
Reverse Proxy Patterns

Author Peter Sommerlad
Erlenstrasse 79, CH-8832 Wollerau, Switzerland, +41-79-432 23 32
psommerlad@hispeed.ch

Overview Implementing an application-level server-side proxy1

[GHJV95][POSA96] can result in a large number of positive
consequences. However, the aspects of network security, single sign
on and integration imply different forces upon such a reverse proxy.
Attaching the surrounding infrastructure can show additional
roadblocks for a successful deployment.

The following patterns try to structure the forces, regarding the
different aspects into three patterns, that can be studied to
understand reverse proxy solutions and applied to design reverse
proxy architectures.

The most popular reverse proxies implement the hypertext transfer
protocol (HTTP), therefore the rest of the paper just refers to such
HTTP reverse proxies. Nevertheless, the underlying patterns are also
applicable for any other Internet protocols, for example FTP.

The Protection Reverse Proxy pattern shows how to protect your
servers on the application protocol level at the network perimeter. An
Integration Reverse Proxy allows to integrate a collection of servers
under a common entry point, thus hiding the network and host
internals. The Front Door pattern gives guidance for single sign on
and access control to a set of web applications.

Copyright Copyright (c) 2003 by Peter Sommerlad.

1. In contrast to a “regular” proxy configured within a user’s browser, such a
transparent server-side proxy is called a “reverse proxy”.

Protection Reverse Proxy

Putting a web server or an application server directly on the Internet
gives attackers direct access to any vulnerabilities of the underlying
platform (application, web server, libraries, operating system).
However, to provide a useful service to Internet users, access to your
server is required. A packet filter firewall shields your server from
attacks on the network level. In addition a Protection Reverse Proxy
protects the server software on the level of the application protocol.

Example You are running your web site using a major software vendor’s web
server software. Your web site uses this vendor’s proprietary
extensions to implement dynamic content for your visitors and you
have invested heavily in your website’s software. Your server is
protected by a packet filter firewall.

You must open this firewall to allow access to the public port (80) of
your web server. Attacks from the Internet exploiting vulnerabilities
of your server software burden your system administrator with
installing patches frequently. Switching to another vendor’s web

InternetInternet

Firewall

Web Server

port 80
all requests
potentially dangerous

Browser
potentially malicicous

server is not possible because of the existing investment in the web
server platform, its content and your own software extensions. In
addition, with every new patch you install, you run the risk of
destabilizing your configuration so that your system extensions cease
to work, that your software extensions cease to work. How can you
escape the dilemma to keeping your web site up without
compromising its security?

Context Any kind of service accessible through the Internet or a through
another potentially hostile network environment. Usually the access
protocol is HTTP or HTTPS.

Problem Even if you install a simple packet filter firewall [add xref] your web
server can remain vulnerable to attacks exploiting weaknesses in its
protocol implementation. How can you protect your web server
infrastructure in the light of its potential vulnerability to attacks
using its protocol?

In particular you want to address the following forces:

• A simple packet filter firewall is not enough to protect your web
server, since access to its protocol (e.g. port 80) must be provided
to the Internet.

• Attack scenarios often employ extra long, or extra crafted request
parameters to exploit buffer overflows. Most firewalls work on the
network packet level and cannot prohibit attacks using such
invalid requests.

• Hardening your web server can be beyond your capabilities. For
example, because it comes as a black box from your vendor or
because it is too complex.

• Installing patches to your web server platform helps to avoid
exploitation of known vulnerabilities. But with each patch you risk
that your system extensions cease to work. You need to rerun your
integration tests at each patch level and might need to keep your
extensions up to date with each patch level. It might even be
impossible to upgrade your web server in a timely manner, because
the extensions aren’t ready.

• Switching to another web server software by a different source is
expensive, risky and time consuming, too. A new web server might

have fewer vulnerabilities, but you are less familiar with it. In
addition it might also require to adapt your own system extensions.

• You cannot know about vulnerabilities detected in the future.

Solution Change your network topology to use a protection reverse proxy that
shields your real web server. Configure this reverse proxy to filter all
requests, so that only (mostly) harmless requests will reach the real
web server. Two packet filter firewalls ensure that no external
network traffic reaches the real web server. The resulting network
topology provides a demilitarized zone (DMZ) containing only the
reverse proxy machine and a secured server zone containing the web
server.

Also this solution talks only about web servers, it applies to other
protocols like ftp, imap, smtp as well. A Protection Reverse Proxy for
ftp, for example, might scan file content for viruses or executable and
prohibit upload of such files, or it can limit the available ftp
commands and prohibit third party host data connections, which are
allowed by the ftp standard.

InternetInternet

Reverse Proxy
Outer Firewall

Inner Firewall

Backend Server

port 4711 (arbitrary)
only „valid“ requests
separate network

DMZ

server zone

port 80
BrowserBrowser

Component
Browser

Responsibility
• issues potentially

malicious re-
quests to backend
server via firewall
and reverse proxy

• retrieves backend
reply via reverse
proxy and firewalls

Collaborators
Outer Firewall
Reverse Proxy
Backend Server

Component
Reverse Proxy

Responsibility
• accepts requests

from browsers and
forwards only valid
requests to back-
end server.

• passes reply from
backend server
back to originating
browser.

Collaborators
Outer Firewall
Inner Firewall

Component
Outer Firewall

Responsibility
• filters incoming

network traffic and
allows only HTTP
port access to the
Reverse Proxy

• can deny out-
bound connection
from Reverse Proxy

Collaborators
Browser
Reverse Proxy

Component
Backend Server

Responsibility
• provides the real

web service.
• accepts requests

from reverse proxy
and returns reply
back.

Collaborators
Inner Firewall

Component
Inner Firewall

Responsibility
• separates server

zone from DMZ
• denies inbound

connections except
from Reverse Proxy

• denies outbound
connection from
backend servers

Collaborators
Backend Server
Reverse Proxy

Structure

Dynamics The first scenario shows how a valid request is checked and passed
on by the protection reverse proxy. The inner and outer firewall
components are assumed to be transparent in that case and thus are
not shown. Post processing a backend server’s reply is optional, but
can be used to adjust protocol header fields, for example. Note that
the access log is only written after the reply was sent to improve
responsiveness of the system.

Browser

address

receivePage

Firewall

filter_in
filter_out

BackEnd Server

getPage

ReverseProxy

forwardRequest
forwardReply

* *

*

*

*

*
*

1
getPage

outer

outer

inner

inner

getPage

getPage

Reverse
Proxy:

Backend
Server:

post

OK

GET /

Browser:

process

GET /

log
request

filter
request

The second scenario demonstrates the blocking mechanism of the
protection reverse proxy by ignoring an invalid and thus potentially
malicious request. Nevertheless, even if the browser will not get an
answer the attempt will be logged. According to the official hypertext
transfer protocol, the reverse proxy should return an error code
(typically “403 forbidden” or “404 not found”). It depends on your
security policy in that case, to either give an error reply or silently
ignore the attempt and close the connection at the protection reverse
proxy.

Implementation To implement the Protection Reverse Proxy several tasks need to be
done:

1 Plan your firewall and network configuration. Even if the firewall
update is done after every other part is in place, it is good to start with
a plan, so that configuration of the other components can rely on the
firewall plan. Often the concrete configuration needs to consider more
than just one protocol and some explicit “holes” in your firewall may
be needed. Find out what protocol your reverse proxy solution needs
to support. Typically only HTTP (port 80) is needed, but you might
want to allow other protocols as well through your reverse proxy.

Security
Reverse Proxy

Backend
Web Server

WRONG

GET c:/windows/cmd.exe

Browser

check
request

log
error

404 not found

2 Select a Reverse Proxy platform. You might create your own reverse
proxy, for example by configuring the Apache web server with
mod_rewrite and mod_proxy modules, several vendors offer
professional reverse proxy solutions, or you might need to implement
your own reverse proxy, for example, because you are using a special
protocol not supported by other solutions.

Showing the details of implementing your own reverse proxy server
software is beyond the scope of this pattern. Nevertheless, there are
cases, where you might not trust a solution provider or not have one
and only rely on your own skills.

When selecting a vendor or source for your protection reverse proxy
you should opt for a simple and proven solution. For example, using
Apache you risk all Apache web server vulnerabilities to be present in
your protection reverse proxy. On the other hand, the Apache web
server is deployed so often, that most vulnerabilities and
countermeasures are known.

3 Configure your backend web server(s). The web content should rely on
relative path names and not use its internal name or IP address to
refer to itself. Otherwise, links might not work, because the browser
can no longer directly access the machine it is running on.

4 Configure your Protection Reverse Proxy. For the security to work, you
need to define what requests should be mapped towards your
backend web server, and define what to happen if invalid requests
occur. For example, you might want to log what request were denied
by the reverse proxy. For request filtering there exists two
approaches: black lists and white lists.

• A black list filter only blocks requests that its list of malicious
requests knows of, but passes on all others. Black list filters are
easier to deploy but riskier. They are often used by “higher-level”
firewalls.

• A white list filter is more restrictive and only lists allowed requests.
It needs to be configured with detailed knowledge of the backend
server and allowed URLs. A white list filter needs to be adapted
every time your backend server changes significantly in its URL
space. Nevertheless, it is the better choice for a Protection Reverse
Proxy.

If your backend server relies on redirects or other mechanisms using
its host address and you cannot change that, you need to configure
your reverse proxy to modify server responses accordingly.

5 Deploy everything. Initial deployment with setting up firewalls,
network and routers, host IP addresses and so on requires good
planning. If you have something up and running already, this re-
configuration might mean some service interruption. Nevertheless,
later changes to the topology need only consider the reverse proxy and
eventually the inner firewall.

Example
Resolved

Following these implementation guidelines we are able to protect our
vulnerable web server with a Protection Reverse Proxy.

Known Uses Security Reverse Proxies are popular. Some organizations in the
financial industry have the guideline to use a reverse proxy for every
protocol provided over the Internet (with some exceptions, like DNS).
Thus they can ensure that a vulnerable server is never directly
accessible from the “wild”.

Vendors of security infrastructure provide Security Reverse Proxies
as part of broader infrastructure. Examples of such infrastructures at
the time of writing are Bull Evidian Access Master and PortalXpert,
IBM Tivoli Access Manager, SYNLOGIC Frontdoor and FTP Frontdoor.

Variants The patterns Integration Reverse Proxy and Front Door can (and
should) be combined in their function with Protection Reverse Proxy
and thus vary this pattern by adding functionality.

See also The Protection Reverse Proxy is a special implementation of Single
Access Point [SecPat].

In conjunction with the regular firewalls, the Protection Reverse Proxy
builds a “defense in depth” [BEAH][Schn03].

Consequences The pattern implies the following benefits:

• Attackers can no longer directly exploit vulnerabilities of the backend
server. Even when the backend server gets compromised, the
firewalls hinder further spreading of Internet worms, etc., by blocking
outgoing requests from the backend server.

• Even with known vulnerabilities, you might be able to keep your web
server configuration stable, because the Protection Reverse Proxy
with its request filtering capability can prohibit exploitation of the
web server’s vulnerabilities.

• Easier patch administration. Only one machine remains connected to
the Internet directly and needs to be monitored for potential
vulnerabilities and existing patches to be applied. However, you
cannot blindly trust your Protection Reverse Proxy. A backend server
still needs to be configured with your brain on, to avoid exploitation
of vulnerabilities with “allowed” requests.

• More benefits apply, when combined with more functionality. See the
other patterns Integration Reverse Proxy and Front Door in this
collection.

However, the Protection Reverse Proxy pattern also has its liabilities:

• Black list filtering can give you a false sense of security. Like patches,
black lists can only be constructed after a vulnerability is known.

• White list filtering can be fragile, when backend servers change.
Adding functionality, or re-arranging content structure on the
backend web server, can imply additional work to re-configure the
white list filter of the Protection Reverse Proxy.

• Latency. A reverse proxy adds latency to the communication, not only
because of the additional network traffic, but also for the filtering and
validation of requests.

• Some loss of transparency. Some restrictions are imposed on the
backend servers. However, these are typically good practice anyway,
like relative paths in URLs. Nevertheless, the backend servers no
longer see the communication end partner directly on the network
level. So the protocol may need to provide a means to identify the
original communication end point (which HTTP allows).

• Additional point of failure. If the reverse proxy stops working, any
access to your web site is impossible. Any additional component that
can fail increases the overall risk of system failure. To reduce this

risk, you can provide a hot or cold stand by installation with hardware
or software fail-over switches.

• Hardware, software and configuration overhead. The Protection
Reverse Proxy requires to configure an additional packet filter firewall
as well as another machine to run the reverse proxy on.

Integration Reverse Proxy

A web site constructed from applications from different sources might
require several different servers, because of heterogeneous operating
requirement of the different applications. Because of the Internet
addressing schema, this distribution across several hosts is visible to
the end user. Any change of the distribution or switch of parts of the
site to a different host can invalidate URLs used so far, either cross-
links of the web site or bookmarks set up by users. An Integration
Reverse Proxy alleviates this situation by providing a homogenous
view to a bunch of servers, without leaking the physical distribution
of several machines to end users.

Example Consider a typical web site of a company (myshop.ch) selling some
goods and services. Their on-line presence was established with an
interface to their support group, giving users access to static
documentation, like an FAQ and a simple e-mail interface to contact
support personnel. This web server runs on a machine name
support.myshop.ch. Then the marketing department purchased an
on-line catalog software showing their offerings on the server
catalog.myshop.ch.

Later on they implemented a simple on-line ordering system with a
small development company, since orders needed to be automatically
routed to their home-grown ERP system. Because they used a
different platform for development for cost reasons, this order taking
system again needed to run on a separate server as order.myshop.ch.

To avoid problems with late paying customers and ease operation of
their on-line business they added a credit card on-line payment
software from another vendor. Again an additional machine was
needed with its name pay.myshop.ch. They end with a structure
shown in the diagram.

The business flourishes and now, their original infrastructure
reaches some limits. But the practice of having every single server
known on the Internet makes shifting applications to another server
or running an application on two different systems hard. The
complexity of the infrastructure and the cross-linking of the different
application servers make every change a complex endeavor with the
risk of many broken links. How can the IT organization shield end
users and also servers from changes in the infrastructure? How can
they extend functionality or processing power without breaking links
or invalidating bookmarks of users?

Context A web site consisting of several web servers or web applications.

Problem You want to implement your web site using different servers or use
different vendors solutions for your web site. How do you provide
everything under a consistent web application space without showing
your server topology to users? How do you gain flexibility in network
topology, e.g. by adding or removing servers without surprising

DMZInternet

catalog.myshop.ch

orders.myshop.ch

pay.myshop.ch

service.myshop.ch
Fi

re
w

al
l

users? How do you provide fail-over switching or load balancing, if an
application server gets overloaded?

In particular you want to address the following forces:

• You cannot implement your complete web site with just a single
server and platform, because of complexity, performance,
robustness or reuse reasons.

• You want to hide network topology from your users, so that
changes in machine configuration do not break their bookmarks or
links to your web site.

• In addition cross (backend) server links should continue to work
regardless of network topology. This ensures individual backend
applications continue to work unchanged even when one backend
application is moved to some other machine.

• You want to be able to exchange parts of the web site’s
implementation without breaking links.

• You want to easily add new elements and functionality to your web
site.

• You want to be able to switch a request for an application between
hosts, either for fail-over or load balancing.

• You want only a single SSL certificate, because certificates are
expensive, especially coordinating their renewal.

Solution Use a reverse proxy for integrating all your web servers as backend
servers with a common host address (that of the reverse proxy).

Map URL paths below the common host address to individual
backend server functions, so that any modification of the association
of a function to a specific backend host, can easily be changed at the
reverse proxy. Optionally provide your Integration Reverse Proxy with
a SSL certificate for your web site domain.

You end up with the following structure.

Implementation The implementation of an Integration Reverse Proxy follows most of
the steps explained for the Protection Reverse Proxy. Additional steps
to be considered are:

1 Design your web site’s name space. This is the step requiring some
planning to allow for future extensibility. In our example, a path
prefix maps to a specific server implementing the functionality.
Several prefixes might also map to the same machine. Nevertheless,
try to keep the mapping simple. There is one special case regarding
the entry point ‘/’: One backend server can handle this or the reverse
proxy itself can show a navigation page to the user consisting of a
menu of configured backend services. This can change automatically
with a changed configuration of the reverse proxy.

An alternative to the path prefix mapping is to use virtual hosts for
the reverse proxy, where a host name still designates a backend
service. This allows our example company to continue to provide their
original host names, even after they switched to a reverse proxy
architecture.

Application ZoneDemilitarised Zone (DMZ)Internet

Integration
Reverse

Proxy In
ne

r F
ire

w
al

l

O
ut

er
 F

ire
w

al
l

/catalog

/orders

/payments

/service

http://myshop.ch/

myshop.ch/catalog

myshop.ch/service

192.168.5.1

192.168.5.2

192.168.5.3

192.168.5.4

A combination of prefixes and virtual hosts allows a service provider
to host similar functionality for several clients without the need to
duplicate all infrastructure and with easy extension of infrastructure
if the need for it arises. Our example company can use this
combination to provide a shop service (catalog, order, payment) for
resellers under their reseller’s domain address with myshop.ch’s
servers.

2 Configure backend web servers. In addition to the issues mentioned
in the Protection Reverse Proxy pattern, you want links from one
backend service to another. For example, the /catalog backend server
will want to link to /orders and vice versa. Following your name space
schema, adapt your web pages and applications to create correct
links without referring to the internal host addresses.

3 Implement backend server fail-over. If your web site should be
operational in case of hardware or software failures, or when a new
version of some backend needs to be installed, you can provide a fail-
over switch to a different backend server machine implementing the
same functionality. Such a switch can be automatic, when the reverse
proxy cannot connect to the primary backend server or manually
configured by operating personnel.

4 Implement backend server load balancing. Similarly to fail-over you
can also implement some load balancing for backends if you need it.
There are several strategies possible. The simplest one is passing
requests in a round robin fashion among several backend servers
implementing identical functionality. More sophisticated strategies
can make use of statistics collected at the reverse proxy like response
times of backends or special queries to the backends collecting their
respective loads.

In the case of web applications on the backends that carry a user’s
session context, load balancing gets more complicated, because a
session’s request need to be passed to the same backend, when more
than one is available (session stickiness). See the Front Door pattern
for ideas on how to resolve these issues.

Known Uses Pound (http://www.apsis.ch/pound/index.html) is an integration
reverse proxy providing SSL wrapping and load balancing with a
simple form of session stickiness.

Variants Integration Protection Reverse Proxy. As already said, it is easy and
wise to combine the Integration Reverse Proxy with the Protection
Reverse Proxy and gain both benefits.

You can use Integration Reverse Proxy also for an Intranet integration
scenario. Simple Intranet applications (e.g. using PHP or Perl) can be
deployed quickly behind the reverse proxy, without the need to
publicize the servers address explicitly to all users. In addition
external web applications can be similarly integrated into the
workspace without users recognizing the external nature. Combined
with a menu of available backend services generated on the reverse
proxy, deployment of tools can so be instantaneous. This style of
integration just relying on HTTP is much easier than using a full-
fledged portal server platform. In addition you can gain security,
because the backend servers can operate in a separated network zone
not accessible directly from the also potentially hostile corporate
Intranet (e.g. consider e-mail worms).

Even a combination of two Integration Reverse Proxies, one facing the
Internet and one for the Intranet sharing the backend servers is
possible. This reduces cost, if the same functionality must be
available on both networks.

Consequences The pattern implies the following benefits:

• Only one externally known host. Both only one name and one IP
address for the reverse proxy need to be known and accessible
outside, except when you make use of virtual hosts. You also increase
security, because fewer machines need to operate in the DMZ.

• The network topology of backend servers is hidden. You can move
backend web servers from one machine to another without
invalidating external URLs or cross application links.

• Ease of integration and extension. Mix and match of web applications
and technology becomes feasible for backend web servers and is
transparent for end users.

• Bookmarks and cross-backend links continue to work, even when a
backend is moved to another host.

• Load balancing of backend servers by the reverse proxy is possible.
However, if your backend servers carry session, the reverse proxy
must take stickiness into account. See Front Door for more optional
features.

• Centralized logging. The Integration Reverse Proxy provides a good
hook to implement access and error logging. Ideally backend servers
no longer need to perform logging. A single log is easier to evaluate,
for example, a user’s navigation path can be followed easily, even if
more than one backend server is used.

• You can save money and effort on SSL certificates and may be also on
IP-addresses or host names, because only one host is connected to
the Internet. The virtual host to service mapping is infeasible with a
single SSL certificate. You then need to configure multiple IP
addresses for the reverse proxy to make it possible to use valid SSL
certificates or you need to use an expensive wild card SSL certificate.

However, the Integration Reverse Proxy pattern also has its
liabilities. It shares the last three liabilities with the Protection
Reverse Proxy: Latency, some loss of transparency for backends, and
it is also an additional point of failure.

• Potential single point of failure. If everything runs through your
reverse proxy, this becomes a single point of failure. Additional
redundancy is required for risk minimization. Without the reverse
proxy, a single server outage can reduce available functionality, but
might not bring everything down completely. Using a redundant
hardware load balancing switch and a redundant reverse proxy
configuration can alleviate that problem.

• Number of concurrent connections is limited. IP gives a hard limit to
the number of usable ports and thus the number of concurrent

connections possible. On really heavy loaded sites with relatively slow
backends this might imply you need additional means like multiple
reverse proxies with DNS round robin to stretch these limits.

• Complexity. There can be simpler means to gain one or the other
benefit. For example you can use a hardware load balancing switch.

• Session stickiness with load balancing can be problematic, when
backend servers rely on sessions. See Front Door pattern for more
details and resolutions of this problem.

• Testing individual applications can be harder. You may need to set up
also a “dummy” Integration Reverse Proxy to be able to test new
applications. There can even be the need for a complete testing
environment consisting of all backends to validate all possible cross-
links.

See Also The Front Door pattern for an even more sophisticated application of
Integration Reverse Proxy using user authentication, authorization
and session management.

Front Door

Web applications and services often need to identify a user and keep
track of a user’s session. Integrating several such services allows to
provide a single log-in and session context. A reverse proxy is an ideal
point to implement authentication and authorization. You end up
with a web entry server for your backends. A sophisticated one can
even access external backends providing the user’s id and password
automatically from a “password wallet”.

Also Known As Web Entry Server, Web Single Sign On

Example Let us continue with our myshop.ch example. Soon after the
Integration Reverse Proxy was deployed, users complained that they
had to re-enter their identity several times on the web site.
myshop.ch’s IT personnel recognized that each web application
carried its own user database. Adding an application requiring user
authentication meant to add just another user data base. Providing
support services to their customers and resellers via the web required
more sophisticated authentication and they wanted to allow access
only to those users paying for the service.

Integration
Reverse

Proxy In
ne

r F
ire

w
al

l

O
ut

er
 F

ire
w

al
l

/catalog

/orders

/payments

/service

http://myshop.ch/

myshop.ch/orders
login:

myshop.ch/service
login:

buyers
DB

service
users

How can myshop.ch easily provide access control to their web
applications, without having users sign on several times and with an
easy extensibility?

In addition the CIO recognizes that new means of user authentication
can become popular in the future, so she doesn’t want the different
applications depend on a single authentication schema. For example,
myshop.ch might give security tokens generating one-time passwords
to their resellers, to add a more secure authentication for users
placing bulk orders.

Context A web site consisting of multiple web applications that require user
authentication.

An Integration Reverse Proxy where applications need to authenticate
users and only authenticated users are authorized to access a defined
subset of applications, a Protection Reverse Proxy where user
authentication is required and only authenticated users will get
access to the underlying web application, or a combination of both.

Problem How do you provide a single sign on for several web applications or
services?

In particular you want to address the following forces:

• You want a single user identity for all applications, even when
existing web applications already carry their own user data base.

• You do not want users to provide their password for each
application separately. This is depending on your security policy.

• You might even want to force users to identify several times to avoid
misuse of a user’s session left alone for some time.

• You want your applications to be independent of the authentication
schema used. Depending on your policy you might even require
different ones. For example, strong authentication with a one time
password from a security token for payment service, or weak
authentication using regular id-password combination for service
access.

• Different users have different access rights to your systems. You
want to be able to handle these differences by a single solution.

• You want new applications to easily integrate into your
authentication, authorization schema.

• You want not only a single sign on but also a single log off. That
means a user should keep his session as long as he is active,
regardless of the concrete backend he interacts with. On the other
hand, when a user logs off, his session should be terminated, so
that even when the browser is left open, nobody else can connect
to the backend servers without re-authentication.

Solution Implement a Front Door server as a specialization of the Security
Integration Reverse Proxy that identifies users and keeps track of
user sessions. It passes user identity and session identification to all
of the backends. The Front Door can log all user activity in a central
log. Depending on the nature of the complete solution, some backend
servers might be accessible by everyone and the Front Door only
protects some backend servers from unauthenticated users.
Nevertheless, remember it can also act as a Protection Reverse Proxy
for the public part of the web site.

You need to consolidate user identities of existing backend
applications. Store the resulting user profiles combining a user’s
identities and access rights in a single user directory. Today an LDAP
directory server is the popular solution for that, but another kind of
data base might also be appropriate.

Beyond the scope of this pattern, but often required is a system for
managing user identities and access rights. In large solutions using a
vendor’s solution for access rights management can be effective, or
you might be able to extend an Active Directory when you are using
Windows.

Implementation To implement a Front Door reverse proxy in addition to the issues
given in the preceding patterns the following must be considered:

1 Unify user representation and data base. This is easiest if you have a
clean start or if only one user database exists. An LDAP directory
server is a popular means to store user identities, passwords and
access rights. If you want to integrate existing backends, that you can
not change, you might need to add a identity and password wallet to
each user object in the directory for automatic replay of id and
password when accessing such a backend.

2 Define authentication mechanism(s). Popular mechanisms are id-
password, one-time passwords, one-time token based password,
challenge-response with token, biometrics, certificates, or any useful
combination. Since now only the Front Door needs to implement user
authentication it is easy to change or extend authentication
mechanisms later without any impact on existing applications.

Front Door
O

ut
er

 F
ire

w
al

l

/catalog

/orders

/payments

/service

http://myshop.ch/

myshop.ch
login:

buyers
DB

service
users

user
directory

In
ne

r F
ire

w
al

l

LDAP

3 Define access rights schema if needed. There exist different
approaches to represent access rights and the mapping of users to
the set of allowed services. For the purpose of the Front Door a coarse
grained model is sufficient, but individual applications might need
fine grained control to internal functionality. A sophisticated
implementation will provide a complete model applicable not only for
Front Door’s but also for all application’s needs.

4 Design user and session representation as passed to backends via
header fields. This can be a specifically named header field or you can
use HTTP basic authentication mechanism to pass on the user
identity. If there is not a single user representation, Front Door might
need to map the user id to the one specific to the backend. This
mapping needs to be stored in the user data base as designed in step
1. Optionally define additional header fields for inter-backend
communication. Those header fields are analyzed by Front Door, kept
in its session store and automatically passed to all interested
backends.

5 Design and implement how Front Door keeps track of user sessions.
Some solutions that rely on SSL for browser-Front Door
communication use the SSL session id for that purpose. Using a
session cookie is also popular. Rewriting all URLs in the content of
backend replies to add a session id, if cookies are disabled, seems to
be too much overhead and too complicated. Using cookies it is even
possible to be able to keep the session context when switching
between HTTP and HTTPS for performance and security reasons.
Front Door’s session cookies should be encrypted and
cryptographically signed to ensure that they cannot be manipulated.
If Front Door’s cookies are secured in such a way and they also
contain some identification of their source, Front Door can even
accept such a cookie as a valid user identification after a crash,
without the user recognizing.

6 Design and implement Front Door’s session context. The session cookie
can be the means to store all session context. However, because of a
cookie’s size limitation and security issues, it might be better to keep
the session context on the server side. One solution is to keep a
session list with all session contexts in memory. This is most efficient,
especially if also access rights of a user are cached there, but carries
the risk of losing session state on a crash. Another option is to use

persistent storage in a data base for session context. However, this
tends to be an order of magnitude slower, but it allows for several
Front Door instances to share session context. It depends on the
concrete requirements which solution for keeping session context is
best. For more explanations for keeping session state, refer to the
chapter ‘Session State Patterns’ in [Fow03].

7 Implement a cookie jar. If backend servers use their own session
cookies Front Door can keep those session cookies in its own session
context and not pass them to the user’s browser. This way you can
ensure single log off. Otherwise a browser might send an “old”
application session cookie, after a new user logged into Front Door
confusing the backend server.

8 Design and implement login and portal page. Front Door can delegate
user identification to a special backend server or can implement its
own login page. As with Integration Reverse Proxy, a “portal” page
consisting of a menu of all services available to the logged in user is a
possible “poor-man’s” portal solution. In addition a special service
link (e.g., /logoff) should be implemented by Front Door to allow
applications to give the user the ability to consciously terminate their
session.

Variants As with the Integration Reverse Proxy you can deploy two Front Doors
sharing backend servers, one for the Internet (effectively making it an
Extranet) and one for Intranet users.

Known Uses SYNLOGIC’s Frontdoor implements most of the issues given here, in
addition to being able to be configured as a Security or Integration
Reverse Proxy.

Bull EVIDIAN PortalXpert implements a Web Entry Service.

IBM Tivoli Access Manager provides with its Web Seal reverse proxy
functionality of a Front Door.

Consequences In addition to the consequences of Secure Reverse Proxy and
Integration Reverse Proxy this pattern implies the following benefits:

• Single sign on and single log off, because Front Door keeps track of a
user’s session and backends automatically obtain the user id from
Front Door instead of asking the user again.

• One user profile possible. It is not necessarily so, when you already
start with a bunch of web applications and integrate them, but Front
Door facilitates the mechanisms to end up with one user profile and
one administration application.

• Applications are relieved from implementing access control and user
authentication. This gives you the opportunity to quickly deploy web
applications that readily integrate with Front Door’s access control.
Experience shows, that such an architectural guidance for web
applications can be a great benefit, especially in an Intranet.

• Centralized logging allows user tracking and reporting. Marketing
departments might die for such logs that keep exact track of user
activity.

However, in combination with the previos patterns’ liabilities Front
Door carries the following additional liabilities:

• Applications might enforce their own user database thus increasing
the risk of inconsistencies. For example, RSA ACE/Server has its own
user database for managing tokens for its strong authentication. If
you implement Front Door using both RSA SecureID and another
user authentication schema, you end up with two user databases you
need to synchronize.

• A central management application for user identities and access
rights is needed. Without a single sign on, this need can already exist
but it might not be recognized. Deploying Front Door makes this need
prominent. Also a lack in corresponding organizational processes
more easily shows up.

• Password aging policies across backend applications can conflict. You
then need to auto-generate new passwords when they expire, or let
the user worry to change its password on the backend application
and in its Frontdoor profile.

• Conflicting session time-outs of Front Door and applications can
confuse users.

Credits Many thanks to my EuroPLoP 2003 shepherd Kevlin Henney and the
writers’ workshop participants in Irsee. The work presented is based
on work of my current and former colleagues at SYNLOGIC and
itopia, that have implemented our Frontdoor solutions: Andreas
Birrer, Bruno Büchel, Marcel Huber, Ulf Leonhardt, Alessio
Montorfano, Markus Pfister, Jürgen Wothke. Thanks to Lara Beraha,
Lukas Buzzi and Felix Gähler of Telekurs Financial Information Ltd,
that have let us implement Frontdoors and learned with us about the
issues, benefits and drawbacks of operating reverse proxies. Thanks
also to the co-editors (Markus, Frank, Ed, Duane) of the upcoming
book “Security Patterns” for their support and patience.

References

[BEAH] Ben Elsinga, Aaldert Hofmann: Security Paradigms, Cap Gemini Ernst &
Young, Nederland B.V.

[Evidian] see http://www.evidian.com for product description and white papers

[Fow03] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-
Wesley 2003

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns – Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995

[POSA96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern-
oriented Software Architecture–A System of Patterns, J. Wiley & Sons, 1996

[POSA2000] D. Schmidt, F. Buschmann, H. Rohnert, M. Stal: Pattern-oriented Software
Architecture Volume 2–Patterns for Distrubuted and Concurrent Systems, J.
Wiley & Sons, 2000

[Schn03] Bruce Schneier, Beyond Fear, 2003

[SecPat] M. Schumacher, E. Fernandes, D. Hybertson, F. Buschmann, P. Sommerlad:
Security Patterns, upcoming Wiley 2004

[SYNLOGIC] see http://www. synlogic.ch

[TivoliAM] IBM: Enterprise Security Architecture using IBM Tivoli Security Solutions,
available from http://www.redbooks.ibm.com/pubs/pdfs/redbooks/
sg246014.pdf

	Reverse Proxy Patterns
	Author
	Overview
	Copyright
	Protection Reverse Proxy
	Example
	Context
	Problem
	Solution
	Structure
	Dynamics
	Implementation
	1 Plan your firewall and network configuration. Even if the firewall update is done after every o...
	2 Select a Reverse Proxy platform. You might create your own reverse proxy, for example by config...
	3 Configure your backend web server(s). The web content should rely on relative path names and no...
	4 Configure your Protection Reverse Proxy. For the security to work, you need to define what requ...
	5 Deploy everything. Initial deployment with setting up firewalls, network and routers, host IP a...
	Example Resolved
	Known Uses
	Variants
	See also
	Consequences
	• Attackers can no longer directly exploit vulnerabilities of the backend server. Even when the b...
	• Even with known vulnerabilities, you might be able to keep your web server configuration stable...
	• Easier patch administration. Only one machine remains connected to the Internet directly and ne...
	• More benefits apply, when combined with more functionality. See the other patterns Integration ...
	• Black list filtering can give you a false sense of security. Like patches, black lists can only...
	• White list filtering can be fragile, when backend servers change. Adding functionality, or re-a...
	• Latency. A reverse proxy adds latency to the communication, not only because of the additional ...
	• Some loss of transparency. Some restrictions are imposed on the backend servers. However, these...
	• Additional point of failure. If the reverse proxy stops working, any access to your web site is...
	• Hardware, software and configuration overhead. The Protection Reverse Proxy requires to configu...

	Integration Reverse Proxy
	Example
	Context
	Problem
	Solution
	Implementation
	1 Design your web site’s name space. This is the step requiring some planning to allow for future...
	2 Configure backend web servers. In addition to the issues mentioned in the Protection Reverse Pr...
	3 Implement backend server fail-over. If your web site should be operational in case of hardware ...
	4 Implement backend server load balancing. Similarly to fail-over you can also implement some loa...
	Known Uses
	Variants
	Consequences
	• Only one externally known host. Both only one name and one IP address for the reverse proxy nee...
	• The network topology of backend servers is hidden. You can move backend web servers from one ma...
	• Ease of integration and extension. Mix and match of web applications and technology becomes fea...
	• Bookmarks and cross-backend links continue to work, even when a backend is moved to another host.
	• Load balancing of backend servers by the reverse proxy is possible. However, if your backend se...
	• Centralized logging. The Integration Reverse Proxy provides a good hook to implement access and...
	• You can save money and effort on SSL certificates and may be also on IP-addresses or host names...
	• Potential single point of failure. If everything runs through your reverse proxy, this becomes ...
	• Number of concurrent connections is limited. IP gives a hard limit to the number of usable port...
	• Complexity. There can be simpler means to gain one or the other benefit. For example you can us...
	• Session stickiness with load balancing can be problematic, when backend servers rely on session...
	• Testing individual applications can be harder. You may need to set up also a “dummy” Integratio...
	See Also

	Front Door
	Also Known As
	Example
	Context
	Problem
	Solution
	Implementation
	1 Unify user representation and data base. This is easiest if you have a clean start or if only o...
	2 Define authentication mechanism(s). Popular mechanisms are id- password, one-time passwords, on...
	3 Define access rights schema if needed. There exist different approaches to represent access rig...
	4 Design user and session representation as passed to backends via header fields. This can be a s...
	5 Design and implement how Front Door keeps track of user sessions. Some solutions that rely on S...
	6 Design and implement Front Door’s session context. The session cookie can be the means to store...
	7 Implement a cookie jar. If backend servers use their own session cookies Front Door can keep th...
	8 Design and implement login and portal page. Front Door can delegate user identification to a sp...
	Variants
	Known Uses
	Consequences
	• Single sign on and single log off, because Front Door keeps track of a user’s session and backe...
	• One user profile possible. It is not necessarily so, when you already start with a bunch of web...
	• Applications are relieved from implementing access control and user authentication. This gives ...
	• Centralized logging allows user tracking and reporting. Marketing departments might die for suc...
	• Applications might enforce their own user database thus increasing the risk of inconsistencies....
	• A central management application for user identities and access rights is needed. Without a sin...
	• Password aging policies across backend applications can conflict. You then need to auto-generat...
	• Conflicting session time-outs of Front Door and applications can confuse users.
	Credits
	References
	[BEAH]
	[Evidian]
	[Fow03]
	[GHJV95]
	[POSA96]
	[POSA2000]
	[Schn03]
	[SecPat]
	[SYNLOGIC]
	[TivoliAM]

