based on common interests.

1 Introduction

New organizational models such as virtual organizations have made computer sup-
ported collaborative work (CSCW) more and more important (e.g. (Lillehagen,
Dehli, Fjeld, Krogstie, and Jørgensen 2002)). One characteristic of virtual organi-
zations is that the members of virtual organizations collaborate in order to reach a
common goal. After the goal is reached, they may separate again. Thus organiza-
tions are compiled and reorganized on a frequent basis.

Members of virtual organizations have to accommodate the demand of frequent
restructuring and fast team formation in their daily work. This is, why I refer to
teams that work in such environments as dynamic teams. Some of the problems
that arise for dynamic teams are

– how to find the expertise within the organization that is needed to fulfill an
urgent task,

– how to find people who can collaborate on a specific task, or

– how to coordinate collaboration on shared documents.

Formal management is very difficult in environments of frequent restructuring
– if not even impossible. In contrast or in addition to controlling such teams by
formal management techniques, one should train the team members in several key
practices: frequent communication for establishing mutual understanding, frequent
collaboration to foster peer learning and knowledge transfer, and fast team forma-
tion to respond to ad hoc demands.

The focus of the GAMA pattern language presented in this paper is to provide
design solutions to end-users and software developers that help to build CSCW
technology, which supports the needs of teams in a frequently changing environment.
It takes for granted that the team members have found a way to work on shared
artifacts. This can, for instance, be the use of a shared file system, an editable
web server (a WIKI (Leuf and Cunningham 2001)), or a version management tool.
Another prerequisite is that basic communication technology is available (such as
e-mail or chat systems).

This paper presents the part of the GAMA1 language that addresses group
formation. The basic idea (which is also expressed in the pattern From Shared

Data to Shared Work→2.1) is that people notice one another, while they work
on shared artifacts. They can then benefit from jointly working on the same or
related shared artifacts through establishing a group collaborating on the shared
artifact.

1.1 Instead of a disclaimer

There is one important limitation in the applicability of most patterns of the GAMA
pattern language: If the organizational structure does not reward the process of
knowledge sharing, all technical solutions will soon fail. This section presents one
example, how technical solutions – although carefully designed – failed due to an
inappropriate social environment.

It shows how a lack of such acceptance results in the failure of a knowledge
management system is given by Pipek, Hinrichs, and Wulf (2003): They examined
a German steel mill, where technical diagrams of the plant should be transferred to
a central repository. But important parts of the knowledge about the steel mill’s
current state resided in the individual divisions. The central repository only held
those diagrams, which were created in a planning phase of an installation. Ad-hoc
changes were often not recorded in the central repository. Although the organization
asked their members to provide such information, sharing did not take place.

This had two main reasons: first, the diagrams had to be filed by the archive
group. This made changes in the repository difficult and time consuming. Second,
the data stored in the repository was not as valuable as the data that could be
maintained from the individual workers of each division. They knew their plant
best – regardless the information, which was stored in the diagrams. And this
knowledge was more than just knowledge. It made workers important and not
exchangeable. It was a reason for other colleagues to contact them – and thus an
important social capital. These were reasons for not sharing the knowledge in an
automated way.

A conclusion that one can draw from this study is that it is often difficult
to access shared data crossing different divisions of a company (or even different
companies in a virtual organization). The factors outlined by Pipek et al. are only
a few among many others see also Hinds and Pfeffer (2003).

1GAMA is an acronym that stands for group awareness based on multiple associations: initially,
the language was heading for providing group awareness based on the relations between artifacts
and users.

When reading and applying the following pattern language, it is important to get
the focus of the desired collaboration straight. Is it collaboration between members
of a small team who should collaborate on a specific project? Is it knowledge
transfer between individuals within a large organization? Or is it collaboration
within a virtual organization?

The answers to these questions will influence the access to shared data and
the willingness to provide meta information on each individual’s work. They also
influence the willingness of collaboration between participants.

The following patterns are intended to be applied in a context where collabora-
tion is desired and information can flow liberally. This might range from the full
organization to a small team.

avoid disturbance

visualized by

extend temporal

presence

one indicator for a

group

spatial structure

use history

get in contact

extend spatial

presence

calculate neighbors

get information from

store activities

promionent

visualization

extends

highlight possibly

conflicting activities

colored distance

ease connection

represent nodes

provide awareness

collaborative

episodes

consider related

artifacts

provide privacy

visualized by

visualized by

find neighbors

track user actions

track activities

visualized byprovide privacy

provide awareness

save screen space

relate activities to

artifacts

Proxy Object

Time Compressor

Radar View

Elephant's Brain

Local Awareness

Presence Indicator

From Shared Data

to Shared Work

Active Neighbors

External Awareness

View

In-Place Awareness

Change Warning

Talk First

Color Scale

Work together

Distinct Awareness

View

Semantic Net

Semantic DistanceAccumulated

Awareness

Masquerade

Interactive User Info

Gaze Over the

Shoulder

Figure 1: The structure of the GAMA pattern language.

1.2 How to use the GAMA pattern language

Figure 1 provides an overview of the full GAMA language, as it is planned. Patterns
are represented as boxes. Some of the relations between the patterns are represented
as directed links. The links propose different reasonable paths through the GAMA
language. Note, figure 1 only shows a subset of the relations between patterns. One
can refer to each pattern to find more relations to other patterns in the related
patterns section. Each pattern in section 2 includes a miniature view of figure
1 with one black colored pattern. This visualization was inspired by Alexander,
Ishikawa, and Silverstein (1968) and indicates the position of the current pattern in
the pattern language.

This paper presents the following 8 complete patterns:

From Shared Data to Shared Work→2.1 addresses the problem of how to
bring together people who could benefit from working with one another. It
solves the problem by using other patterns of the GAMA language that pro-
vide awareness on users who work on a related artifact and propose collabo-
ration.

Local Awareness→2.2 focusses on the situation, where several users work on the
same artifact. It proposes to provide information on the other users in the
current context of work (namely next to the artifact, which is currently used
by the users).

Presence Indicator→2.3 solves the problem of how to visualize awareness infor-
mation that is bound to an artifact. It shows a way, how this can be solved
in a graphical user interface.

Change Warning→2.4 is a pattern that provides awareness on activities, which
modified the artifacts, in order to prevent conflicting work or work that is
based on an obsolete perception of the artifacts.

Active Neighbors→2.5 extends the patterns Local Awareness and Change

Warning in a way that users are also aware of other users (or activities) that
take (or took) place on semantically related artifacts, since these activities
could affect the user’s work. It uses a Semantic Net to calculate users who
could benefit from collaboration.

Gaze Over the Shoulder→2.6 provides the solution to technical, economic, or
legal obstacles for the use of the awareness patterns above: it is often not
possible to change the current application that is used to work on the artifacts.
The solution is to monitor external communication channels to maintain and
process additional information on users’ activities with the artifacts.

Elephant’s Brain→2.7 provides a solution for remembering activities that were
performed by the users. Such information is needed by the awareness patterns
as a basis for the calculation of users or activities that other users should be
aware of.

Semantic Net→2.8 finally shows how one can calculate the semantic distance of
artifacts. It solves this question by using a graph data structure and applying
graph algorithms instead of calculating distances between every two artifacts.

Theses patterns provide the basic functionality for providing group awareness
with the GAMA language. Section 3 lists the intents of the remaining 15 patterns
of the GAMA pattern language. These patterns are subject to further development.

1.3 The Pattern Structure

Each pattern is presented in an Alexandrian form. The pattern name appears as
a section title followed by other possible names for the pattern (AKA), the intent,
and the context of the pattern. It helps the reader to decide, whether or not the
following pattern may fit into his current situation.

Then follows the core of the pattern composed of the problem and the solution
statement in bold font separated by a scenario and a symptoms section. The sce-
nario is a concrete description of a situation where the pattern could be used, which
makes the tension of the problem statement (the conflicting forces) tangible. The
symptoms section helps to identify the need for the pattern by describing aspects
of the situation more abstract again. It lists observable forces that are unbalanced
before the pattern was applied.

After the solution section, the solution is explained in more detail (participants,
rationale, danger spots, known uses) and indications for further improvement after
applying the pattern are provided (in the related patterns section). The participants
section explains the main components or actors that interact in the pattern and
explains how they relate to each other. The rationale section explains, why the
forces are resolved by the pattern. Unfortunately, the application of a pattern can
in some cases raise new unbalanced forces. These counter forces are described in
the section labelled Danger Spots.

References to patterns are shown in Small Caps. If the pattern is part of the
GAMA pattern language, the section in which the pattern is explained is provided
behind the pattern.

2 The GAMA Pattern Language

2.1 From Shared Data to Shared Work

Foster group formation and spontaneous collaboration by bringingIntent

together users who share an interest in the same data and providing
them with means for communication and collaboration.

The pattern is an overview pattern, which sets the stage for the
remaining patterns of the GAMA language.

Users are working with an application that provides access to sharedContext

data. They consume or manipulate the shared data using their per-
sonal clients, which may but don’t have to be at diverse locations.

The shared data may be, for instance, a file, a set of files that
are used for a project, a cluster of related objects in a distributed
application, or a set of records in a database that is accessed by all
users.

The interaction with the shared data is not easily predictable,
since the possible activities do not follow a fixed set of workflows.

♦♦♦

Although many users work with the same shared data,Problem

they may not recognize the other users’ work. This results
in parallel or conflicting work and a lack of collaboration
and learning from one another.

Imagine a scenario in the automobile industry: Many employeesScenario

work on the design of new car. Some experts design the electron-
ics, while others work on the layout of the control panel. In each
group there are different responsibilities and roles. While the de-
signer arranges the tachometer, the ecologist considers how the
tachometer may be recycled. All engaged employees work on the
same shared data – namely the design documents of the whole car.

During the design process different modes of collaboration
(Schümmer and Haake 2001) may take place: First the designer
works on his own to create a first draft. If the material for the
tachometer is to be specified, the situation demands a close co-

operation with the ecologist. But the ecologist is not the only
person the designer needs to collaborate with. Together with a
mechanic, he has to investigate, whether or not the tachometer
can be created with the considered material. These are only two
examples of collaboration on shared artifacts, which is needed in a
complex design process.

The more complex and dynamic the environment (respectively
the shared data) gets, the harder it is to predict all valuable con-
stellations for collaboration by means of a strict work flow.

Consider as an less obvious situation in the car example the
design of safety seats for babies and the development of an airbag
security system. In most modern cars that have a co-driver airbag,
one can no longer place the safety seat for babies on this seat since
the inflation of the airbag may kill the baby sitting in the safety
seat. In this example, two designers did not collaborate although
they worked with the same space in the car. The result is that some
requirements were not communicated among the two designers.

The examples show that collaboration opportunities are often
not recognized and collaboration does not take place. This may
have two consequences. The most obvious consequence is that
the work of the different participants will result in conflicts. If the
designer does not contact the electrical engineer and the mechanical
engineer, it might be that the design of the tachometer does not
provide any space for the needed cables that lead the signals to
the device. In this case, the designer obviously didn’t know much
about the technical constraints of his design, which leads to the
second consequence: The designer would not be able to learn from
the electrical engineer. If they had collaborated, they could have
discussed their different experiences and won new insights.

From this scenario, one can see that it can be very important
to foster collaboration, when two or more users work on the same
part of the shared data.

The problem becomes obvious when ...Symptoms

– managers consider it as difficult to predict who should collab-
orate to reach a specific goal.

– team members notice that they worked on the same artifacts
after the work is finished.

– parallel work causes conflicts that could have been resolved
when the team members had worked together.

Users are unaware of the potential for collaborative activities
that could improve the overall result or minimize conflicting work.

The users are working with the shared data without much
knowledge of their colleagues (fig. 2). The only effect that let’s
them deduce that other users are working on the shared data is

Figure 2: Single user’s work on shared data.

that the data changes from time to time. Uncoordinated collabo-
ration in a shared filesystem is an example of this kind of work.

One of the forces in the context section stated that it is difficult
to know all useful points of collaboration in advance. But even
if this knowledge exists, it is still challenging to establish groups.
Users have to coordinate collaborative episodes before they actually
take place (cf. fig. 3).

Figure 3: User driven group formation.

First, the users have to identify other users who should be part
of the team and contact them to propose a collaborative session
(cf. fig. 3-1). GAMA refers to this kind of group formation as
user driven group formation. If all participants agree, they start a
collaborative session (2). The topic of the session sets a new focus –
the group focus – that all participants need to share. Establishing
group focus may be difficult if the group members were focussing
on unrelated activities when the group started its session.

Depending on the desired strength of collaboration, group mem-
bers need to be aware of each other’s activities during the collab-
orative session. The users’ activities need to be tracked (3) to
provide awareness (4). Awareness information is mainly used to
coordinate the activities in the collaborative session and to avoid
conflicting activities in the same workspace.

Therefore: Model dynamic groups that are built from theSolution

set of users of the shared data who share a common in-
terest (e.g. detected by patterns Local Awareness→2.2 or
Change Warning→2.4).

Allow these groups to be established on the basis of their mem-
bers’ activities (again Local Awareness→2.2), so that they are
likely to have a common interest. Provide them with collaborative

tools that support communication (Talk first→3) and collabo-
ration (implementing various groupware patterns).

Use the patterns of the related patterns section to detail each
of the actions proposed by the above paragraphs.

♦♦♦

Participants User: The user works with an application on shared data. His
work initially takes place in a single user mode. After becom-
ing aware of other users, he starts a group with these users to
enter closer collaboration.

Activity: Activities are objectifications of the actions the user
performs. They represent a semantic entity formed of low-
level interactions, such as key-strokes or mouse movements.
Examples for activities could be

– navigating from one web page to another,

– performing a search query,

– working in the same shared space (and in this case inter-
preting the content of the shared space as shared data),
or

– changing a method of a source file in a programming en-
vironment.

As the examples suggest, activities should be at a semantic
level, which make sense for the end user.

Artifact: A set of artifacts represents the shared data. Activities
focus on artifacts.

Group: When users decide to collaborate, they form a group.
This group then interacts using shared tools.

The participants (User, Activity, Artifact, and Group) collaborate
in three main use cases that are addressed by related patterns:

Tracking Activities: Users perform activities on artifacts, which
have to be tracked to be able to provide awareness (Gaze

Over the Shoulder→2.6).

Providing Awareness: Based on tracked activities, the system
calculates awareness information, which is indicated to users
(Local Awareness→2.2, Change Warning→2.4).

Establishing Contacts: Users perceive awareness information.
This means that they know, which other users they can con-
tact to form a group (Talk first→3).

The pattern From Shared Data to Shared Work empha-Rationale

sizes the importance of providing group awareness (cf. fig. 4). The
group formation process starts in the phase of single-user work.
While the users work independently (a) on shared artifacts (b),

the system tracks their activities (1). Based on this information,
the system can provide awareness information about the users’
single-user activities (2). This information can, for instance, re-
veal whether other users currently work on the same artifacts. If
a user detects another user who works in the same area, she can
establish a contact with this user (3). I call this kind of group
building data and activity driven group formation. Compared to
the user driven group formation, data and activity driven group for-
mation ensures that the users share a common focus, which makes
focussing the group and accomplishing collaboration (4) much eas-
ier. In this model, awareness information is an important means
to detect collaboration opportunities. Note that it also plays a role
within tightly coupled collaboration, where awareness information
can be implemented in the same way, as if the group formation had
been user driven.

Figure 4: Data and activity driven group formation.

One might ask, how this solution differs from the application of
a traditional version management system, like CVS (Price 2000) or
Envy (Pelrine, Knight, and Cho 2001). Version management sys-
tems also provide means for coordinating parallel work on shared
data. If two or more users work at the same time with the same
artifact, most version management systems create parallel editions
of the artifact and leave the integration of the two editions to the
end user. That actually is the benefit that would make a user
asking for the pattern From Shared Data to Shared Work:
Knowing in advance, who works with an artifact, can make the
user more cautious because he knows that all work that he does
will conflict with other users’ work. Collaboration at this point in
time combines the integration aspect with the actual work – and
puts the efforts for integration on the shoulders of all co-workers.

Providing mechanisms for dynamic artifact-based group formationDanger Spots

may lead to a practice that disregards formal team management
at all. The pattern does not intend that formal work flows should
be discarded, but that they need to be accompanied by dynamic
group formation.

When designing the systems, you should take into account that
users are often reluctant to change their current work environment.

Thus, it is likely that totally new applications will not be used only
for the sake of better group awareness (cf. e.g. (Sohlenkamp, Prinz,
and Fuchs 2000)). You should integrate the group awareness and
team formation mechanisms as tight as possible. The ideal case
would not require any user actions for setting up the service, and
users would only notice the changed application, when collabora-
tion opportunities arose.

Known Uses TUKAN (Schümmer and Schümmer 2001) is a collaborative pro-
gramming environment, which supports dynamic groups. It
proposes a lightweight software development process. The de-
velopers first agree on a set of tasks for the construction of
the software system. These tasks are written on shared plan-
ning cards (a distributed variant of the planning game, as it
is proposed in eXtreme Programming (Beck 1999)).

A typical development cycle starts in a single user mode (or
with two developers working together at one machine). The
developer selects an appropriate task and starts coding, as
if he was working alone. At the same time, other develop-
ers also start their work. All parties ignore one another until
they become aware of each other because they are browsing
or changing semantically related methods. The developers
use the built-in communication support to get in contact with
each other and finally decide that they should solve the part
of the task together, which affects both of them. The sys-
tem provides means for synchronous collaboration such as a
collaborative code editor.

TUKAN was the main application, from which this pattern
language was mined. Thus, it will be used as example in many
of the following patterns.

GAMA Mall (Schümmer 2002) is a design study of a collabora-
tive shopping application, which extends the web pages of the
Amazon.comTM bookstore. Users become aware of other users
browsing the store. The system informs the users if other
users browse content, which is semantically relevant to the
local user. Users can then initiate tighter collaboration, such
as chatting or collaborative browsing.

I2I (Bradshaw, Budzik, Fu, and Hammond 2002) is a system that
provides awareness on other users’ activities on the web.
Whenever two or more users browse the same or a seman-
tically related artifact, the system visualizes this as a Pres-

ence Indicator→2.3. Users are provided with means for
communication to establish contacts to users working on re-
lated artifacts (Talk first→3).

Related patterns are grouped into four sections: patterns for pro-Related Patterns

viding awareness, patterns for tracking activities, patterns for es-
tablishing contacts, and patterns for accomplishing collaboration.

You should first look at the pattern Local Awareness→2.2.
This pattern outlines the most basic way of providing awareness to
users of a system with shared data. It can be refined by extend-
ing the notion of locality. The pattern Active Neighbors→2.5
provides a starting point for this.

All patterns that aim on the provision of awareness rely on
other patterns, which track the required data from the user ac-
tions. The starting pattern for this section is Gaze Over the

Shoulder→2.6.

If you feel that the application provides enough awareness, you
can figure out how contact is established (cf. Talk first→3) and
which means you may use to support collaborative episodes (cf.
Work Together→3).

Note that the area of supporting collaborative episodes would
naturally comprise a whole pattern language for groupware appli-
cations. This would go beyond the scope of the GAMA pattern
language presented here.

The Pattern Adhoc Meeting (Coldeway 2003) describes, how
people should meet dynamically whenever an important issue arises.
Although it does not relate to any technical issues or distributed
team settings, it shares the same idea.

2.2 Local Awareness

Contextual Awareness, Document Awareness (e.g. (Cohen, Jacovi,AKA

Maarek, and Soroka 2000))

Provide awareness information in the context of the artifact, whichIntent

is in the local user’s focus.

Many users are working on a set of shared artifacts. You have al-Context

ready decided to use the pattern From Shared Data to Shared

Work→2.1 to encourage the formation of dynamic teams. The
groups should be focussed on a shared current interest, which
matches their current actions.

The application, which is used to access the shared data only
provides means for manipulating or accessing the data and for keep-
ing it consistent.

Users’ current state is not yet reflected in the user interface.
Especially, there is no means to find out whether or not other
users are available who share a common interest.

♦♦♦

Although most systems that work on shared data provideProblem

support for coordinating shared access, they often don’t
tell the user, who is working on a specific artifact. Such
information is needed to establish ad-hoc teams that share
a common focus. Without such information, users assume
to work alone – and do not see the possibility or urge for
collaboration.

Imagine a real world plaza, where people meet for social interaction.Scenario

This plaza is popular, since it offers many services, such as cafés to
hang around, notice boards where citizens of the community post
their private adverts, and shops where one can buy, for instance,
food or books. Since the plaza is crowded, it motivates for talking
or resting in the community.

Now consider a virtual community web site. It also offers bul-
letin boards, chat-rooms, and links to virtual shops. All these
facilities are arranged on a central portal page. Although all com-

munication means and services are available, the users often feel
isolated at the portal page. The community web site looks as if no
users were using it and does not motivate people to rest and talk
in the community. Especially, the users don’t see a way to meet
by chance, which is one characteristic of a real-world plaza.

The problem becomes obvious when ...Symptoms

– users cannot say, whether or not other users work with the
same artifacts.

– users always have the impression of being on their own.

The background of the problem lies in the different nature of
real-world interaction and virtual interaction. If people interact
with real-world-artifacts, they have to be physically co-located with
this artifact. In the case where more than one user works with
the artifact, these users have to be co-located as well since all of
them have to be co-located with the artifact. When users interact
with artifacts in a virtual space, co-presence is not needed since
all interaction is computer-mediated (and thus can be performed
by means of computer networks). The users still interact with and
have a relation to the artifact, but they don’t have to get in contact
with the other users anymore.

Therefore: Provide awareness in context. This means thatSolution

the system tells the local user, who else is currently inter-
ested in the local user’s focussed artifact and what they do
with this artifact. Show this information whenever the artifact
is shown on the screen. The information should contain details
about the user drawn from his user profile, the artifact, and details
on the activity, which the user is performing.

♦♦♦

Participants Artifact: The unit of shared data, where the users work on. The
granularity of the artifacts has to be determined by the ap-
plication designer. Examples are web sites, single pages of a
web site, or more application specific artifacts, such as classes
and methods in a programming environment.

Activity: The representation of a user’s interaction with the shared
artifact. It may be a modifying activity such as changing a
web page or a reading activity, where the artifact is perceived
by the user. In many contexts, it is not trivial to detect, which
activities take place. The Gaze Over the Shoulder→2.6
pattern points out how activities can be detected.

Local User / Confocal Users: The local user interacts with the
system and wants to get informed about confocal users who
interact with the system from a distant location. Two or more
users are considered as confocal, if their current focus is on

the same artifact. This term was chosen to clearly distinguish
between physically co-located users who work at the same
physical location and confocal users who work with the same
virtual artifact.

The set of confocal users on an artifact contains all users who
have started an activity with the artifact, which is not yet
finished. Several known uses don’t distinguish between local
and remote users when looking for activities. This implies that
the set of confocal users for a specific artifact that is currently
watched by the local user always includes the local user. Note
that all users are local users at their machine. Making the
distinction on the other hand reduces awareness information
to awareness on remote users (only activities performed by
remote users are considered).

Awareness Information: Awareness information represents the
status of remote users and is displayed to the local user. The
information may be at different levels of detail. For a small
set of confocal users, it may provide information on the other
user’s identity.

By explicitly telling the user that also other users are working withRationale

the artifacts (or more general at the same virtual location), these
users get aware of each other, which is the basis for establishing
contacts.

As with From Shared Data to Shared Work→2.1, one
might ask how this solution differs from the application of a tra-
ditional version management system. If the only goal would be to
avoid other users from overwriting their colleagues work, this might
well be reached by using a version management system, which
avoids parallel work on the same artifact (locking) or highlights
conflicts before they can be committed to the version management
system (such as in CVS (Price 2000)).

But the important point in this pattern is that the user gets
aware of activities that currently take place on the artifact – not
activities that are completed as it would be the case, when a user
decided to check in a new version. This opens the opportunity to
collaborate within the activity or adapt the activity to the changed
situation as soon as possible.

Another difference to version management systems is that the
Local Awareness pattern considers a broader range of activities
– not only modifying accesses like in version management systems
but also reading accesses to the shared data.

The granularity of artifacts and the size of the user communityDanger Spots

determines, whether or not users will be aware of one another.

If the system is very crowded (i.e. many users are working

around a small set of artifacts), then the number of confocal users
will be large at each point in time. Displaying all confocal users as
distinguishable persons may produce an information overload and
distract the local user from his task. In this case, it is better to
simply tell that there are some or a specific number of confocal
users without revealing their identity. On the other hand, dis-
playing only the information that users are sharing a focus on the
artifact without providing numbers for the size of the crowd does
not provide any useful information in this case. This indicator will
always be active.

If the system provides access to many artifacts and the group of
users is small, the probability that two users work on the same arti-
fact will be very small. In this case, you can either reduce the gran-
ularity of artifacts or apply the pattern Active Neighbors→2.5,
which extends the presence to other semantically related artifacts.

An important issue for the acceptance of the pattern is trust and
privacy. User monitoring does only work, if it is mutually accepted
by all participants. Otherwise, you will soon get the effect that
users complain about being monitored or don’t use the awareness
features anymore. The pattern Masquerade→3 addresses this
problem.

When using this pattern, you should not mix up tasks and
activities: This pattern does only propagate current foci of users
in terms of the artifact that they are currently interested in. It
does not reveal information on the users’ current task besides the
interaction that can be monitored from the activity itself. The
question that this pattern solves is not how to bring together two or
more people with a related task, but how to bring together people
who use the same artifact to fulfill their potentially independent
tasks.

Known Uses Textual Indication on Community Websites Many commu-
nity web sites tell, how many confocal users are currently on
the site. The notion of focus is very broad at most of the sites.
A user can have a focus on the site, but not on individual
pages. An example for this kind of Local Awareness is the
home page of phpWebThings, an open source portal system
(http://www.webservicesnet.com/wt/news.php). It shows,
how many other users are currently connected to the site as
a text message (fig. 5).

Figure 5: Confocal users at the phpWebThings community site.

This kind of awareness information is the easiest variant of
the pattern. All users are interacting with the same artifact
(namely the web site). It is not distinguished between local
and remote users. Users are able to surf the web site anony-
mously as guests but not without leaving traces.

Some indicators at web sites extend the awareness informa-
tion to tell on which page the other users currently are. An
example for this is the community page www.mvnforum.com
(fig. 6). It shows the duration that they spent on the page
and how long they are on the site besides the users’ current
focus (the page they are browsing).

Figure 6: Confocal users at the mvnForum community site

(http://www.mvnforum.com/mvnforum/listonlineusers).

CSCW3 The CSCW3 prototype (Gross 1999) is a system that
shows for a given URL, who else is browsing this URL. It is a
special kind of browser that logs user activities and displays
confocal users in an external window (fig. 7). The local user
can see, who is currently on the page and who has been on the
page recently. The latter is a behavior that goes beyond the
pattern’s proposed functionality. It is described in the Time

Compressor→3 pattern.

Odigo (Odigo 2001) is an instant messaging client, which tracks
the users while they are navigating the WWW. It shows con-
focal users in an external view (fig. 8). The user can chose,
whether he is interested in the current page or in the whole
web site.

CoCoBrowse (Ter Hofte, Otte, and van der Gaast 1997) is a
specialized browser, which shows in an attached window who
else is currently viewing or editing a specific web page.

Figure 7: The CSCW3 prototype (Gross 1999).

Figure 8: Odigo (Odigo 2001) showing confocal users at

www.amazon.com.

Related Patterns Gaze Over the Shoulder→2.6 tracks user activities. Informa-
tion on users’ activities is needed to calculate the set of con-
focal users.

Time Compressor→3: Use the time compressor pattern, when
users don’t work at the same artifact at the same time and
you still want to bring together users who worked on the same
artifact successively.

Presence Indicator→2.3: If screen space is limited, you can use
a Presence Indicator→2.3 to present information on the
confocal users in an iconic representation that saves space.

Change Warning→2.4: For simplicity reasons, the current pat-
tern assumed that all activities have the same quality. This
is not the case for systems, where users can change artifacts.
In these systems, you should consider to highlight possibly
conflicting activities using the Change Warning→2.4.

User Lists have been applied frequently in shared workspace sys-
tems. Although these lists have many commonalities (the vi-
sualization can, for instance, be the same), there is a crucial
difference in the intent. Traditional User Lists intend to
provide awareness on participants who have already joined a
collaborative session. Thus, group formation is not a goal of
User Lists.

Publisher-Subscriber (Buschmann, Meunier, Rohnert, Som-
merlad, and Stal 1996) can be used to can keep the calculation
up-to-date.

2.3 Presence Indicator

Indicate that remote users look at an artifact, which is visible onIntent

the local user’s screen.

You have generated awareness information on confocal users usingContext

the Local Awareness→2.2 pattern or on peripheral users with
the Active Neighbors→2.5 pattern. You have also decided to use
an In-Place Awareness View→3 to ease the process of connect-
ing awareness information with those artifacts that are affected by
the awareness information. This means that you are showing the
awareness information in a close proximity to the original artifact’s
visualization.

Now, you are thinking about how to visualize the awareness
information gathered.

♦♦♦

The In-Place Awareness View→3 makes it easy to connectProblem

other users’ activities with focussed artifacts. But the
surrounding of the artifact only provides limited space for
information. Awareness information thus competes with
application data.

Think of several users who are looking for books in a virtual book-Scenario

store. They want to be aware of one another to discuss the books,
if they are interested in the same book. The virtual bookstore pro-
vides Local Awareness→2.2 and Active Neighbors→2.5 to
calculate confocal users or users who work in a semantic nearness
of the displayed artifacts.

Figure 9 shows how awareness information was displayed on
the screen. The developers chose to provide the awareness infor-
mation next to the artifact’s representation on the screen. This
information can be found next to the mouse pointer in figure 9.

The explanations of the awareness information clutters the whole
page layout because it uses too many words. In addition, the
textual representation of the awareness information is not easily
distinguishable from the domain information (in this case the in-
formation on books). That makes the information hard to recept

Figure 9: Textual in-place visualization of confocal users in a

virtual bookstore.

and disturbs the user from his actual task (to look for books).

The problem becomes obvious when ...Symptoms

– the available information channels to transmit information to
the user don’t have much more capacity, than which is needed
to transmit the shared data.

– in GUI systems, there is not much space for showing infor-
mation next to the artifact so that the awareness information
destroys the screen layout.

– external awareness views, such as a Radar View→3 do not
work, because the artifacts cannot easily be described with-
out their original context. For that reason, users find it hard
to associate awareness information with the corresponding fo-
cussed artifact.

Therefore: Limit the size of the awareness information’sSolution

representation so that it uses only a small part of the avail-
able information channels. For a GUI system, this means that
you should represent the confocal or peripheral users as a single
icon instead of a long textual form. Focus on telling that there are
other users, rather than providing much information on the other
users’ identity or task. Ensure that the indicator differs from the
other artifacts representing application data.

♦♦♦

The main participant of the pattern is the indicator, which repre-Participants

sents the awareness information. Each indicator displays awareness
information for activities of confocal users or active neighbors that
are referencing one specific artifact. The indicator is placed right
next to this artifact. The indicator can be an icon in GUI systems,
a special sound in audible interfaces, or any real-world object in
tangible interfaces. It should be distinctive from the application’s
shared data.

Wherever possible, the indicator has built-in behaviour, which
reveals more clues on the awareness information. For instance, if
tool tips are available in the user interface, the indicator can explain
itself with a tool tip when the mouse pointer touches it.

The sets of confocal users or active neighbors can be character-
ized by different group aspects:

– the cardinality (i.e. the number of confocal or nearby users),

– the distance to the artifact (this is always 0 if the users are
confocal; for active neighbors, it represents the semantic dis-
tance of the user to the artifact), and

– the users’ identities (which is uncomplicated if it is only one
confocal user).

It is up to the application designer to map the different group
aspects to the indicator. In general, size, color, and shape can be
used as dimensions to represent the above aspects.

A mapping function can – in most cases – automate the projec-
tion of group aspects to the different dimensions of the indicator.

The indicator has two main advantages that help the user to noticeRationale

the awareness information without being disturbed by it: Firstly,
it does not use much space (resp. bandwidth of the information
channel) and therefore it can in most cases be integrated with the
representation of the artifact. Second, the indicator is visual differ-
ent to the rest of the displayed information. By carefully keeping
the indicator distinguishable from the artifact’s visualization, users
will no longer mix the awareness information with the shared arti-
facts.

Figure 10 shows how the awareness information can be dis-
played using presence indicators. In this design, only one aspect of
the confocal user group is reflected in the icon (next to the cursor
in figure 10): the color represents the distance of the user (or the
user’s) to the artifact. In the above case, red (dark) icons rep-
resent users who browse very related books whereas green (light)
icons represent users who browse more different books.

Figure 10: Graphical in-place visualization of confocal users in

a virtual bookstore.

By placing the icon next to the artifact, one directly connects
users to artifacts. Especially in settings where the users do not
collaborate in the same workspace, this is the only reference point
for collaborative activities. This gets even more important, if one
addresses the asynchronous case (as stated by Dourish (1997)).

Ensure that the icon’s visualization does not conflict with otherDanger Spots

visual elements on the screen. Conflicting means in this context
that the application itself uses icons of a comparable shape or color.
Use a Distinct Awareness Info→3 in this case.

Known Uses TUKAN and GAMA-Mall both use little figures to represent
confocal or nearby users. GAMA-Mall (Schümmer 2002) was
already shown and discussed in the motivation and rationale
sections of this pattern.

The programming environment TUKAN (Schümmer 2001b)
uses colored figures that are attached to methods to show that
other users are working on the same or related artifact (fig.
11).

PoliAwaC (Sohlenkamp, Prinz, and Fuchs 2000) is an awareness
client for the PoliTeam collaborative workspace application
that was used by members of the German government min-
istries in Berlin and Bonn. Members exchanged and organized
documents using PoliTeam, which were formerly circulated in

Figure 11: Presence indicators in the TUKAN team program-

ming environment.

folders (when the whole ministry was in Bonn).

Figure 12: Presence Indicators in the PoliAwaC awareness-

client (Sohlenkamp, Prinz, and Fuchs 2000).

In PoliAwaC, the users can browse shared artifacts using an
explorer-like view (fig. 12). If an artifact is currently viewed
by another user, the artifact’s icon is changed: the size is
enlarged to make these documents more prominent and parts
of the icon are blended with a color that represents the user
who is currently viewing the artifact. A smily icon is finally
added to the enlarged icon to visualize the process of viewing.

The system was evaluated in the ministry (on daily use) and
the awareness icons were regarded as useful. The only problem
that users reported was the mapping between icon-color and
user color.

Flying flags as the one shown in the introductionary picture are
real-world representations of presence indicators. Whenever
the sovereign arrives at the castle, they fly the flag. Thus,
anyone can see, whether or not it makes sense to go to the
castle and contact the sovereign.

Related Patterns Change Warning→2.4: When users manipulate the shared data,
it might be more important to report on other user’s modi-
fications to the shared data than reporting on other user’s

presence. The Change Warning pattern does so, by indi-
cating confocal modifications of other users.

Accumulated Awareness→3: When there are many confocal
users, it might consume too much screen space to provide
presence indicators for all of them. Use the Accumulated

Awareness pattern to represent many confocal users with
one icon.

Color Scale→3 can be used to visualize the fact that the pres-
ence indicator displays the presence of a user at a related arti-
fact and not at the artifact to which the indicator is attached.
Use this pattern, if active neighbors should be displayed.

Interactive User Info→3 describes how to design the aware-
ness info so that it can be used as a means for establishing
communication or collaboration sessions.

Distinct Awareness Info→3 discusses how the visualization can
be designed so that it does not disturb too much from the
user’s current task.

2.4 Change Warning

Indicate that the version used by the local user has been changedIntent

by another user.

Users work on independent copies of the shared artifacts. TheContext

copies are made from the shared artifact, when the user decides
to begin working with the artifact. Examples for such a work
model are local copies of artifacts drawn from a version manage-
ment system that uses the check-out/check-in model (like CVS
(Price 2000)). Users can select the version that they are interested
in and request this version from the version management system.
They then work on the local copy. When they have finished their
work, they commit the modified version back into the repository.

Most applications working on documents work in a similar way.
When the user decides to work with the document, the system loads
the document from a storage medium (possibly with shared access)
into the application’s memory. The users work on the document (in
the application’s memory) and when they have reached a consistent
state, they save the document again to the storage medium.

The system does not lock the shared artifact.

♦♦♦

While a user works on an independent copy of the artifact,Problem

the checkout frequency may be low. So he may work on
an old copy, which leads to potentially conflicting parallel
changes. The conflict is worse, if two parallel modifications had
contradicting intents.

Imagine two web designers named Fred and George, who author aScenario

web site. Since they cannot modify the pages directly on the server,
both download all web pages to their local machine on Friday night
to do some work on the pages at the weekend.

Fred found out that the user’s home pages on the site did not
include e-mail addresses. Thus, he decides to create an e-mail
list and adds it to the web site. The list contains references to
all user’s home pages, the user’s names, and the e-mail addresses.
Additionally, he adds links to the e-mail list to each user’s home

page. He stores this page on the server at Saturday night.

On Sunday afternoon, George also noticed that the e-mail ad-
dresses were missing in his local copy. But he takes another ap-
proach to solve this problem: he edits all home pages and adds
e-mail addresses to the pages. On Sunday evening, he wants to
update the home pages and notices that Fred has also changed the
pages. He is angry that he has not worked with the most recent
versions and throws away all his changes.

The problem becomes obvious when ...Symptoms

– users apply changes to artifacts based on their old knowledge
of the artifact’s state.

– Users tell that they would have done the change differently, if
they had known the newer state of the artifact.

Therefore: Provide change warnings in context. ThisSolution

means that the system indicates to the local user when-
ever an artifact has been changed by another user. Show
this information whenever the artifact is shown on the screen. The
information should contain details about the kind of the change
and access to the new version of the artifact. If changes can be
complex, consider to provide a comparison view for the local user’s
state of the artifact with the remote user’s state of the artifact.

♦♦♦

Participants Local Workspace: The local workspace contains the local arti-
facts, which are independent copies of the shared artifacts.

Change Activities are activities (as defined in From Shared

Data to Shared Work→2.1) that change artifacts. A
change activity contains information on the shared artifact
before it was changed, the type of the modification, and the
new version of the artifact after the change.

Conflicting Activity: Another user’s activity, which modifies an
artifact for that the following two conditions hold:

– the activity modifies an artifact, which is also in the local
user’s local workspace, or

– there are two different sequences s1 = {a1, . . . , an} and
s2 = {a′

1
, . . . , a′

m} of change activities, that both originate
from a common artifact version. The local user has an
artifact state generated by a′

m while a remote user has an
artifact state generated by an.

The first possibility is depicted in figure 13. Two users, U1

and U2 have both taken an initial version V1 of an artifact
to work on. With activity A1, U2 changed the artifact and
created a new version V2 (which is now his new independent

Figure 13: A single activity changing an independent version.

version in his local workspace). User U2 will see this activity
as an conflicting activity.

Figure 14: Two activities changing an independent version.

In figure 14, both users have performed an activity on the
same artifact. User U1 has performed activity A2, which led to
V2′ and user U2 has performed A1 as in the previous example.
The two version V2′ and V2 are conflicting and for that reason,
the two activities are mutually conflicting activities: A1 is a
conflicting activity for U2 and A2 is a conflicting activity for
U1.

Change Warning: The change warning displays the existence of
conflicting activities. It can be modelled as an indicator (such
as the Presence Indicator→2.3) or in more obtrusive ways
(such as a dialog window).

There are two main reasons, why the pattern works: a technologicalRationale

reason and a cognitive reason.

From a technical point of view, indicating change warnings
changes the point in time, when integration is performed. When-
ever an artifact was changed, all older versions will be marked to
tell the user that the artifact was changed by another user. This is
the situation of figure 13. In most cases, the second user will inte-
grate the change of the first user immediately to base his changes
on the most recent version. If this is not possible, he can at least
inspect the newer version and model his own change in a way that
an integration is easy. This reduces the cost of integration (to
V3 in fig. 14). He can also get in contact with the person, who
applied the first change (Talk first→3). Both users can then
discuss and align their changes and – if considered useful – Work

Together→3 in a tightly coupled mode.

In any of the mentioned ways, the cost of integration is reduced
because there have not yet been conflicting changes.

The cognitive reasoning is often much more important. Con-
sider a system, where artifacts are not explicitly stored in a local
workspace. At a first glance, such systems do not fit into the
context of this pattern. But if one takes a closer look on the in-
teraction, one can define an implicit local workspace: the local
user’s knowledge because he remembers how the artifacts look like.
Whenever an artifact is perceived by the local user, it leaves traces
in his memory. All future activities on shared artifacts will be
influenced by these memory traces. In many cases, the user will
be confident to know a specific artifact and thus not look at this
artifact again.

When the artifact was changed, it is important to inform the
user that he can no longer be confident in knowing the artifact.
He will have to rethink his actions based on the artifact’s changed
version.

The calculation of conflicting activities may be complicated if usersDanger Spots

are allowed to select their desired version (which is true for most
environments). Consider the case where a user Alice performed a
change on an artifact. Later on, she notices that her change was
not right. She thus loads the older version of the artifact. But
the Elephant’s Brain→2.7 still remembers the activity that de-
scribed the change for the artifact. This activity will be considered
as a conflicting activity even for Alice (since she now works on a
version, which has been changed in between). But the version,
which was created by the activity is no longer used by any user.
Thus, one should ignore these activities when calculating conflict-
ing activities.

Known Uses TUKAN: The programming environment TUKAN uses a weather
metaphor to display change warnings. A heavy lightning sym-
bol tells the programmer that a specific artifact has been
changed. The symbol shows better weather for possible con-
flicts caused by changes on artifacts that are further away
(following the Active Neighbors→2.5 pattern). If there is
no near conflict, a sun is shown to indicate that everything is
up to date and confirm the user’s self-confidence.

Figure 15 shows a browser in TUKAN, where the method day:

was changed by another user (indicated by a heavy lightning
symbol in front of the method name).

By indication of possible configuration conflicts, parallel
changes of the same artifact can be avoided. Changes made
by other programmers are not instantly reflected in the lo-
cal programmer’s code, but rather in the visualization of the
method identifier. Whenever a newer version is signalled, the

Figure 15: Change-warnings in the collaborative software devel-

opment environment TUKAN.

user may decide to integrate this version before she changes
the artifact itself and thus avoid parallel versions.

WinEdt: The text editor WinEdt (as many other editors) buffers
the current file in memory, while the user performs edit oper-
ations on the possibly shared file. When another user or ap-
plication changed the file, it displays a warning that informs
the user that the current file was modified (fig. 16).

Figure 16: Change-warnings in single user applications.

It offers two possible ways for resolving the conflicting change:
loading the new version or working on with the current version
and thus overwriting the changes when the document is saved.

BSCW (Bentley, Appelt, Busbach, Hinrichs, Kerr, Sikkel, Trevor,
and Woetzel 1997) displays change indicators for documents
that were modified since the last visit. Although it does not
model an explicit local workspace, it remembers, which arti-
facts have been read by a specific user. These versions of the
artifacts form the user’s implicit local workspace. The change
indicators then lead the user to new or changed information
on the BSCW server.

Related Patterns Elephant’s Brain→2.7: Use an Elephant’s Brain to store
the activities that are used for calculating conflicting activ-
ities.

Presence Indicator→2.3: The presence indicator is comparable
to the Change Warning with respect to the fact that it
also visualizes activities on artifacts. The main difference is
that Presence Indicators only consider activities that are
still active. In most cases, Change Warnings inform on
activities that are completed.

Active Neighbors→2.5 should be used, if artifacts are semanti-
cally related. In this case, it is important to inform a user not
only on changes on the current artifact, but also on changes
that might have an impact to the current artifact (on a se-
mantic level).

2.5 Active Neighbors

Embodiment proximity (Gutwin and Greenberg 2002)AKA

Visualize activities not only on the local user’s current artifact, butIntent

also on related artifacts.

You are using local awareness to inform the users on each other’sContext

activities. Two or more users are performing work on related arti-
facts.

The probability of meeting another user on the same artifact is
very low since there are much more artifacts than users.

♦♦♦

The Local Awareness→2.2 pattern only signals confocalProblem

users on the same artifact. If users work on related arti-
facts, they are not aware of each other, which implies that
no collaboration will be established. On the other hand, espe-
cially collaboration on relate topics can support creative processes
and mutual learning.

Imagine a virtual bookstore where users can browse and reviewScenario

books. Users can collaborate in the bookstore by chatting on books
or browsing for books together. The designer of the bookstore
wanted to create a shopping community of interest by bringing
together people who like the same books. He decided to use Local

Awareness→2.2 to bring together such users.

He used the Odigo tool (described as a known use in Local

Awareness→2.2) that shows who else is browsing the same web
page – in this case the same book.

Some time later, he notices that there are almost never confocal
users at most books. The reason for this is that the number of
books is very large compared to the number of users who are online
at the same time. As a solution, the designer decided to base the
selection of confocal users on the whole store (the server part of
the book’s URL). He used the Odigo mode, which displays all users
who are at the store at the same time. But now, the system showed
confocal users who had not much in common. For instance, a user

looking for computer books was brought in contact with a user
looking for crime stories.

Both approaches do not lead to meaningful collaboration.

The problem becomes obvious when ...Symptoms

– users still think that it could make sense to work together
with other users who share a common semantic focus.

– users rarely work on the same artifact.

– the number of artifacts is much larger than the number of
users.

– there are semantic dependencies between the artifacts.

Therefore: Provide awareness on peripheral activities thatSolution

take place on related artifacts. Use a Semantic Distance→3
to show, how relevant those activity are. Rate activities on artifacts
with a short semantic distance more important than activities with
a long semantic distance. Ensure that activities on related artifacts
do not distract the user’s attention too much from the focused
artifact.

♦♦♦

Participants Focal Artifact: The artifact that the local user is currently look-
ing for.

Near Artifacts: A set of tuples (ai, di), where di is the Semantic

Distance→3 between the focal artifact and the artifact ai.
The set of focal artifacts includes only those artifacts for that
the distance is below the awareness horizon.

Awareness Horizon: The awareness horizon limits the Seman-

tic Distance→3 of related artifacts that are still considered
as near. The larger the awareness horizon is, the more arti-
facts are in the set of near artifacts, which implies that prob-
ably more users will be in the set of peripheral users.

Peripheral Activities: A set of tuples (aj, actj) where aj appears
as artifact in the set of near artifacts and actj is an activity
that takes (or took) place with the artifact.

Peripheral Users: The users associated with the subset of pe-
ripheral activities that are still active in case of presence aware-
ness or that trigger a change warning. The set of peripheral
users contains those users who are currently working on a near
artifact.

To understand, why peripheral awareness adds new views on groupRationale

awareness, it makes sense to look at the history of this model: The
awareness model used in this pattern is based on the well-known

spatial model, which is used to model interaction in virtual envi-
ronments (Benford and Fahlén 1993). Within the spatial model,
artifacts are arranged in a three-dimensional space. Users may in-
teract with artifacts by navigating through the space. Other users
can always see where their colleagues are positioned within the
space. This is called their presence position (note that a presence
position was already used in the Local Awareness→2.2 pattern).
In the spatial awareness model, the local awareness is extended by
relating it to a spatial layout of the artifacts: Awareness spreads
in space.

Rodden (1996) extended the spatial model by introducing the
concepts of focus and nimbus. His focus-nimbus model consists of
objects, such as artifacts, and users who are distributed in space.
Each object has a well-defined distance to all other objects. Around
objects, there is a focus and a nimbus, which are parts of space.
The focus includes all objects that are of interest to the object,
while the nimbus includes all positions in space where the object
might influence other objects. As an example, the focus of a person
consists of all people he can see and the nimbus consists of all people
who stand next to him. In most cases, interest and influence of an
object will fade the further a position in space is away from the
object’s position.

With focus, nimbus, and presence position as parameters, a
suitable awareness function may be defined, whose exact formula-
tion is application dependent (additional examples were provided
by Rodden (1996)).

While these two models were mainly developed for virtual (three-
dimensional) environments, the active neighbor pattern generalizes
the context to any environment, where one can define a semantic
distance between two artifacts.

By making the user aware of peripheral users who work on re-
lated artifacts, one can ensure that parallel work on semantically
related artifacts is detected and coordinated (by a social protocol).
A conflict on the other hand is always bound to parallel work on
related artifacts that heads in different directions. Since these par-
allel activities are minimized with the pattern, conflicts are less
likely to appear.

In the same way, peripheral users are brought together, which
results in collaboration on related artifacts.

It is important that the awareness horizon is not too large andDanger Spots

not too small. A too large awareness horizon will result in two
problems:

1. it will contain too many users who worked on artifacts that
are not perceived as related artifacts by the user, and

2. it will be hard to calculate, which results in long calculation

times.

A too small awareness horizon will not consider all relevant
artifacts.

The following example illustrates, how a reasonable awareness
horizon can be found. It is the example of the virtual bookstore,
for which average characteristics of the artifacts and the artifacts’
use are known.

Figure 17: Number of links between artifacts at the Amazon.com

bookstore.

Firstly, the average connectivity of the store’s artifacts can be
calculated by parsing a statistically relevant number of artifacts
and searching relations to other artifacts. Schümmer (2002) made
these calculations on the basis of 1900 artifacts. Figure 17 shows
the average connectivity that was calculated for books, authors,
and categories. One can, for instance, see that books link in average
to 18.28 other artifacts. The combined average l for all kinds of
artifacts is 27.5 links. These numbers define the density of the
semantic net and are one important factor for calculating the size
of the awareness horizon.

The other two important factors are the size of the semantic net
(the number of artifacts]a in the shared space) and the number
of users]u who are online at the same time. If all these factors
are known, one can calculate an awareness horizon dependent of a
desired probability that two users meet.

For the virtual bookstore, there are approx. 28 Mio. items2 in
the store. At each second, there are about 12.000 users who visit
the store.3 The system designer can now chose a probability p that
users should see other peripheral users in the store. Assume that
a designer wants a probability to meet another user of 50%.

In this case, the designer has to ensure that surrounding arti-
facts overlap with a probability of 50%. In other words: 50% of
the artifact space should be in the combined set of all users’ near

2according to press releases from Amazon.com (2001)
3calculated from Internet.com (2001) using the numbers from March 2001 to February 2002

artifacts. The analysis of the bookstore took the simplification that
all artifacts were accessed with the same probability. This led to a
desired size of the set of each user’s near artifacts NAu of

NAu =
]a · p

]u
=

28000000 · 0.5

12000
= 1167

From this number, one can calculate an awareness horizon h, so
that each activity leads to awareness indicators at NAu artifacts:4

l
h

> NAu ⇒ h >
ln NAu

ln l
=

ln 1167

ln 27.5
= 2.13

This number gives a first rough estimation, of the number of
indirections that one has to consider. If users should have a chance
of seeing other users, one would start with looking at 3 indirections
in the semantic net.

Although, the example was shaped to a semantic net for web
pages, the formulas are applicable to all kinds of semantic nets
(assuming that users use all artifacts with the same probability).

Known Uses I2I (Budzik, Bradshaw, Fu, and Hammond 2002) is a system that
tracks users who access web pages. Besides the current page,
it recommends other users for collaboration, who currently
read related pages.

Figure 18: Recommendations for collaboration in the I2I system

(from Budzik, Bradshaw, Fu, and Hammond (2002)).

CoBrow (Wolf and Froitzheim 1998) displays the presence of pe-
ripheral users of web pages as presence indicators. The obtru-
siveness of the indicators is dependent of the semantic distance
between two users in the document space.

TUKAN (Schümmer 2001b) provides awareness on peripheral
users and on peripheral activities that are in conflict with
the local user’s view of the artifact.

4For simplicity reasons, I assume that the distance from an artifact to another directly con-
nected artifact is always 1. The pattern Semantic Distance→3 discusses this issue in depth.

GroupDesk (Fuchs, Pankoke-Babatz, and Prinz 1995) informs
the user on activities that take place on semantically related
artifacts. It is a generic groupware architecture that was, for
instance, applied in workflow systems.

Related Patterns Semantic Distance→3: To apply the active neighbors pattern,
one has to calculate the distance between artifacts. The se-
mantic distance pattern provides one way of representing dis-
tances between artifacts.

Semantic Net→2.8: A semantic net can be used to generate a
graph structure, by which peripheral artifacts can be calcu-
lated.

Presence Indicator→2.3: The presence indicator can be used
to visualize peripheral users. When applying this pattern,
ensure that the distance from the focal artifact is part of the
visualization. Look at the Color Scale→3 pattern to see
one way for encoding distances in presence indicators.

Change Warning→2.4 can be used to visualize information on
peripheral activities that have modified the artifact.

2.6 Gaze Over the Shoulder

Event Sensors (Prinz 1999)AKA

Detect the users’ interaction with shared artifacts.Intent

Users interact on shared artifacts using a proprietary tool and wantContext

to log activities for future reference. These tools modify shared
external data. The results of the modifications are visible within
the tool and in the changed shared data.

♦♦♦

Many proprietary tools are not designed for extendability.Problem

They do not provide means to modify the application’s be-
havior. This makes it difficult to automatically track user’s
activities, which you would need to provide awareness.

Imagine a seminar, where Alice, Jane, and Sally, a group of stu-Scenario

dents, is preparing a talk. They decided to do literature research
independently using the web. Each of them signed up for a section
of the topic and starts her search. After two weeks, they meet
again and merge the found results. Each of the students has writ-
ten down some URLs, which she had rated relevant. During the
discussion, Jane noticed that one of the topics found by Alice is
very related to some information that she encountered during her
research but did not rate relevant enough to add it to her URL list.

Unfortunately, she does no longer remember the URL of that
page. Since remembering a page required that Jane actively set a
bookmark in her browser, she only did this for those pages, that
she expected to be relevant. This information was her final result
of her single user task – namely the research in her section of the
topic.

If she had also remembered the paths that led her to the solu-
tion, her team mates could have benefited from this information.
On the other hand, if she had manually saved each page, her brows-
ing activities would soon have been very complicated.

Therefore: Add an additional layer in the communicationSolution

between the application and the shared data to monitor

user actions. Allow other parts of your application (e.g. a
Elephant’s Brain→2.7 or a Local Awareness→2.2) to sub-
scribe to monitored activities.

♦♦♦

Participants Request: The user performs activities on shared data. Activities
are internally represented as requests from a user interface el-
ement (in the broadest sense) to a shared object. An example
for a request could be the request to save a file in a text editor.

Listener: The listener observes the communication channel and
the shared object and forwards information on activities to a
subscriber such as the Elephant’s Brain→2.7. The listener
seems to be transparent. That means that the user (resp.
the source of the request) does not notice that the request
passed a listener when it was transmitted via the communi-
cation channel.

Communication Channel: Requests are transmitted using a
communication channel. To apply the pattern, one needs to
be able to monitor this communication channel.

Since the data is accessible by more than one user, there has
to be a communication channel by which the users access
the shared data or by which they are informed about state
changes.

All communication that takes place via this channel can be
monitored (if it is not encrypted) by the listener by either ob-
serving state change that results from communication activity
or by directly grabbing the information from the communica-
tion channel.

In a point-to-point communication, this requires that the lis-
tener acts as a man in the middle. It receives all requests from
the application and forwards these requests to the shared ob-
ject (thereby playing the role of the original sender of the
request).

In a broadcast communication infrastructure, the listener can
just act like any other receiver (and listen for the same re-
quests as the intended receiver).

Where the communication channel is located depends on the
application’s external interaction.

– In WEB applications, it can be the TCP-connection,
which is used to transfer HTTP requests. TCP connec-
tions can by definition have many intermediaries such as
proxy hosts, routers, or gateways. To attach to this com-
munication channel, a listener could act as a proxy. It
would perceive a user requesting an URL. On the other
hand, WEB applications model most interaction within
URLs. The listener would in this case need to parse the

URL (or even the response as well) to retrieve more in-
formation on the user’s activity.

– In applications that work with files on a shared file sys-
tem, the communication channel is the file access API,
which is often again a network protocol (e.g. in NFS).
It can also be a state change in the file system that
indicates that an activity takes place. If users, for in-
stance, start working with a MS-Word document called
MyText.doc, MS-Word creates a temporary file named
~$Text.doc, which contains, among others, information
on the user who opened the document. When the user
closes the document again, this file is removed.
A listener would in this case monitor the directory, where
the shared files reside and track the creation and the re-
moval of temporary files. It would perceive

. a user starting to work with a document,

. the creation of a new version of the document, and

. a user ending his work with the document.

Since the proprietary tool does not allow other applications to en-Rationale

gage in the internal application logic, the only way to distribute
state information is by observing external communication channels.

If the observer of the channel notices communication on the
communication channel, it can redistribute this information to sub-
scribed users (using, for instance, a shared repository that holds
information on all activities, such as the Elephant’s Brain→2.7).
In this way, it is possible, to calculate awareness information with-
out changing the original application.

Ensure that the user knows that he is monitored. Users have toDanger Spots

be able to decide on their own, whether or not they want to be
monitored (cf. Masquerade→3). And they have to feel that
being monitored adds value to their activities (e.g. because of the
principle of Reciprocity→3). Otherwise, they will in most cases
find a way to do their job bypassing the monitoring mechanisms.

Known Uses NESSIE: The NESSIE framework (Prinz 1999) provides event
sensors, which are comparable to the listener in this pattern.
The sensors are placed next to specific artifacts. Whenever an
activity is performed on the artifact, the event sensors create
an activity object, which is then stored in the NESSIE aware-
ness server (see the description in Elephant’s Brain→2.7).

User-Centered Push (UCP): Underwood, Maglio, and Barrett
(1998) proposed an architecture that monitors the user’s inter-
action with the WWW and makes this information available
to other users. Listeners (called information sleuths) monitor
TCP streams by which a user accesses content on the web.

Whenever content is accessed, information on this access (re-
ferred as fact) is sent to a shared access log (called board).

Proxy-Logger: The Proxy-Logger (Hong and Landay 2001) is a
web proxy, which tracks the user’s browsing activities to create
diagrams that visualize the browsing actions involved in a
specific task. The listener is modeled as a proxy. Users enter
the URL, which they want to visit, in the proxy’s welcome
page. The proxy then modifies all delivered HTML content,
so that all subsequent URL’s are also retreived by the proxy.

GAMA Mall (Schümmer 2001a) also uses a proxy approach to
monitor web browsing activities.

Related Patterns Elephant’s Brain→2.7 provides means for storing monitored ac-
tivities.

Masquerade→3 provides the user with means to switch the mon-
itoring mechanisms on and off.

Reciprocity→3 is an important issue when users are asked to
provide personal information. Make sure that the user per-
ceives a personal benefit by providing personal information.

Proxy: The most obvious method for implementing the Gaze

over the Shoulder pattern is to use a Proxy pattern (Rohn-
ert 1995) in a way that the communication channel is redi-
rected through the proxy. But the proxy approach is only
one possibility to keep track of actions. As discussed in the
participants section, there are different points, where the lis-
tener can be attached to the communication channel. Which
point is the most appropriate depends on the nature of the
communication channel.

Navigation Observer (Rossi, Garrido, and Carvalho 1995)
solves a comparable problem in the context of hypermedia
applications. As in Gaze over the Shoulder, actions are
recorded for future reference. The main difference is that the
Navigation Observer implements a full Observer pat-
tern (Gamma, Helm, Johnson, and Vlissides 1995) with the
implication that update messages are sent from within the
application directly to the observer. The application (i.e. the
controller) thus needs to know its observers that are notified
on state changes. This is in conflict with one constraint of
the Gaze over the Shoulder’s problem: the application
should not be changed. The observation mechanism in Gaze

over the Shoulder is in contrast independent of notifica-
tion mechanisms of the model.

2.7 Elephant’s Brain

Event History, Activity LogAKA

Store information on the users’ activities in a log to allow the usersIntent

to understand (other) users’ activities and the artifacts’ evolution.

Users perform parallel activities on shared artifacts without beingContext

totally sure about the effects. They tend to try out solutions with-
out knowing, whether or not the effects will be correct. Another
issue is that they are not always able to tell which artifact they
will use for their activity, and often activities conflict with other
users’ activities.

Users work with the shared artifacts for a long time and it may
be necessary to review artifacts that were manipulated in a former
work episode (e. g. the programming work of the previous week,
month, etc.).

♦♦♦

Merging two user’s (past or current) work is a difficultProblem

task. It requires that the activities are transferred to the
same context and that the goals are aligned. But many
applications don’t provide access to the artifact’s history,
its use, and its evolution. Thus, merging is vulnerable to
errors and often collaboration does not take place since
the merging efforts exceeds the estimated gains of a col-
laboration.

Imagine a single user software development environment. TheScenario

programmer is developing an application using a development ap-
proach, where testing and development are two alternating phases.
She begins with writing a test for the desired functionality – as-
sume that she is looking for an algorithm that calculates all prime
numbers. In the test, she checks, whether the algorithm finds the
prime numbers 3, 5, and 7.

She then continues to write software that fulfills the test - let’s
say that the algorithm just checks, whether the number is larger

than 1 and odd.

In a next step, she creates a second test, that ensures that 9 is
not a prime number. Writing code to pass the test brings her to
the idea of changing the code in a way that it checks, whether the
number is odd and between 3 and 7.

A next test demands to also accept 11 as a prime number. At
this point, the programmer notices that the last change was not
really correct. Thus, she has to revert the change. But unfortu-
nately the development environment does not support her. She
has to remember the change that she applied and try to recover
the previous code version from her memory. It may be simple if
the action that needs to be reverted is the last action that she
performed. But often, one does not see the problems of a specific
activity directly after the activity was performed. It is rather often
the case that one identifies the effects of wrong activities a long
time after the activity was performed.

Now consider a scenario, where two programmers work on the
same project. Each programmer solves different problems, but
both problems involve the same shared artifact. Even if the first
programmer does still remember, which changes she performed, the
second programmer cannot revert these activities, because he does
not know, what his colleague did.

The problem becomes obvious when ...Symptoms

– users often notice that an artifact changed, but could no
longer remember how it looked before.

– users cannot detect who performed incorrect changes, and
what these changes were.

– users cannot find out, what another user X did to the artifact
Y yesterday.

– users don’t understand the changes of other users.

Therefore: Remember all activities that users perform onSolution

shared artifacts – not only modifying accesses, but also
read accesses. Provide access to the activities, so that a user
can understand (and merge) other users’ activities with his own
activities.

♦♦♦

Two main participants are involved in the pattern: the log and theParticipants

activity. A log is a container that holds the activities. Logs should
be persistent to allow the users to refer to activities of previous
sessions.

The activity includes information on

– the type of the activity, such as reading, editing, creating,

removing, etc.,

– the artifact that was touched by the activity (often in two
versions: the version before the activity and the version after
the activity),

– the time at wich the activity took place (often as a set of two
timestamps representing the start and the end of the activity),
and

– the user who performed the activity.

In several systems, activities further include a user comment, which
provides more information on the activities intent. Activities should
comprise one semantic user transaction with the system. Examples
could be the selection of a menu command, the insertion of a new
paragraph in a text document, or the viewing of a web page in a
web browser. Activities should be updated immediately, when a
user interacts with the application.

Clients interact with the log by adding and consuming or
querying activities. The log should be accessible from all clients
who need to perform calculations on it or who submit activities for
log storage. In collaborative applications, this implies that it can
be accessed using a network protocol.

For the display of up-to-date collaboration information, the
log can serve as a Publisher of new activities according to the
Publisher-Subscriber pattern (Buschmann, Meunier, Rohnert,
Sommerlad, and Stal 1996). Clients who use the log to provide
awareness information, subscribe to activities regarding specific
artifacts or initiated by a specific user. They will be informed,
whenever the set of activities changes that matches the subscrip-
tion pattern.

By logging all activities that users perform, one can inspect allRationale

activities later. This helps to understand the evolution of a specific
artifact (by looking at all activities that took place on the artifact)
or a specific user’s work (by looking up all activities, which were
initiated by a specific user).

Since the log is persistent, the information will be remembered
also when the user has forgotten it.

The Elephant’s Brain goes beyond version management func-
tionality in two main points:

1. It also remembers accesses that did not change the artifact.
These accesses are not mandatory for restoring the system
at a specific point of time. But they help to understand the
user’s background for a specific activity, and in some cases,
they help to reveal conflicting activities.

2. The Elephant’s Brain provides means for notifying inter-
ested users on activities, which take place with a specific ar-

tifact (note that some version management systems support
this, which is the reason why CVS is included in the known
uses section, although it does not remember non-modifying
accesses, as it was discussed in the previous paragraph).

Ensure that many users can add activities to the log at the sameDanger Spots

time. One way for achieving this is to model the log as a bag to
which users can add activities in any order producing the same re-
sult. Since each activity is unique (distinguishable user and time),
there will be no conflicts in adding activities to the log.

When referencing artifacts in the activity description, you have
to make sure that the right version of the artifact is referenced. In
environments, where no versioning is available, you should include
sufficient information to restore all different versions of an artifact
from inspecting all activities that took place on the artifact.

Prinz (1999) argues that the activity log should be decoupled
from the application, which generates events. This allows an easy
extension to support a large variety of events generated by different
client applications.

Note that the Elephant’s Brain can only store those ac-
tivities that it gets informed of. For off the shelf tools like CAD
packages, this might just be the creation of a new version. You
should therefore carefully examine the application to monitor as
much information as possible since this information is crucial for
a detailed (and intelligent) group support. Refer to Gaze Over

the Shoulder→2.6 for hints on how to gather such information.

Known Uses CVS version logs: The CVS version management system (Price
2000) maintains a file history, where meta-information on
all activities is stored. This information includes the user,
the touched artifact, and the type of the modification. The
version information can be obtained using the cvs history

command. An example output looks like this:

cvs history -c

M 2003-02-27 13:09 schuemm 1.2 README test == ~test2\test

A 2003-02-27 13:14 schuemm 1.1 short.txt test == ~test2\test

M 2003-02-27 13:16 schuemm 1.2 short.txt test == ~test2\test

Each line in the history output describes one user action
within the CVS repository. It shows a type-code of the ac-
tivity, its time, the user who performed the activity, and the
artifact that was modified.

One can configure a cvs server to run any software when ar-
tifacts are accessed. This can be used to allow distributed
clients to subscribe to changes according to Elephant’s

Brain. A subscription mechanism as it was proposed by the
Publisher-Subscriber pattern is however not part of the
standard cvs system.

CVS only logs activities, which access the repository. This
is sufficient to support a Change Warning→2.4. For the
provision of a Presence Indicator→2.3, it is too few infor-
mation. Presence indicators would need information not only
on those activities that were performed to copy shared arti-
facts to a local workspace. It would also need the information
on what the users do in their private workspace.

VisualWorks Change Set: The VisualWorks Smalltalk environ-
ment (Cincom 2001) writes all changes to a change file. This
change file is mainly intended to recover from system crashes,
but an important additional use-case is the inspection of chan-
ges of an artifact.

VisualWorks provides a special changes browser for this, which
shows all changes of a specific source artifact.

Since the programming environment is a single user environ-
ment, it does not provide any multi-user access to the change
file.

NESSIE Awareness Server: The NESSIE Awareness Server
(Prinz 1999) is a general purpose awareness server, which
stores events. Each event carries information on the origi-
nator, the action, the touched artifact, and the time at that
the event took place. The events are implementations of Ele-

phant’s Brain’s activities.

Client applications can add activities to the server using an
HTTP-based interface. They can also subscribe to changes
by specifying the type of the activity and a desired context
(i.e. the touched artifact’s location).

BSCW (Bentley, Horstmann, and Trevor 1997) is a shared work-
space system that logs all activities, such as reading, edit-
ing, or moving documents, that are performed in the shared
workspace. The logfile captures events that look like this:

User:[52, ’Alice’]

object:[134, ’Home’]

Type:CopyEvent

Time:1030181775.14

Path:[[63, ’&NewHome’]]

User:[51, ’Bob’]

object:[124, ’BusinessPlan.doc’]

Type:CutEvent

Time:1030182090.44

Path:[[119, ’Workgroup’]]

The example shows parts of two activities. First, a user Alice
has copied an artifact called Home to a folder NewHome. In
the second activity, Bob cut the artifact BusinessPlan.doc.

TUKAN (Schümmer and Schümmer 2001) is a collaborative pro-
gramming environment that extends VisualWorks Smalltalk.

It logs all activities that users perform in the environment
(e.g. reading source code or modifying a class file) and stores
these activities in an activity log.

The activity log is stored as a shared object, which is repli-
cated to all clients using the COAST framework for syn-
chronous groupware (Schümmer, Schümmer, and Schuckmann
2001). The replication mechanisms also include a distributed
version of Publisher-Subscriber to trigger view updates
or other actions when any log entry changed.

Related Patterns Proxy Object→3: If the artifacts cannot be accessed directly in
the application, one has to use a meta representation in the
activity description.

Gaze Over the Shoulder→2.6: When the application’s inter-
nal control flow cannot be extended to monitor activities,
use the Gaze Over the Shoulder pattern. It will seek
for activities, which are then forwarded to the Elephant’s

Brain’s log for future reference.

Local Awareness→2.2: Use Local Awareness to inform users of
different activities that currently take place at the same ar-
tifact to avoid conflicting work. After the activity was per-
formed, remember it to support users in resolving previous
conflicting activities.

Model-View-Controller: If the application is implemented
following the Model-View-Controller pattern (Krasner
and Pope (1988) and Buschmann, Meunier, Rohnert, Som-
merlad, and Stal (1996)), one way of determining activities is
to hook into the control flow of the controller. Whenever the
controller receives a startUp message (i.e. when it starts its
work), an activity is created. The activity is then filled with
artifacts that are accessed while the user uses the controller.
When the controller’s control-flow terminates, it fills the end
time of the activity.

Command: One can interpret the activities as Commands ac-
cording to the Command design pattern (Gamma, Helm,
Johnson, and Vlissides 1995). The main difference is that
commands should be able to execute (and undo) themselves,
which exceeds the simple logging purpose of the activities.
Commands are therefore more tightly bound to the applica-
tion. In contrast to activities, they are potentially active and
not just descriptive. If the application uses Commands, one
can reference to commands as activities and store them in the
log.

Change Log: A change log (Anderson 2000) stores different states
of an object or an object’s attribute together with additional

information on the originator of the change. It is compara-
ble to Elephant’s Brain because it also stores old states
of the artifact and thus provides the information, which is
needed to reconstruct past activities. But the focus of both
patterns is different: A change log is mainly solving the prob-
lem of restoring or accessing old state of an object whereas
the elephant’s brain focusses on logging any activities (not
necessarily modifying accesses).

Edition: The edition pattern (Anderson 2000) shows, how the
change of an object’s state can be associated with the event
that caused the change. It directly binds the activity to the
object, which was affected by the activity. For cases, where
the shared objects can be manipulated, this is an alternative
approach to store the activities. The decision, whether to
store the activities (on any shared artifact) in a repository
(Elephant’s Brain) or directly with the artifact (Edition)
depends on the access patterns for the information. If activ-
ities are mainly accessed by time or user, they are easier to
find in a repository. If they are accessed for a specific artifact,
they can also be stored directly with the artifact. For the col-
laborative setting of Elephant’s brain, one should in any
case ensure that not only modifying accesses are stored (as it
is the case in the original Edition pattern).

Shared Repository: The log should be modelled as a shared
repository (Mularz 1995) to keep it open for future additional
applications as well as future additional awareness views.

2.8 Semantic Net

Use a semantic net, which contains all artifacts and the relationsIntent

between artifacts to make semantic relations explicit.

You decided to use the Active Neighbors→2.5 pattern to provideContext

awareness on activities that take place at related artifacts. To
apply the awareness model proposed by Active Neighbors→2.5,
you need to find out, how distant two artifacts are, especially, which
other artifacts are near to a focused artifact.

♦♦♦

Detecting short semantic distances between artifacts basedProblem

on a similarity measure often leads to ineffective and inex-
act results. It is time consuming, when there are many artifacts
with large distances because this would involve much unnecessary
computation. In addition it fails, if two artifacts are related by
means of an intermediate artifact.

Imagine Bob and Claire, two authors of a music magazine, whoScenario

work on essays for the next issue of the magazine. Bob is currently
working on an essay on Ludwig van Beethoven’s sixth symphony.
For that sake, he needs to do much research on the development
of this work. Claire is at the same time writing an essay on Franz
Schubert’s first symphony.

Both Beethoven’s and Schubert’s works could have been related
by many reasons. For instance, both are of the genre symphony and
both were written in the classical period of music. But the essays
of Bob and Claire are not directly related because they don’t share
many keywords.

Applying the Semantic Distance→3 pattern will therefore
result in a long distance between Bob’s and Claire’s work (since
they work on topics that are not directly related). Both users will
not find relations to the other user’s work in the system, although
they might benefit from cooperation because Beethoven and Schu-
bert share a common context.

The problem becomes obvious when ...Symptoms

– too few relations are provided for Active Neighbors→2.5,
which results in the absence of peripheral users.

– the calculation of similarity between two artifacts is too time
consuming, which leads to long delays when near artifacts are
to be displayed.

– users more often say that their work is semantically related
even though the system does not propose this. This may be
the case because of the fact that the users combine the two
artifacts with their background knowledge or by interfering
the artifact’s contexts.

Similarity mechanisms produce large distances, if the two arti-
facts have few in common. This is the case for most artifacts in
a large set of artifacts. Regardless the high probability for large
distances, one has to calculate the distances between any artifact
to find out their distance. This is time consuming, which implies
that it cannot be applied in an interactive system, where artifacts
change often.

But the desired information is only needed for artifacts that
have a short semantic distance. Thus, computation is spent on
results that will not be used.

Similarity mechanisms also often fail, if the semantic relation is
only provided via an intermediate artifact (if an artifact a is close
to an artifact b, which is in turn close to an artifact c, it does not
imply that similarity mechanisms would relate a with c).

Therefore: Produce a semantic net that contains arti-Solution

facts and relations between artifacts. Relate two arti-
facts, if they have much in common (as in the Semantic

Distance→3 pattern). Define the distance between two
artifacts as the length of the shortest path between these
artifacts.

♦♦♦

Participants Semantic Net: The semantic net represents semantic relation-
ships between artifacts. The rationale section discusses in
depth, how semantic nets work.

It calculates the semantic distance between two artifacts by
finding the shortest path between these artifacts. The shortest
path between two artifacts can be calculated using any short-
est path algorithm from literature (like Dijkstra’s algorithm
(Dijkstra 1959)). For a very large set of artifacts and a num-
ber of connections that is much smaller than the number of
possible connections, this is normally faster than calculating
the distance between each pair of artifacts using a Seman-

tic Distance→3. Especially, the shortest path algorithms

can be modified as follows to only calculate paths that are
shorter than an upper bound, which is defined by the Aware-
ness Horizon of the Active Neighbors→2.5 pattern:

M1 : set of not yet visited artifacts and their distance to the
source artifact a0

M2 : set of visited artifacts and their distance to the source
artifact a0

h ← awareness horizon
M1 ← M1 + (a0, 0)
while M1 6= {} do

pivot ← (a, d1) ∈ M1 so that there is no (b, d2) ∈ M1 with
d1 > d2

M1 ← M1− pivot
M2 ← M2+ pivot
d ← distance of pivot
a ← artifact of pivot
for all n where n is a neighbor of a do

d2 ← d+ distance of n

if (d2 ≤ h)∧ (¬(n ∈ M1)∨ ((n ∈ M1)∧ (d2 < distance of n

in M2))) then

M1 ← M1 + (n, d2)
end if

end for

end while

Artifact: The artifact represents a node in the semantic net. When-
ever an artifact is added to the semantic net, it is parsed re-
garding relations to other artifacts.

If the other artifact does not yet exist in the semantic net, one
can use a Proxy Object→3 to represent this artifact. The
Proxy Object should also be used if the original represen-
tation of the artifact cannot be modified to store relations to
other artifacts.

The artifact has an accessor method, which can be used to
obtain all relations to other artifacts.

Relation: A relation is an edge in the semantic net. If two ar-
tifacts are semantically related, there exists a relation in the
semantic net, which is weighted according to the Semantic

Distance→3 between the artifacts. If no semantic distances
are used, it is set to a constant value representing the type of
the relation.

The use of semantic nets has two basic advantages:Rationale

1. it localizes the calculation of relations (which enhances the
overall performance), and

2. it captures semantic relations that exist only because of an
intermediate artifact (which produces more exact results).

The first issue enables interactive applications to do this cal-
culation on the fly. Whenever a new artifact is added to the se-
mantic net, one has to extract “important” properties from this
artifact and relate the artifact to other artifacts, which represent
these properties. The technique for this can often benefit from the
inherent semantic of the application.

Consider, for instance, a semantic net representation of software
artifacts. If the artifacts are source code fragments of an object
oriented system, one can interpret the artifact to directly get a list
of related artifacts. In the example, one would parse, for instance,
a method to find out,

– to which class the method belongs,

– which other classes are used by this object,

– which attributes are accessed within the object,

– which local variables are defined in the method and of which
type they are, or

– which other methods are called from within the method.

This can be done by solely inspecting the artifact. Any indirect
relations can then be detected by traversing the semantic net.

The runtime calculation cost of semantic distances is reduced
to the problem of finding a shortest path between two artifacts
(and using the sum of the relation distances as the total distance
between the two artifacts).

Compared to a complete comparison of all artifacts with a run-
time behavior of O(|A|2), the above algorithm has a runtime be-
havior of O(|E| ∗ |A′|) where A′ is the number of artifacts within
the awareness horizon and |E| is the number of relations that have
an artifact in |A′| as their source. Since A′ is in most cases much
smaller than |A| and the semantic net has only sparse edges, the
runtime behavior is much better than a complete comparison.

The use of a semantic net enables the system to detect rela-
tions between two artifacts a1 and a2 that are present because of
an intermediate artifact a3, to which each of the two artifacts is
directly related. Since the relations a1 → a3 and a3 → a2 have a
finite Semantic Distance→3, the shortest path between a1 and
a3 is no more infinite (it is the sum of the two distances).

An early introduction of the concept of semantic nets is given
by Quillian (1968) who created the theory that the human mind
organizes its memories by concepts, which are modelled as a se-
mantic network. An often cited example is a semantic net that
describes the concept Canary (cf. figure 19). It is related to the
concept Bird, which has Feathers. Birds are Animals and Animals
have Skin. Quillian found out that it is easier for the human brain
to associate canaries with feathers than with skin. A reason for this

Figure 19: An example for a semantic net.

is that the distance in the semantic net is longer between Canary
and Skin.

Thus, modelling application data as semantic nets will in most
cases create semantic structures that are comparable to the human
understanding. Exploring such a structure reflects – to some extent
– the conceptual knowledge of the artifacts.

The more indirections are used to calculate the distance betweenDanger Spots

two artifacts, the harder it gets for the user to understand the
semantic relation between two artifacts in the semantic net. In
such cases, it may help to explain the path that links to artifacts
to the user.

Known Uses TUKAN Within TUKAN (Schümmer 2001b), all Software arti-
facts are represented as nodes in a graph. Directed relations
state semantic dependencies between two nodes. TUKAN
calls the semantic net software space. Relations are mainly
created by parsing the artifacts of the software development
activities. The example provided in the rationale section ex-
plains one instance of parsing, as it is done in TUKAN.

K-Infinity (Intelligent Views 2003) is an application to model se-
mantic networks. The networks can be associated with the
company’s artifacts (documents) to reveal relations between
artifacts. To generate the semantic net, the user first has to
define a set of core concepts (manually) and tell, how these
concepts are related. Documents can then be related to the
core concepts using a mark-up-tool. Note that this is done
locally for the artifact. The author has to look at the artifact
(the text document) and define, which text passages reference
which concept.

Figure 20 provides an example of a semantic net in K-Infinity.
It shows, how nuts (displayed in the right content-window
and labelled “Nuß”) are related to other plants and artifacts
explaining these plants. They are related to a book called
“Obst und Gemüse” (on the top left corner of the net), which
discusses fruits and vegetables in general.

K-Infinity is one representative for the class of applications

Figure 20: Semantic Nets in K-Infinity (online demo at

http://www.i-views.de/web/).

that use semantic nets for knowledge management. Other sys-
tems include WordNet r©(Miller, Beckwith, Fellbaum, Gross,
and Miller 1990), a system that models thesauri by means of
semantic nets.

GAMA Mall (Schümmer 2001a) maps artifacts of a virtual book-
store to a semantic net. The web pages of the store are parsed
whenever they are requested by the user. The parser searches
for references to related books, which appear in a special sec-
tion of the page, to authors, which always have a specific URL
format, or to categories that are also detected by a special
URL format.

Figure 21: Semantic net of the GAMA-Mall bookstore.

Figure 21 shows a small part of the semantic net of the GAMA-
Mall bookstore. The nodes represent artifacts. The nodes’
colors represent the artifacts’ types. Darker nodes represent
authors, while lighter nodes represent books. GAMA-Mall
did tolerate fuzziness of relations in the semantic net. In fig-
ure 21, this is, for instance, the relation between the author

“Kent Beck” and the book “Extreme Programming Exam-
ined”. Kent Beck has not been an author of this book, but
he is referenced on the page in the book shop that shows the
book. The reason for this is that Kent Beck wrote a book,
which is recommended on the page for “Extreme Program-
ming Examined”. For the purpose of providing awareness on
peripheral users, this was not problematic since the seman-
tic relation still exists (the recommendation of Amazon also
carries some semantics).

GroupDesk (Fuchs, Pankoke-Babatz, and Prinz 1995) uses se-
mantic nets to model relations between artifacts in groupware
applications. The authors provide an example of an electronic
circulation folder, which relates documents with the station
at which they have to be processed. The network is used to
propagate awareness notifications (information on activities
on the artifacts) among the different nodes in the semantic
net.

CoBrow (Wolf and Froitzheim 1998) uses semantic nets to cal-
culate distances between users who use HTML documents in
the web.

Related Patterns Semantic Distance→3: Calculates the distance between two
given artifacts. It can complement the Semantic Net pat-
tern. In this case, Semantic Distance calculates the dis-
tance that is attached to the relation in the semantic net.

Proxy Object→3: The Proxy Object is used to store rela-
tions to other Artifacts, whenever the original artifact can
not be modified.

3 Additional Thumbnails

As mentioned in the introduction, this paper only included parts of the GAMA
pattern language. All patterns that were not described in a prosaic way will be
presented as thumbnails in this section. The patterns are listed in alphabetic order.

Accumulated Awareness: Merge activity indicators of several users in one in-
dicator to save screen space.

Color Scale: Use a color code to distinguish important information (with an
obtrusive color) less important information.

Distinct Awareness Info: Ensure that the visualization of the awareness info
has a large visual difference to the visualization of the application data. Make
it less obtrusive than application data.

External Awareness View: Provide an external awareness information in case
that the visualization of the application cannot (or should not) be changed.

Interactive User Info: Make the information about other users clickable and
connect it with means for communication and collaboration.

In-Place Awareness View: Show the awareness information in a close proxim-
ity to the related artifact to ease the process of connecting awareness infor-
mation with the semantic context of the referred artifact.

Masquerade: Control, how much private information you reveal to other users
when interacting in a collaborative environment.

Proxy Object: Store meta-information regarding the application’s artifacts with-
out changing the artifacts.

Radar View: Shows a graphical representation of the nimbus of the local user.

Reciprocity: Ensure that the users benefit, if they contribute to the system. Let
the benefit grow, when the user contributes more.

Semantic Distance: Reflect semantic importance in the layout of the semantic
net.

Spatial Domain Model: Ease understanding of a semantic net by using the
metaphor of a virtual space, in which the net is laid out.

Talk first: Communicate with a related user to negotiate the ways of collabora-
tion.

Time Compressor: Show the presence of other users for longer than they are
present.

Work Together: Accomplish an activity together with another user.

4 Conclusions

Computer support for dynamic teams gain an increasing importance while flexible
processes and organizational models become widely accepted. Since collaborative
work always involves interaction among users in their workplace, I argue that these
users should play an important role during the design of CSCW systems that sup-
port dynamic teams.

The proposed GAMA pattern language can be an important means for both,
designers and end-users, to explore the different design options and learn from best
practices in the field. Although this language is still in an evolving state, the
application of first patterns showed that they could be successfully applied by non-
experienced software developers with no background in the research of collaborative
systems.

Current work on the GAMA language is twofold: on one hand, the patterns need
to be refined to complete the language. On the other hand, the patterns should be
applied to see whether or not non-experienced developers and end-users are able
to successfully design collaborative systems with the patterns (even though first
experiences showed that also the uncompleted patterns were a valuable means for
training developers). In this context, the preliminary versions of the patterns are
currently applied in a project, where a JAVA programming environment is made
collaboration aware.

4.1 Acknowledgements

I would like to thank all colleagues who discussed parts of the GAMA language and
provided valuable hints for improving the language as well as individual patterns.
These are Joerg Haake (FernUniversität Hagen – Germany), Alejandro Fernàndez
and Torsten Holmer (Fraunhofer IPSI – Germany), and Robert Slagter (Telematica
Instituut – The Netherlands). Especially, I’d like to thank my EuroPLoP shepherd
Kristian Elof Sørensen for being patient enough to accept yet another pattern for
shepherding every other week and finally challenging me to complete the language
to the current state. Valuable comments have been provided by the participants
of the EuroPLoP2003 writer’s workshop. I’d like to thank all participants for their
constructive feedback.

Special thanks are due to the co-organizers of the CSCW 2002 workshop on
Socio-Technical Pattern Languages (Catalina Danis, Sharon Greene, and John
Thomas, IBM – US) for the valuable discussions on pattern structures and spe-
cialties of patterns in the area of CSCW. As the language grows, this list will
hopefully grow as well.

References

Alexander, C., S. Ishikawa, and M. Silverstein (1968). A pattern language which
generates multi-service centers. University of California, Berkeley: Center for
environmental structure.

Amazon.com (2001). Amazon.com introduces worldwide digital group.

Anderson, F. (2000). A collection of history patterns. In N. Harrison, B. Foote,
and H. Rohnert (Eds.), Pattern Languages of Program Design 4, pp. 263–297.
Reading, MA, USA: Addison-Wesley.

Beck, K. (1999). eXtreme Programming Explained. Reading, MA: Addison Wess-
ley.

Benford, S. and L. Fahlén (1993). A spatial model of interaction in large vir-
tual environments. In Proceedings of the Third European Conference on
Computer-Supported Cooperative Work (ECSCW ’93), Milan, Italy, pp. 109–
124. Kluwer.

Bentley, R., W. Appelt, U. Busbach, E. Hinrichs, D. Kerr, K. Sikkel, J. Trevor,
and G. Woetzel (1997). Basic support for cooperative work on the world-
wide web. International Journal of Human-Computer Studies: Special issue
on Innovative Applications of the World-Wide Web.

Bentley, R., T. Horstmann, and J. Trevor (1997). The world wide web as enabling
technology for cscw: The case of bscw.

Bradshaw, S., J. Budzik, X. Fu, and K. J. Hammond (2002). Clustering for
opportunistic communication. In Proceedings of WWW 2002. ACM Press.

Budzik, J., S. Bradshaw, X. Fu, and K. J. Hammond (2002). Supporting online
resource discovery in the context of ongoing tasks with proactive software
assistants. International Journal of Human-Computer Studies 56 (1), 47–74.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal (1996).
Pattern-Oriented Software Architecture: A system of patterns. Chichester,
West-Sussex, UK: John Wiley and Sons.

Cincom (2001). VisualWorks Application Developer’s guide. Cincinnati: Cincom
Systems, Inc.

Cohen, D., M. Jacovi, Y. S. Maarek, and V. Soroka (2000). Collection awareness
on the web via livemaps. In CSCW’2000 Workshop on Awareness and the
WWW, http://www2.mic.atr.co.jp/dept2/awareness/.

Coldeway, J. (2003). Interaction patterns of agile development. In
A. O’Callaghan, J. Eckstein, and C. Schwanninger (Eds.), Proceedings
of the 7th European Conference on Pattern Languages of Programs,
EuroPLoP’02, Irsee, Germany, pp. 329–342. UVK.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-
merische Mathematik 1, 269–271.

Dourish, P. (1997). Extending awareness beyond synchronous collaboration. In
Position paper for the ACM CHI’97 Workshop on Awareness in Collaborative
Systems, Atlanta, Georgia.

Fuchs, L., U. Pankoke-Babatz, and W. Prinz (1995). Supporting cooperative
awareness with local event mechanisms: The groupdesk system. In Proceedings
of ECSCW 1995, Stockholm, pp. 247–262.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley.

Gross, T. (1999). Supporting awareness and cooperation in digital information
environments. In Presented at Basic Research Symposium at the Conference
on Human Factors in Computing Systems – CHI’99, Pittsburgh, PA, pp.
online at: http://orgwis.gmd.de/g̃ross/publ/chi1999/gross chi1999brs.html.

Gutwin, C. and S. Greenberg (2002). A descriptive framework of workspace
awareness for real-time groupware. Comput. Supported Coop. Work 11 (3),
411–446.

Hinds, P. J. and J. Pfeffer (2003). Why organizations don’t “know what they
know”: Cognitive and motivational factors affecting the transfer of expertise.
In M. S. Ackermann, V. Pipek, and V. Wulf (Eds.), Sharing Expertise: Beyond
Knowledge Management, pp. 3–26. Cambridge, MA, USA: MIT Press.

Hong, J. I. and J. A. Landay (2001). Webquilt: A framework for capturing and vi-
sualizing the web experience. In Proceedings of WWW10, Hong Kong, China,
pp. 717–724.

Intelligent Views (2003). Company homepage. http://www.i-views.de.

Internet.com (2001). Cyberatlas: Traffic patterns.

Krasner, G. E. and S. T. Pope (1988). A cookbook for using the mvc user interface
paradigm in smalltalk-80. Journal of Object-Oriented Programming 1 (3), 26–
49.

Leuf, B. and W. Cunningham (2001). The Wiki Way. Addison Wessley Addison
Wesley, Longman.

Lillehagen, F., E. Dehli, L. Fjeld, J. Krogstie, and H. D. Jørgensen (2002). Uti-
lizing active knowledge models in an infrastructure for virtual enterprises. In
L. M. Camarinha-Matos (Ed.), Collaborative Business Ecosystems and Virtual
Enterprises, IFIP TC5/WG5.5 Third Working Conference on Infrastructures
for Virtual Enterprises (PRO-VE’02), Volume 213. Kluwer.

Miller, G., R. Beckwith, C. Fellbaum, D. Gross, and K. Miller
(1990). Five papers on wordnet. International Journal of Lex-
icography 3 (4), 235–312 (current version available online at
ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.ps).

Mularz, D. E. (1995). Pattern-based integration architectures. In J. O. Coplien
and D. C. Schmidt (Eds.), Pattern Languages of Program Design 1, pp. 441–
452. Reading, MA, USA: Addison-Wesley.

Odigo (2001). Company homepage. http://corp.odigo.com/.

Pelrine, J., A. Knight, and A. Cho (2001). Mastering ENVY/Developer. Cam-
bridge University Press.

Pipek, V., J. Hinrichs, and V. Wulf (2003). Sharing expertise: Challanges for
technical support. In M. S. Ackermann, V. Pipek, and V. Wulf (Eds.), Sharing
Expertise: Beyond Knowledge Management, pp. 111–136. Cambridge, MA,
USA: MIT Press.

Price, D. (2000). Cvs - concurrent versions system v1.11.

Prinz, W. (1999). Nessie: An awareness environment for cooperative settings. In
S. Bodker, M. Kyng, and K. Schmidt (Eds.), Proceedings of the Sixth Eu-
ropean Conference on Computer Supported Cooperative Work, Copenhagen,
Denmark, pp. 391–410. Kluwer.

Quillian, M. R. (1968). Semantic memory. In M. e. Minsky (Ed.), Semantic In-
formation Processing, pp. 227–270. MIT Press.

Rodden, T. (1996). Populating the application: A model of awareness for coopera-
tive applications. In Proceedings of the ACM 1996 conference on on Computer
supported cooperative work, pp. 87–96.

Rohnert, H. (1995). The proxy design pattern revisited. In J. M. Vlissides, J. O.
Coplien, and N. L. Kerth (Eds.), Pattern Languages of Program Design 2, pp.
105–118. Reading, MA, USA: Addison-Wesley.

Rossi, G., A. Garrido, and S. Carvalho (1995). Design patterns for object-oriented
hypermedia applications. In J. M. Vlissides, J. O. Coplien, and N. L. Kerth
(Eds.), Pattern Languages of Program Design 2, pp. 177–191. Reading, MA,
USA: Addison-Wesley Addison-Wesley.

Schümmer, T. (2001a). Gama-mall - shopping in communities. In L. Fiege,
G. Mühl, and U. Wilhelm (Eds.), Proceedings of the Second International
Workshop on Electronic Commerce (WELCOM’01), Heidelberg, Germany,
pp. to be published. Springer.

Schümmer, T. (2001b). Lost and found in software space. In Proceedings of the
34th Hawaii International Conference on System Sciences (HICSS-34), Col-
laboration Systems and Technology, Maui, HI. IEEE-Press.

Schümmer, T. (2002). Enabling technologies for communities at web shops. In
J. Plaice, P. G. Kropf, P. Schulthess, and J. Slonim (Eds.), Proceedings of
the 4th International Workshop on Distributed Communities on the Web
(DCW2002), Number 2468 in Lecture Notes in Computer Science, Sydney,
Australia, pp. 253 – 265. Springer.

Schümmer, T. and J. M. Haake (2001). Supporting distributed software develop-
ment by modes of collaboration. In Proceedings of ECSCW 2001, Bonn.

Schümmer, T. and J. Schümmer (2001). Support for distributed teams in extreme
programming. In G. Succi and M. Marchesi (Eds.), eXtreme Programming
Examined. Addison Wesley.

Schümmer, T., J. Schümmer, and C. Schuckmann (2001). Coast - an open source
framework to build synchronous groupware with smalltalk. Technical report,
OpenCoast Development Group.

Sohlenkamp, M., W. Prinz, and L. Fuchs (2000). Poliawac – design and evaluation
of an awareness enhanced groupware client. AI and Society – Special Issue on
CSCW 14, 31–47.

Ter Hofte, G. H., R. Otte, and S. van der Gaast (1997). Supporting telepointing
in the mesh groupware platform: Design issues.

Underwood, G. M., P. P. Maglio, and R. Barrett (1998). User centered push
for timely information delivery. In Proceedings of the Seventh International
World Wide Web Conference (WWW7), Brisbane, Australia, pp. online at:
http://www7.scu.edu.au/programme/fullpapers/1894/com1894.htm.

Wolf, H. and K. Froitzheim (1998). User space meets document space. In 7th
International Conference on the World Wide Web, Brisbane, pp. 710–712.

