

1

 Process-Related Test Message

Karl Flieder*

CAMPUS 02, University of Applied Sciences
A-8010 Graz, Austria

karl.flieder@gmx.at

Abstract. Enterprise integration patterns [7, 8, 17, 18] are well-known for
designing, building and deploying messaging solutions. Testing loose-
coupled systems during productive operation is a challenge due to several
reasons such as the time needed for delivering a message, co-existence with
productive messages and some others. Integration on process level has
emerged as a promising paradigm for managing enterprise application inte-
gration strategies. However, there is a missing link between established
messaging infrastructures, utilising transport of messages and a process-
coupled view on it. Testing and analysing the results are two tightly coupled
and normally inseparable mechanisms. The messaging model used, as well
as the test model and the term of end-to-end testing will be introduced.

The idea of splitting a messaging infrastructure into different layers
(business, logical, physical), in order to gain coherent test results for differ-
ent business processes, is a novel approach. Likewise, injecting test mes-
sages on application-level during operation is a challenge. As a result, this
paper proposes a pattern for an end-to-end test of loose-coupled systems on
application level to ensure process-related testing through a logical grouping
of the components involved.

Introduction
Messaging – often referred to as Message-Oriented Middleware (MOM) [3, 4] – is fre-
quently used as a base service for integrating distributed systems on application level.
For usability reasons, different departments often request their own view of the compo-
nents involved during interaction. System administrators are not always available to
answer questions concerning efficiency proof, system availability and further more. Ob-
viously, a customized view of the related messaging components could help the depart-
ment’s super-user a lot. In this paper the authors propose a concept to meet this aim very
efficiently without using a professional and expensive system monitoring tool. The pro-
posed pattern focuses on the logical grouping of the physical message paths (Figure 6).
It incorporates ideas of testing on application level and looking at the test results on
process level.

Messaging technology enables asynchronous, high-speed, program-to-program com-
munication with reliable delivery. The two basic components of messaging are mes-
sages and queues (Figure 2). Programs communicate by exchanging packets of data
called messages with each other. A sender or producer is a program that sends a mes-
sage by writing the message into a queue. A receiver or consumer is a program that re-
ceives a message by reading it from a queue. This asynchronous transmission makes
delivery more reliable and decouples the sender from the receiver. Basically, a message
———————
* Copyright © 2004 Karl Flieder. Permission is granted for the purpose of EuroPLoP 2004 to Hillside e.V.

mailto:karl.flieder@gmx.at

2

consists of two parts: a header and a body. The header contains metadata about the mes-
sage; the body contains the payload generated by the sending application.

There are two messaging models available: point-to-point (one-to-one) and pub-
lish/subscribe (one-to-many) [5]. Point-to-point messaging is used to send data to a sin-
gle application. This does not guarantee that every piece of data sent will necessarily go
to the same receiver, because the channel might have multiple receivers. Pub-
lish/subscribe provides of the receiver applications with data. In this case, the data is
copied for all of the receivers. Additionally, this messaging model works with events.
The sender publishes messages based on events; the receivers subscribe certain topics.

Messaging systems are peer-to-peer facilities. Generally, each client can send mes-
sages to, and receive messages from any client. Each client connects to a messaging
agent that provides facilities for creating, sending and receiving messages. Messaging
capabilities are typically provided by a separate software system. This software defines a
set of services to mediate between various applications across different languages and
platforms. E-Mail messaging is based on the store-and-forward concept, too. Several
messaging systems compete on the market, for example:

• IBM’s WebSphere MQ, can be regarded as a leader on commercial markets [9].
• Sun’s Java Messaging Service (JMS) as part of the open source J2EE JDK [13].
• Microsoft’s Message Queuing (MSMQ) as part of the System.Messaging librar-

ies in Microsoft .NET [11].
• Sonic Software’s SonicMQ [12].
• Emerging Web services toolkits that support asynchronous Web services.

Information integration issues in enterprises are well-known as Enterprise Applica-

tion Integration (EAI). The intention is to achieve effective communication across vari-
ous business applications and delivery channels, thereby ensuring seamless data integra-
tion from different legacy systems. We distinguish between three main levels of integra-
tion:

• Exchanging data on data level relies on data management. Typically, JDBC and

ODBC middleware or system interfaces are involved. This type of integration
supports data exchange between disparate data stores when applications in dif-
ferent businesses must share information. This level of integration can be re-
garded as the lowest one in enterprise application integration.

• The approach on application level operates under the paradigm that applications

can easily be wrapped using some form of middleware technology. Integrated
application can be built on top of this middleware, for example messaging. As a
matter of fact, this is a powerful concept in software engineering because mid-
dleware represents a layer of abstraction to prevent the top layers from knowing
details about the layers below.

• Integration on process level represents the highest level of abstraction. Different

applications work together to fulfill a certain business process. Typically, this
level can be reached in assistance with an integration server dealing with appli-
cation server tasks. Thereby, a lot of transformations, mappings and flow-control
activities are being done this way.

3

Messaging Interaction Scheme

Point-to-Point Mode
In message queuing systems, messages are stored in first-in-first-out (FIFO) queues.
Producers append (push) messages asynchronously at the end of a queue, while con-
sumers pull them synchronously at the front of a queue as shown in Figure 1. Message
queues implement unidirectional message paths. Messages are concurrently pulled by
consumers with one-of-n semantics. This interaction model is called point-to-point. The
solution proposed in this paper focuses on this messaging mode.

output queue
(remote)

output queue
(remote)

input queue
(local)

input queue
(local)

push pull

pushpull

Figure 1: Point-to-point messaging

Message Structure
A single message within a message-oriented communication infrastructure consists of
multiple sections:

a) The message header includes a number of predefined fields. These fields are used

by the messaging system to decide how to process the message. They contain values
that both, clients and providers, use for identifying and routing messages.

b) The message body contains the business information (payload) of the message. This

can be text, binary and in case of JMS a Java object that represents one of the five
JMS message types: BytesMessage, TextMessage, MapMessage, StreamMessage or
ObjectMessage.

c) JMS provides an additional section for supporting compatibility to other messaging

vendors: message properties. This part includes arbitrary properties assigned in ad-
dition to the header fields. They might be application-specific or provider-specific.

4

Object-Oriented Analysis
With the knowledge acquired so far, we can depict a simple messaging system as shown
in Figure 2. A message queue is “part of” a queue manager (“part of” relationship). This
situation represents a composition. Every queue manager owns at least one (in diagram:
1), but mostly more (in diagram: 1..*) message queues. The life-time of a message
queue is bound to that of a queue manager. A message queue does not own messages
(“has-a” relationship). In object-oriented analysis, this situation is known as an aggrega-
tion. The life-time of a message is not bound to that of a queue. For example, an already
gathered message can survive as a text file. One or more producers respectively con-
sumers are allowed to put messages into a queue or to get messages out of a queue.
Nevertheless, restrictions to only one consumer may be appropriate, depending on the
messaging system used [8, pp. 508]. Both the test messages to be implemented and the
productive messages are specialized elements of the generalized parent “message”. This
represents a “kind-of” relationship.

Message Queue
Producer

-Pb

1..*

-Pa

1..*

-Ca

1..*

-Cb

1..*

-Ma1

-Mb0..*

Message

Test-MessageProd-Message

Queue Manager

-QMb1

-QMa1..*

Consumer

Figure 2: Objects of a simple messaging system

5

Test Pattern Template
Patterns are proofed solution concepts, filling the gap between a high-level vision of
integration and the present system implementation. In other words, a pattern represents a
decision that must be made and the considerations that influence that decision.
CHRISTOPHER ALEXANDER [1] stated: “Each pattern is a three-part rule, which ex-
presses a relation between a certain context, a problem and a solution.” A pattern
template adds technology-specific elements to these basic items. ROBERT V. BINDER [2]
suggested in his book a test design template, including the following unique and essen-
tial elements:

• Fault Model

Why is this approach better than just poking around?
• Test Model

What facets of the implementation under test should be considered and how
should they be abstracted?

• Test Procedure
How can an application model be transformed into test cases?

• Oracle
How can latest results be evaluated?

• Entry Criteria
Complying with certain entry criteria solves two common problems: The false
confidence that may result by skipping component tests and pass system
scope tests. Furthermore, the waste of time that results when components are
not stable enough to perform the test.

• Exit Criteria
The exit criteria should give an answer to the question: How much testing is
enough?

The essential elements of pattern templates may vary, depending on the domain they

focus on. After many considerations about what template style to use, I decided in fa-
vour of a mixture of a widely used variant, often used at PLoP conferences, and ROBERT
V. BINDER’S test design template. As a result of my first experience with patterns, the
interested reader should be able to find a coherent pattern proposal.

6

Process-Related Test Message

Intent
We aim to test the message paths between loose-coupled systems, including the sender
and receiver applications, for multiple business processes.

Context
In loose-coupled systems, senders and receivers can be in different states (Figure 3). For
business-critical applications it is sometimes necessary to test whether the whole system
is reliable or not. Basically, this is possible by means of administrative tools provided by
some vendors. However, there is a missing link called “process-oriented testing” on
application level. In this context, process stands for a logically grouped amount of
queues, senders and receivers involved to fulfil the information transfer for a certain
business process.

Sender
active

Sender
active

Sender
passive

Sender
passive

Receiver
active

Receiver
passive

Receiver
active

Receiver
passive

(a) (b) (c) (d)

Figure 3: Four different states in loose-coupled systems.

A system that fails will not adequately provide the services it was designed for. In our
case, testing on network level – for example, in assistance with Simple Network Man-
agement Protocol (SNMP) – is not appropriate. This due to the fact that the main com-
ponents of interest are located on application level: producers, consumers and queues.
Ideally, all the active and passive components involved during operation should be
checked under productive conditions.

7

Fault Model
Defining predictable failure situations on application level implies that failures occur-
ring on the levels below might be caught, too [15]: network failures, crash failures,
omission failures, timing failures, response failures and arbitrary failures. The following
possible error situations should be checked within the time frame for which the test re-
sults are valid:

• Queue managers are not available.
• Message queues are constipated or have already reached their maximum limit of

messages.
• Message queues have accidentally got a wrong naming.
• Sender and receiver applications are not working properly.
• Messages are not able to arrive within the chosen time restrictions due to reasons

like the time needed for database transactions of the systems behind.
• Encoding errors.
• The partner systems are not able to answer just-in-time.

Test Model
The following active and passive components are of main interest: sender applications,
message queues (messaging system), receiver applications and – optional – the partner
systems behind. An end-to-end test includes verifying transactions through each applica-
tion involved, start to finish, assuring that all related processes are performed correctly.

Problem
How to test message paths of loose-coupled systems for multiple business processes?

You want to perform an end-to-end test on application level to find out whether the
entire messaging system for a whole process is reliable or not.

Forces

• The productive messages within a messaging system must not be disturbed by
test messages: they are not allowed to overtake the productive ones.

• For application reasons, the correct delivery sequence of the productive mes-
sages must not be changed. A strict FIFO (first-in-first-out) order is necessary.

• The frequency of the tests applied must not provide side-effects. Refrain from
testing through a periodic heartbeat to avoid additional burden to the system.

• Other components involved during operation, such as senders and receivers of
messages should be tested, too.

• The systems behind the receiver application (databases, legacy systems, etc.)
must have enough time to answer the test messages.

8

Example
A network of queue managers was established, each of which is responsible for a reli-
able information exchange between internal and external systems.

• Scenario 1 (Figure 4) explains a deterministic use case: Consequently, for each
queue to be tested, an equal number of reply queues set up for answering the test
messages. A correlating reply message is expected for each message queue. No
other answers than the expected ones will join this queue. This situation repre-
sents a deterministic use case which, in general, is easier to implement.

1

2

n

Queues to be Tested Reply Messages Reply Queues

Figure 4: Deterministic use case

• Scenario 2 (Figure 5) describes a non-deterministic use case: It represents the
more common test case where multiple “replies” join a single reply queue or a
single message path. The answers might arrive at different times, which will lead
to an unordered sequence of the reply messages within the common reply queue.

1

2

n

Queues to be Tested Reply Messages

Common
Reply Queue

Figure 5: Non-deterministic use case

9

Solution
Group all the message paths in subsets that represent the business processes and send
event-based test messages on application level.

Using messaging middleware, business process integration requires a logical orches-
tration of the components involved. A variety of business processes use messaging as
their base service. We distinguish between three layers of abstraction:

a) The business layer focuses on analysing and defining the business objects, inde-

pendently of the solution used to meet a company’s requirements. This layer can be
compared to a generic abstraction.

b) The logical layer specifies how business data can be exchanged in a structured fash-

ion, following a number of rules. The purpose of the logical design is to refine the
physical model in order to structure it for each business case and to parameterize the
test application. This layer can be compared to specific requirements.

c) The physical layer delivers the messages and rules by means of syntax and code.

Most of the business information involved will be turned into data elements com-
posing the messages. The entire set of the physical message paths to be tested is rep-
resented by M in Figure 6. Out of this M, different subsets (M1, M2 … Mn) represent
the individual business processes the message paths were set up for.

{Process 1}

Subset M1 Subset M2 Subset Mn

Set M

{Process 2} {Process n}

Logical grouping of message paths

Physical message paths

Figure 6: Creating process-related subsets

Discussing Messaging Issues
Testing asynchronous communication paths depends significantly on several criteria and
conditions. What makes this approach so different and important is its focus on adapta-
tions for the practical use in response to the different requirements and constraints.

Send and Forget. Once a push operation is complete, a sender does not have to wait
for the answer. It does not even have to wait for the messaging system to deliver the

10

message. Nevertheless, many loose-coupled implementations are time-critical for sev-
eral reasons.

Delivery Sequence. Within a messaging system there is no guarantee for the point of

time a message is delivered. Problems might occur if messages get out of sequence. For
example, for the exchange of records between different databases during production, the
messages have to be delivered in a strict FIFO order to guarantee the consistency of dis-
tributed applications. This can be achieved either by a FIFO delivery sequence or by
applying the same priority to all the messages. Using multiple receivers, there is the risk
that the first message in the queue takes longer to be processed than the second one.
This is due to different time frames needed for database transactions. Practical tests
showed that a load balanced system with a running receiver application for each in-
stance may cause this problem. In this case, the messaging system was not able to man-
age multiple consumers in a coordinated way [8]. To avoid running into these troubles,
sometimes a turnaround might be necessary. A single reply queue offers a way out: only
the receiver module of the test application will pull messages from this queue.

Frequency of Tests. In general, active testing adds burden to a system. As a re-

quirement, the frequency of the tests applied must not produce side-effects. Since a pe-
riodic heartbeat would add this burden, but would also leave a gap of regularly untested
periods, we implement event-based testing. Moreover, to avoid troubles caused by old
test messages in a queue, an idempotent receiver was considered. This receiver discards
answers of test messages that do not belong to the current test run.

Time Constraint. Because of the characteristics of asynchronous communication we

consider a well defined time frame between sending out the test messages and receiving
their related answers. The receiver application will pull them according to a strict FIFO
order. After this time frame, missing answers of the test messages get classified as
wrong. The time constraint depends on the average time used to process productive
messages and the number of messages to be processed within a certain business process.

Expiry Time. Because of the time constraint discussed earlier, we consider an expiry

time for the test messages after which they are no longer valid and therefore discarded
by the queue manager. This contributes to reducing the burden to the messaging system.

Transaction Certainty. As shown in Figure 2, a single queue allows multiple sender

and receiver applications. In this case, a sophisticated messaging system must be able to
coordinate all the messages to make sure senders do not overwrite each other’s mes-
sages. As a result, we have to ensure exactly-once delivery semantics of the messages
[14]. Transactional queues, for example, will fulfill this requirement.

Parameters. For the logical orchestration and other requirements to meet the aims

we need several parameters, depending on the implementation, for example (Figure 7):

• Set up a well defined time frame so that receivers may answer the test messages
in time.

• Arrange the message paths to be tested in logical groups for each business proc-
ess.

11

• Apply a unique message sequence for each test run to distinguish this cluster of
messages from others. This allows identifying the test results which belong to-
gether.

• Consider to parameterize the return address at which the answers are expected,
depending on the use case.

• Define a database connection string for persisting outgoing and incoming mes-
sages.

• Define additional properties for displaying the results, for example direction in-
dicators or colours for the status of the test results.

• Use a flag whether a message path (queue) is allowed to be tested or not at run-
time.

Consequences
As a result of the pattern, several of the forces previously described are resolved or bal-
anced.

Benefits

• Structuring the physical message paths into logical groups by means of parame-
ters and mappings (e.g. the return paths) enhances process-oriented testing.

• Different use cases, for example internal as well as external queue managers
might be tested.

• Message paths beyond the scope of interest do not need to be tested.
• The test results can be evaluated and displayed for each business process sepa-

rately.
• Launching non-periodic test runs on demand does not add much burden to the

system.
• Testing on process level provides a higher value of integration during testing.
• The ability to persistently store all of the test messages and their answers pro-

vides great flexibility in reporting and analysis.

Liabilities
• Compared to a basic set of test tools, this approach requires more effort and re-

sources for analysing the requirements as well as for implementing.
• Sometimes, transactional queues cannot provide support for message priorities.
• To restrict a system to only one consumer can be regarded as a drawback
• Implementation costs are relatively high.
• Applying a strict FIFO-ordering automatically disallows priority-ordering.

Implementation Example
In queue-based messaging systems, in general, a standard message format with message
header and message body is used. The necessary parameterization will most likely be
applied to the message header. Sometimes, it is also possible to put all the orchestration
logic in a user-defined telegram within its message body to gain more flexibility. Figure
7 shows an example with additional information about the business processes, also
called header, within the message body.

12

Figure 7: Attributes of a test message

Known Uses

• Magna Steyr’s MQWatchog [6] reflects the basic ideas discussed in this paper.

• Blat [16]

When sending e-mails to a certain list of receivers, a confirmation of delivery or
a confirmation of having opened the e-mail may be requested. Depending on cer-
tain characteristics of the address list different categories can be implemented.

• Microsoft Outlook as well as Outlook Express supports the key features of this
pattern. Outgoing e-mails use an address list for multiple recipients. Each of
them is provided with the same subject, representing a certain business process.
A reply message, including a return path, might be set up via the rules editor.

Related Patterns
Test Message, Content-based Router, Point-to-Point Channel and some others. [8].

13

Acknowledgements
First of all, I would like to thank Marcos C. d’Ornellas, my EuroPLoP 2004 shepherd,
for many helpful suggestions. I also appreciated the feedback from the members of
workshop C to improve my paper.

References
[1] Alexander, C., Ishikawa, S., and Silverstein, M. A Pattern Language. Oxford University
 Press, 1977.
[2] Binder, R.V., Testing Object-Oriented Systems: Model, Patterns and Tools, Addison-
 Wesley, 1999.
[3] Banvavar, G., Chandra, T., Strom, R., and Sturman, D. A Case for Message Oriented
 Middleware, 13th International Symposium on Distributed Computing (DISC 99), 1-18.
[4] Blakely, B., and Harris, H., Messaging and Queuing Using the MQI, McGraw-Hill, 1995.
[5] Eugster, P., Felber, P., Guerraoui, R., and Kermarrec, A.-M. The Many Faces of
 Publish/Subscribe, ACM Computing Surveys, Vol. 35, No. 2, (2003), 114-131.
[6] Flieder K., Test und Visualisierung einer Message Queuing Infrastruktur,
 diploma thesis, CAMPUS 02 - Graz, 2004.
[7] Herzner W., Message Queues – Three Patterns for Asynchronous Information Exchange,
 ARC Seibersdorf Research, EuroPLoP 2003.
[8] Hohpe G., and Woolf B., Enterprise Integration Patterns, Addison-Wesley, 2003,
[9] IBM Corp., WebSphere MQ formerly – MQSeries,
 http://www-306.ibm.com/software/integration/wmq/ (2004-12-17)
[10] Liebig, C., and Tai St., Advanced Transactions, Lecture Notes in Computer Science,
 Springer, Heidelberg, Vol. 1999 / 2001.
[11] Redkar A., Walzer, C., Boyd, S. et al., Pro MSMQ: Microsoft Message Queue
 Programming, Apress LP, 2004.
[12] Sonic Software, SonicMQ Product Documentation,
 http://www.sonicsoftware.com/developer/documentation/index.ssp
 (2004-12-17)
[13] Sun Microsystems, Java Messaging Service (JMS),
 http://java.sun.com/products/jms/ (2004-12-17)
[14] Tai St., and Rouvellou I., Strategies for Integrating Messaging and Distributed Object
 Transaction, Lecture Notes in Computer Science, Springer, Vol. 1795, 2000.
[15] Tanenbaum, A., and van Steen, M., Distributed Systems – Principles and Paradigms,
 Prentice Hall, 2003.
[16] Website: http://www.blat.net (2004-12-17)
[17] Website: http://www.enterpriseintegrationpatterns.com (2004-12-17)
[18] Woolf B., and Brown K., Patterns of System Integration with Enterprise Messaging,
 PLoP 2002.

http://www-306.ibm.com/software/integration/wmq/
http://www.sonicsoftware.com/developer/documentation/index.ssp
http://java.sun.com/products/jms/
http://www.blat.net
http://www.enterpriseintegrationpatterns.com

