

Six Patterns for Process-Driven Architectures
Carsten Hentrich

SerCon – IBM Business Consulting Services
Germany

e-Mail: carsten.hentrich@sercon.de

This paper introduces a set of six patterns for Process-Driven Architectures
that are based on workflow middleware technology according to the Workflow
Management Coalition (WfMC) standards. The results, as illustrated in this
paper, are founded on and extracted from practical project experiences and
customer requirements that have been gathered in the past by various experts
within IBM.

Introduction

In the last ten years workflow technology [FLDR00] has evolved as an important
technological artefact, as far as Business Process Management [Prior03] is concerned.
Today, a process engine takes the role of a process controller within a Model View
Controller (MVC) architecture [FB+96], in order to coordinate and distribute tasks in a
heterogeneous system environment. The resulting applications represent socio-technical
systems, where business steps are carried out fully automatically, or by human interaction.
People and IT systems themselves become an integral part of the process. Thus, in this
respect a process engine represents an important artefact within an enterprise architecture. IT
strategies have furthermore changed accordingly to achieve that process-driven system
architecture, in order to flexibly change and adapt business processes in a distributed
environment. For this reason, the general aim of Process-Driven Architectures is to decouple
process logic from business logic.

Some research has been done concentrating on analysing, designing and modelling
business processes and workflow, but little work has yet been done on the overall and
integral architectural perspective of such systems. Most research efforts have rather been
concentrating on single architectural components, but not on interactions and processes
between flexible and exchangeable architectural components. As a result, it is actually not
enough to concentrate on the process engine itself, but to view it as an integral part within an
architecture. Only a few design patterns are available in this context. Obviously, a process
engine represents a special type of middleware component within an architecture as a
business process oriented middleware approach is followed that implies different
concepts and strategies, compared to common architectures. Some key driving factors are
flexible business process control, integration of legacy systems functionality within
business processes, automatic invocation of services, open connectivity to various
interfaces, scalability, automated measurement and monitoring of business processes,
processes as reusable components, B2B, and business process automation.

Copyright © 2004 by Carsten Hentrich

In order to achieve these strategic goals, architectures must be designed accordingly.
Actually, those architectures might as well incorporate advantages of other technologies
like object orientation, for instance. As a result, design patterns for those architectures
would be very useful if they consider best practices and experiences, as well as aspects of
reusability, maintainability, and flexibility.

One bottom-up approach to the issue of identifying patterns is analysis of existing
workflow projects and products in order to derive generic elements and solutions from
that analysis in terms of design patterns. The aim of this research will be the development
of a set of reusable design patterns that incorporate best practices and modern Software
Engineering techniques. The results of this research can then be used on designing
architectures and applications of this kind, and moreover to avoid mistakes that have
been made in the past. This paper illustrates a set of six reusable design patterns for
Process-Driven Architectures based on workflow technology according to the WfMC
standards [WfMC95], [WfMC96], [WfMC99], [WfMC00]. These six patterns address both
detailed process modelling and design issues in a technical and architectural context.
Thus, this paper is addressed to software architects, workflow designers, and developers.

Process-Driven Architectures

IBM has spent quite some effort on identifying general patterns for e-business. The
results of this work have already been documented and published [AKVC03]. In these
publications IBM has gathered the practical experiences of the last decade for increasing
the efficiency of e-business processes. All those patterns are applicable and the results are
very valuable and influential in the context of Process-Driven Architectures. Most of these
patterns are already reflected by many technologies.

Process-Driven Architectures go a little further as they imply the vision of convergence of
business, organisational, and software models and thus aim at providing a framework that
allows to design and implement business, technological, and organisational architecture in
interdependence. The notion of (business) process is the driving and linking concept of all
involved aspects. Essentially, this framework establishes the paradigm of a flexibly
growing and changing socio-technological organisation.

The very key principle of Process-Driven Architectures is separation of business logic from
process logic. Practically, this principle means that the process logic will be taken out of
applications and will be flexibly controlled by a process-driven middleware. Some
examples of available products that support such a process-driven approach are Staffware
Process Suite [StaffPS], Fujitsu i-Flow [FuFlow], Oracle Workflow [OrFlow], FileNET Business
Process Manager [FileBPM], or WebSphere MQ Workflow [MQWF].

The flexibility is achieved by introducing an abstraction layer for process control with
such process-driven middleware that allows to change the process flow definition more
easily compared to static process implementation within application program code. For
instance, consider a service oriented application infrastructure where services can be
flexibly composed in a business process flow with the help of such middleware. The
picture in figure 1 illustrates this principle by giving an example of a customer entering an
order, and further how this order will be processed within the organisation in a process-

driven approach that separates process logic from business logic and which extracts the
process logic from the application logic.

figure 1: separation of process logic from business logic

From an IT perspective, this very principle of decoupling actually represents the most
important transformational step that must be taken. Basically, this paper will deal with the
architectural implications of this transformational step and will seek to find pattern
solutions for arising issues that result from conflicting forces in this context. Thus, on an
architectural level, business processes are understood as flexible components that can be
easily changed, replaced, and reused on an enterprise wide basis and even across
enterprise boundaries in order to connect and integrate the processes of different
organisations. However, the following patterns address more detailed issues on a technical
level within this paradigm.

Patterns Overview

The diagram in figure 2 illustrates the relationships between the patterns and table 1
provides an overview of the problems and solutions that each pattern addresses. Basically,
the diagram in figure 2 expresses that application of certain patterns have influences on
other patterns and that there is particularly one central pattern GENERIC PROCESS
CONTROL STRUCTURE that is related to all the five other patterns. The arrows associated
to the GENERIC PROCESS CONTROL STRUCTURE pattern indicate that this pattern
provides the basis for generic solutions of issues addressed in more detail by the five
other patterns. The types of influences are indicated by the descriptions on the arrows in
the diagram. It will be illustrated what these relationships are about in the pattern
descriptions. Moreover, the patterns as listed in table 1 relate to different categories. The
following categories have been defined:

 Interface: patterns that address issues concerning interfaces between different
components (in this case interfaces between processes).

 Process: patterns that primarily address process modelling issues.
 Architecture: patterns that address broader architectural issues that view a process

engine in context with other architectural components.

GENERIC PROCESS
CONTROL STRUCTURE

PROCESS INTERRUPT
TRANSITION

ACTIVITY
INTERRUPT

PROCESS BASED ERROR
MANAGEMENT

EVENT BASED PROCESS
INSTANCE

BUSINESS OBJECT REFERENCE

design generic
object references

enables generic
process interrupt handling

enables
generic error management

enables generic
activity interrupt handling

design a reusable
process identifier attribute

provides a
conceptual basis

figure 2: patterns overview and relationships

Pattern Problem Solution Category

PROCESS INTERRUPT
TRANSITION

How can an
instantiated process be
interrupted and
allocated resources be
freed in a controlled
way, in case external
circumstances force
the process instance to
stop?

Model the interrupt as
a conditional transition
involving a cleanup
activity in case the
interrupt condition is
true.

Process

ACTIVITY INTERRUPT

How can an activity in
process be interrupted
without loosing any
data?

Model an exit
condition that restarts
the activity in case the
exit condition is false
and use the output
data of the activity as
input data to the
restarted activity.

Process

PROCESS BASED
ERROR MANAGEMENT

How can errors that
are reported by
integrated applications

Define special fields
for error handling in
the process control

Process

Pattern Problem Solution Category

in activities in a
process flow be
handled and managed?

data structure and
embed an activity in an
error handling control
flow.

BUSINESS OBJECT
REFERENCE

How can management
of business objects be
achieved in a business
process, as far as
concurrent access and
changes to these
business objects is
concerned?

Only store references
to business objects in
the process control
data structure and
keep the actual
business objects in an
external container.

Architecture

EVENT BASED
PROCESS INSTANCE

How can a process
instance be
automatically created
in case an event based
activity occurs in a
business process that
implies automatic
process instantiation,
e.g. a customer placing
an order?

Externalise event
based activities to an
external event handler
component and split
the process model in
several parts.

Architecture

GENERIC PROCESS
CONTROL STRUCTURE

How can data
inconsistencies be
avoided in long
running process
instances in the
context of dynamic
sub-process
instantiation?

Use a generic process
control data structure
that is only subject to
semantic change but
not structural change.

Interface

table 1: problem/solution overview of the patterns

Process Interrupt Transition

Context
A process instance shall react to an external event by aborting the normal process flow

before the normal process-end is reached and allocated resources shall be freed.

Problem
If a process is instantiated it will run according to its flow definition until the

defined end is reached (normal process termination). How can an instantiated
process be interrupted and allocated resources be freed in a controlled way, in
case external circumstances (outside the process engine) force the process
instance to stop before the normal process-end is reached?

A high-level business process model only captures the flow logic from a business point
of view. Furthermore, once a technical process instance is created on the process engine, it
will run according to the defined flow logic until the defined end. In this context the
problem occurs that it might be necessary to stop a running process instance, because
external circumstances may force the process to stop, e.g. a customer cancelled the order
that is currently being processed by a process instance. A high-level business process
model does usually not capture all these possible external circumstances and the necessary
reactions to them. However, technically it is absolutely necessary to stop a superfluous
process instance, because it does actually not make sense to process a cancelled order, for
instance.

Moreover, a process instance may allocate certain resources, like storing temporary
process data in a database or making changes to the state of an external system, e.g.
entering an order in a central ordering system. Thus, just physically deleting the process
instance will not be a sufficient solution, because temporary allocated resources will not
be freed and state changes to external systems will not be rolled back. It might also be
required to document the process interrupt for revision purposes, i.e. information must
be kept why the process was terminated abnormally. For this reason, a concept is required
to interrupt a process instance in a controlled way and to systematically free allocated
resources.

Process Instance

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5

TIME

process
interrupt event

Activities 4 and 5
must not be executed

any more

figure 3: illustration of a process interrupt caused by an external event

Solution
Consider the possible abnormal process termination already in the process flow

definition and model the process interrupt as a conditional transition involving a
cleanup activity in case the interrupt condition is true.

The problem definition indicates that we are dealing with an issue that is similar to
handling exceptions in a program. The atomic unit in a process is an activity. For this
reason, a controlled interrupt of a process can only be achieved between activities, i.e. in a
transition from one activity to the next. As a result, a controlled process interrupt must be
modelled in the process by a corresponding transition condition that indicates that
something has happened in the outside world that forces the process to terminate.

The actual reason why the process must be interrupted may vary widely. The process
model is not interested in the very reason, but only in the fact that something has happened
that forces the process to stop. For this reason, it is only necessary to concentrate on the
basic procedure how to handle such an event. Thus, the whole issue can be reduced to
handling a whole class of possible failure events, because for the process model it does
not matter what specific failure it was.

Moreover, the question is where and how is determined that such an event has
happened? The answer is: in implementations of process-activities. The implementation
of an activity is the application that executes the task of an activity (one has to remember
that the process model only triggers execution of activities). Thus, activities are controlled
by the outside world from the viewpoint of the process engine. That means the application
that implements an activity is the place where business logic is executed, and it is actually
business logic to determine whether an event has happened that forces a process to stop
or not. Thus, the solution is to define a standardised way of handling these events in
activity implementations. This pattern can then be implemented in a technical programming
framework, for instance.

Summing up, from an architectural point of view, it is possible to extract an interesting
aspect, i.e. that the complete solution consists of two parts. One part of the solution
references process modelling, and the other part of the solution references
implementation of activities in a way that handles events that finally result in process
interrupts. Both aspects are strongly interdependent, as they rather represent two aspects
of one single pattern. The conceptual process pattern for modelling a process interrupt is
depicted in the next figure 4.

activity

do cleanup
[process interrupt]

[no process interrupt]

next activity

figure 4: process interrupt modelling pattern

The second part of the pattern will provide a solution for handling events in activity
implementations that result in process interrupts, which are then handled by the actual
business process model as it has just been defined in the previous diagram. The activity
implementation has to determine whether something has happened that causes a process
interrupt and, if that is the case, the activity implementation has to inform the process
instance by setting the corresponding attribute of the process control data structure that
informs the process instance about the interrupt and allows the process instance to react
accordingly. The next diagram in figure 5 defines the pattern how an activity implementation
principally has to respond to such events.

activity implementation wait for event

set process interrupt attribute to true

[event occurred]

[activity implementation finshed]

ProcessControlStructure
[no process interrupt]

ProcessControlStructure
[process interrupt]

figure 5: handling of events that result in a process interrupt

The recommended design decision is to define a reusable generic attribute in the
process control data structure to handle the process interrupt. It can thus be easily tracked
when a process has been interrupted according to the logged value of this attribute.

Consequences
 The process control data structure must contain an attribute for reporting the

process interrupt to the process instance.

 Implementation of a generic mechanism for handling process interrupts.

 The pattern provides a basis for an implementation in a programming
framework, because it defines a general behaviour for any activity that could be
simplified for an application developer by implementing it in a programming
framework.

 There is additional development effort necessary in order in implement the
event handling in activity implementations and in to implement the cleanup activity.

 Actually, the cleanup activity is optional. It might be possible that it is not
necessary to free any resources, because none have been allocated. In that case a
cleanup might not be required.

 The process models are becoming a little bit more complex, because the process-
interrupt and no-process-interrupt conditions must be modelled in addition to the
normal transition conditions. Thus, the logic of the transition conditions is
getting more complex. In case a transition condition already exists from one
activity to the next, the logical AND operator must be applied, in order to
define a complete transition condition that considers a process interrupt. Such a
complete transition condition would generally look as follows: no-process-interrupt
AND normal transition condition, as the process has to only make the transition to
the next activity in case there is no process interrupt and the normal transition
condition is true.

Related Patterns
Application of this pattern principally has an impact on the design of a process control

data structure as an attribute is required to report the process interrupt. Consequently, it
will influence the design of a generally applicable process control structure. For this
reason, GENERIC PROCESS CONTROL STRUCTURE is related to this pattern. Thus, if the
GENERIC PROCESS CONTROL STRUCTURE pattern is applied, then a generic attribute to
handle process interrupt transitions must be defined in the generic process control data
structure.

Example
The diagram in figure 6 illustrates a sample process model that has been implemented

with WebSphere MQ Workflow, which applies the PROCESS INTERRUPT TRANSITION
pattern. The model is defined with MQ Workflow Buildtime [WFBT03] and shows the
transition from one activity to a next activity only in case the interrupt condition is false.
In case the condition is true, a cleanup activity is executed and the process terminates.

figure 6: process interrupt implementation example

The activity processing application, i.e. the activity implementation sets the processInterrupt
attribute in case an event has occurred that causes the process instance to terminate
abnormally. Some projects have implemented this behaviour in a programming
framework in terms of an event listener that automatically sets the attribute in case a
process interrupt event is fired.

Activity Interrupt

Context
The process control data should be updated but the process instance must not move

on to the next process step but rather stay at the current position.

Problem
Process control data can only be manipulated via a check-out and check-in of

an activity, i.e. normally processing an activity. However, if an activity is checked-
in, the process engine will usually assume that the activity is finished and will
move on to the next process-step. How can an activity “in process” be interrupted
without loosing any data, which means that the process control data must be
updated but the process instance remains in the current process-step?

Especially as far as activities with human interaction are concerned, another issue has
been observed that requires attention. The issue occurs due to the fact that humans often
start working on a task but will not finish the whole task in one session. Rather, they want
to store what they have done, thus keep the changes they have made, leave their work for
a while, e.g. until the next day or after the lunch break, and finish their work later.

For this reason, a concept is required that allows in a way to “interrupt” an activity, i.e.
to store the changes for later use and to finish the activity later. A business process model
does usually not consider these details but a technical representation of the business
process apparently has to consider this. As a result, the final process model must consider
that activities can be interrupted. Thus, there must be a control mechanism to inform the
process instance not to move on to the next step but to remain at the same process-step
and to store the changes that are output of the current process-step.

The problem in this context is that a process instance usually moves on to the next
process-step in case the current process-step has been finished. Activities (process-steps)
are atomic units in a technical representation of a business process when they are
executed on a process engine. Usually, if an activity is finished, the output data of the activity
will be transferred to the process instance and will be passed further as input data to the
next activity in the transition, i.e. the process instance makes a transition into the next
state represented by the following activity. However, in case of an activity interrupt, an
activity will actually not be completely finished yet but will only be interrupted in order to
finish work later. For this reason, the process instance must not move on to the next
process-step yet, but stay at the same activity and the process control data must be
updated. As a result, an activity interrupt occurs every time the process instance must not
move on to the following activity but the process control data must be updated.

In order to process an activity, a process engine provides check-out and check-in
mechanisms. A check-in of a checked-out activity means that the activity has been
finished and the process control data can be updated during check-in. Usually, this implies
that the process instance will move on according to the process model. That is actually
part of the concept of a process engine, because a check-in of an activity usually implies a
change in the process-state of the process instance. In case of an activity interrupt it is not

desired that the process instance moves on, but rather the check-in means that the current
activity should be restarted with updated process control data. Thus, it is necessary to
provide a mechanism that distinguishes these two types of check-in. The illustration in
figure 7 shows the transformation of a business process into a technical representation that
considers restarting activities with updated control data (activity interrupt). As illustrated
in figure 7, in this context the very problem is how that activity restart can be achieved.

Business Process

Activity 1 Activity 2 Activity 3

Technical Representation of the
Business Process

Activity 1 Activity 2 Activity 3

how to
restart?

how to
restart?

how to
restart?

is transformed into

figure 7: problem context for an activity interrupt

Solution
Model an exit condition that restarts an activity in case the exit condition is

false and use the output data of the activity as input data to the restarted activity.
This concept allows to check-in an activity, updating the process control data, but
the exit condition indicates the process engine not to move on to the next process-
step, but rather to restart the current activity with updated process control data.

Generally, the solution is to update the process control data by finishing the activity,
passing the updated data to the process instance, and by simultaneously telling the process
engine not to move on to the next process step but to restart the current activity by
applying the updated control data as input data to the restarted activity. The activity
restart is achieved by modelling an exit condition for an activity in the process model,
which initiates the restart of an activity in case the condition is false.

The concept of separation of business logic from process logic implies that actual
changes to business data will be made in a business object which is managed outside the
process engine (compare the related BUSINESS OBJECT REFERENCE pattern). Conclusively,
the process model will not be concerned with changes to business data but with changes
to process control data. It might happen that a new business object is created somewhere
in the outside world around the process engine and the process instance must store the
reference to that business object.

For this reason, theoretically, the only event that might happen that implies
manipulation of process control data in this context is creation of new business objects,
which need to be referenced in the further process flow. If a changed business object is
already known by the process instance, it will only be necessary to stay in the same
process-step and not to move on to the next step. No further changes to process control

data are necessary. If new business objects are created, it will additionally be necessary to
store the references to them. Ultimately, storing these new references will be necessary in
any case, whether the activity is interrupted or not.

Unfortunately, this is the theory but not the reality. The process control data structure
may also include attributes that have helper and support functions. Those attributes might
be affected by those changes to business data. The application will then store the
modified control information, which are in fact related to some business data changes, in
the process control data. For instance, in order to reflect an application specific state of
the referenced business objects in the process instance. For this reason, the practical
answer to the question is: new business object creations and modification of process
related helper and support attributes concerning business object changes will imply
changes to process control data in the context of an activity interrupt. The next model in
figure 8 illustrates the design pattern that can be used for modelling activity interrupts in a
process.

activity

objA: BusinessObject
[created]

objB : BusinessObject
[changed]

_ : BusinessObjectReference

[points to objA]

next activity

[no activity interrupt]

[activity interrupt]

create new
BusinessObjectReference

object

figure 8: activity interrupt process modelling pattern

The diagram in figure 8 illustrates that the reference to a newly created business object
(objA in figure 8) will be stored in the process control structure, but a change to an already
referenced business object (objB in figure 8) has no effect on the process control structure,
because the object reference is already there. Changing a business object is simply a
change in the objects internal state and has for this reason no impact on the process
control data, because of the concept of separation of concerns. On the one hand, one can
argue that in case the business object is deleted, the reference in the process control
structure should be deleted as well. On the other hand, the behaviour in this case depends
on application specific issues, there might also be reasons to keep the reference. However,
the recommended design decision in this context is to define a reusable generic attribute
in the process control data structure that handles the activity interrupt.

Consequences
 Activities can be interrupted without losing any relevant data.

 The state of the outside world (business objects states) is kept consistent with
the state in the process instance.

 Higher security, e.g. in case the process engine crashes the system can set-up on a
consistent state after restart.

 The process control data structure must contain an attribute to report the
activity interrupt to the process instance.

 People can stop working on a task related to an activity and can go on working
on the task later, starting from the last change made (imagine the coffee or
lunch break).

 The process engine must support implementation of this concept, i.e. looping
activities with backward data mapping. For instance, IBM WebSphere MQ
Workflow [WFBT03] allows implementation of this concept.

 The process models are becoming a little more complex, because an additional
exit condition must be modelled, together with the backward data mapping.

Related Patterns
From the BUSINESS OBJECT REFERENCE pattern results the idea to only keep

references to business objects in the process control data structure. For this reason, this
pattern is a conceptual basis of ACTIVITY INTERRUPT. Moreover, application of
ACTIVITY INTERRUPT principally influences the design of a process control data structure
as an attribute is required to handle the restart of an activity. Consequently, it will
influence the design of a generally applicable process control structure. For this reason,
GENERIC PROCESS CONTROL STRUCTURE is related to this pattern.

Example
This example illustrates an application with WebSphere MQ Workflow. The ACTIVITY

INTERRUPT pattern has been implemented using Buildtime [WFBT03] process modelling
constructs. In order to implement an activity restart, an exit condition has been assigned
to an activity. FDL (the process definition language of WebSphere MQ Workflow) directly
supports the definition of exit conditions for activities. In order to implement the concept
of reusing the output data of an activity as input data for the restarted activity, data
mapping from the output of an activity to its input container has been defined (data loop
connector). The defined generic control structure contains a special reusable attribute
called activityInterrupt to implement the exit condition.

The next FDL fragment illustrates the implementation using the exit condition and the
data loop connector. The FDL contains a simple process with one activity that
implements the ACTIVITY INTERRUPT pattern. The important lines are highlighted in
bold font.

PROCESS 'ActivityInterruptSample' (
'GenericProcessControlStructure',
'GenericProcessControlStructure')

 DO NOT PROMPT_AT_PROCESS_START
 PROGRAM_ACTIVITY 'Activity' (

'GenericProcessControlStructure',
'GenericProcessControlStructure')

 START MANUAL WHEN AT_LEAST_ONE CONNECTOR TRUE
 EXIT AUTOMATIC WHEN "activityInterrupt=""FALSE"""
 PRIORITY DEFINED_IN INPUT_CONTAINER
 PROGRAM 'Foo'
 SYNCHRONIZATION NESTED
 END 'Activity'
 DATA
 FROM SOURCE 1 TO 'Activity'
 MAP '_STRUCT' TO '_STRUCT'
 DATA
 FROM 'Activity' TO SINK 1
 MAP '_STRUCT' TO '_STRUCT'
 DATA
 LOOP 'Activity'
 MAP '_STRUCT' TO '_STRUCT'
END 'ActivityInterruptSample'

Process Based Error Management

Context
Errors must be managed that are reported by various components that are integrated

in a process flow.

Problem
An activity in a process can be executed by an external component, i.e. an

application or a service that is integrated in the process flow. How can errors that
are reported by such integrated components in activities in a process flow be
handled and managed?

During execution of activities it is possible that errors occur that must be reported to
the process engine, in order to manage the error. One must keep in mind that we are dealing
with a highly distributed environment and the business process is the central control
mechanism. Thus, all different kinds of systems and applications can be integrated in the
business process. As a result, there can be many experts and teams involved in resolving
system errors—each of these people/teams could be responsible for a certain application.

Usually, error management cannot be delegated to a single person or even a single
team, due to the potentially large amount of integrated applications and the high
distribution of all systems. If one keeps in mind that a business process might move
across national and organisational boundaries, it becomes clear that managing occurring
errors is a significant issue.

The Process-Driven Architecture approach is actually an attempt to provide some
standardised layer where anything can connect to that is relevant to doing business.
Consequently, a standardised way of managing errors is required. It must be clear that we
are not dealing with errors that occur inside the process engine, as the process engine is one
architectural component which has its own error handling mechanisms (log-files,
exceptions, error queues, etc.), but we are dealing with errors from various integrated
components. Management of errors that occur inside the process engine can be delegated to
one team that is responsible for the process engine as a component. However, as the
business process is the central point where everything is connected, one can conclude that
also a process oriented approach will be necessary for managing errors of integrated
components.

Solution
Define special attributes for error handling in the process control data structure

and embed any activity that integrates external components in an error handling
control flow. The integrated component can thus report errors to the process
instance and the process instance can react to those errors. This concept allows a
process oriented approach to handle errors as managing errors is captured by the
process model itself.

If an error occurs, this will be an event that must be handled by the process model.
The process must then move into an exception handling mechanism in order to provide

the right team/person with the necessary information to manage the error. Conclusively,
there must be an error handling process-activity defined in the process model. Output of
this activity will be information, whether the activity where the error occurred must be
repeated, or the error can be ignored, or to abort the whole process instance. The process
model is again only interested in the result of the error management activity.
Consequently, the process model just has to delegate the issue to someone who handles
the error and who provides information on how to proceed in the process.

The process engine is responsible for assigning the error handling task/activity to the right
person or team as it is responsible for distributing any activity. Information who to assign
the error handling activity must be provided by the component that reports the error,
because we can assume that each component has the knowledge about who is responsible
for error messages that occur in that component. For this reason, if a component reports
an error to the process engine, it also has to provide information who is responsible for
managing the error. Summing up, one can say that a component that reports an error to
the process engine must provide the following information, which must be kept in the
process control data structure:

 A standardised or normalised error code that indicates the general type or class of error.
This error code can be used by the process model to react on an error in a standard way,
as this error code represents agreed and unified error code semantics.

 The component specific error code.
 The component specific error message or error description.
 The name/identifier of the system or component that reports the error.
 The actor (person, team, organisational unit) that is responsible for managing the error,

i.e. the administrator of the error.

It has already been mentioned that output of an error handling activity can generally be
three different decisions: retry, ignore, and abort. As a result, attributes are necessary in the
process control data structure to report that decision to the process instance. The next
picture in figure 9 shows the overall process design pattern that can be used for managing
errors in the process flow. Basically, the pattern is about embedding an activity that
integrates external components in an error handling control flow. In practice, the error
handling activity is often embedded in a reusable sub-process. This sub-process can then
be modelled in the process flow whenever required.

activity

next activity

[no error]

[error]
manage error

[retry]

[ignore]
do cleanup

[abort]

: ErrorInfo
[set]

: ErrorInfo
[not set]

: ErrorInfo
[retry]

: ErrorInfo
[abort]

: ErrorInfo
[ignore]

figure 9: process based error management pattern

Consequences
 The pattern provides a standardised way of handling and managing errors of

various integrated components.

 The process engine must provide mechanisms of dynamic staff resolution, because the
administrator of the “manage error” activity will be dynamically defined by the
error reporting component. For instance, IBM WebSphere MQ Workflow allows
dynamic staff resolution.

 The process control data structure must contain attributes to report the
necessary error information.

 For each occurring error, a “manage error” activity instance will be generated.
This may result in a large amount of such activity instances, because errors are
reported to every process instance. Thus, one error source might report the
same error to many process instances repeatedly.

 Additional development effort is necessary to implement the “manage error”
activity. It might be necessary to provide sort of bulk operations on the
“manage error” activity instances. For example, in order to set the retry, ignore,
or abort option for a whole set of “manage error” activity instances. This is very
useful in case the same errors are reported repeatedly, as indicated before.

Related Patterns
Application of this pattern principally influences the design of a process control data

structure as special attributes are required to report and manage errors. Consequently, it
will influence the design of a generally applicable process control structure. For this
reason, GENERIC PROCESS CONTROL STRUCTURE is related to this pattern.

Example
WebSphere MQ Workflow offers a mechanism for integrating applications via XML

based message adapters. The whole mechanism is encapsulated in a concept called User
Defined Program Execution Server (UPES). Basis of the UPES concept is the MQ Workflow
XML messaging interface. MQ Workflow does not communicate with applications directly
but uses WebSphere MQ (MQ Series) [WFPG03].

The UPES concept is all about communicating with external applications via
asynchronous XML messages, in order to execute external business logic of an activity in
a process automatically. Consequently, the UPES concept is literally about “informing” an
application that a process activity requires execution of business logic (which is actually
implemented by the application), “receiving” the result after the execution has been
completed by the application, and further relate the asynchronously incoming result back
to the activity instance that originally requested execution of the business logic (as there
may be hundreds or thousands of instances of the same process activity). Thus, a UPES is
an XML adapter that represents an interface to one or many applications, related to
integrated business logic in process-activities.

If an activity instance sends out an XML request to a UPES implementation, that
message will have a defined format. The request is automatically generated by MQ
Workflow. It contains the data structures and their contents associated to the activity.
Furthermore, it is important to mention that the request contains an activity implementation
correlation ID. Via this correlation ID, the request is associated to an activity instance in the
process engine. The reply message must contain this correlation ID in order to relate the
response back to the corresponding activity instance. Fundamentally, the UPES concept
is an application of the ASYNCHRONOUS COMPLETION TOKEN pattern [DS+00].

As far as an implementation of the PROCESS BASED ERROR MANAGEMENT pattern is
concerned, the concrete UPES implementation assures that the result message delivered
to MQ Workflow does contain the necessary error information, such that the process
model can react to the error information as defined by the pattern. The actual error
information will be accessible in the process control data, as MQ Workflow automatically
picks up result messages, associates them with an activity instance, and transfers the
message data to the process control data of the process instance (the data structures of
the result message and the process model must match). For this reason, the basic process
fragment modelled in Buildtime that handles a reported error looks as depicted in figure 10.

figure 10: implementation of error management

The picture in figure 10 shows a block activity which contains the actual error reporting
activity. The block activity is necessary in order to implement the loop in case the retry flag
has been set. For this reason, the block activity implements an exit condition that the retry
flag must not be set (retry=”FALSE”). The detailed diagram of this block activity is
pictured in figure 11. However, figure 10 shows the transition to the subsequent activity in
case the process should not be aborted and the transition to the cleanup activity in case
the process instance must be terminated.

figure 11: detailed view of the block activity

The picture in figure 11 shows the automatic activity that implements the XML message
based communication with an external application via the UPES mechanism. In case the
result of this activity indicates an error, a transition to an error handler is made. In case no
error is reported, the block activity is terminated normally. One has to consider that the
retry, abort, and ignore flags must be reset for every single loop. The Error Handler process is

a small process model with only one activity that represents the error management by an
administrator.

The error administrator is dynamically associated to a concrete actor, e.g. a person or
role, by the value of the attribute errorInfo.administrator in the process control data. Within
the error managing activity, the error administrator can view all the error information and
thus try to fix the problem. Result of the error management activity will be the decision
whether to retry the activity, abort the process, or ignore the error. The decision is reported
in the corresponding attributes in the process control data structure. The following FDL
fragment demonstrates the definition of the Error Handler process and highlights the
dynamic association of the error administrator according to the value of the
corresponding attribute in the process control data structure.

PROCESS 'Error Handler' (
'GenericProcessControlStructure',
'GenericProcessControlStructure')

 DO NOT PROMPT_AT_PROCESS_START
 PROGRAM_ACTIVITY 'Manage Error' (

'GenericProcessControlStructure',
'GenericProcessControlStructure')

 START MANUAL WHEN AT_LEAST_ONE CONNECTOR TRUE
 EXIT AUTOMATIC
 PRIORITY DEFINED_IN INPUT_CONTAINER
 DONE_BY PERSON TAKEN_FROM 'errorInfo.administrator'
 PROGRAM 'Foo'
 SYNCHRONIZATION NESTED
 END 'Manage Error'
 DATA
 FROM SOURCE 1 TO 'Manage Error'
 DATA
 FROM 'Manage Error' TO SINK 1
END 'Error Handler'

Business Object Reference

Context
The principle of separation of concerns, in terms of separation of business logic from

process logic, shall be applied as a concept for process definition.

Problem
If business data is part of the process control data structure the principle of

separation of concerns is violated. Moreover, it will not be possible to access the
same business data, i.e. business object from different process instances, as the
process control data are exclusively accessible by the corresponding process
instances the control data belongs to. How can management of business objects
be achieved, as far as concurrent access and changes to these business objects is
concerned?

The concept of separation of concerns, i.e. separation of business logic from process
logic in the worldview of a Process-Driven Architecture, implies that business objects are
managed outside the process engine and will for this reason not be modelled in the process
control data structure. Apart from the aspect of separation of concerns, the conflict that
can be observed here is that static binding of business objects to process instances is
simply not sufficient in this case.

Long running processes require flexibility concerning structural changes to business
objects, because business requirements may change over time. As data structures will be
bound to a process instance at instantiation time, structural changes to the business
objects will not be possible if the business objects are directly modelled in the process
control data structure. Moreover, it would imply structural changes to the process control
data structure which should actually be avoided, as already illustrated by the GENERIC
PROCESS CONTROL STRUCTURE pattern. Apart from that, static modelling of business
objects in the process control data would mean that each process instance works with
separate objects, which is actually not the case. Rather, there may be several process
instances reading and modifying the same business objects concurrently.

Process
Instance A

Process
Instance B

Process
Instance C

Business
Object

write
read

modify

figure 12: different process instances accessing the same business object

Solution
Only store references to business objects in the process control data structure

and keep the actual business objects in an external container. Via these references,
access to business objects in the container can then be established whenever
necessary within activity implementations.

The technical representation of the business process will consider only references to
external business objects but not the actual business objects themselves. Those business
objects will be stored in a separate container outside the process engine and the technical
business process will carry references to business objects in the container. As a result,
different process instances can modify the same business objects concurrently and they
can react to state changes of the business objects, e.g. a process instance wants to access a
business object that has been deleted by a concurrent process instance (a cancelled order
would be a practical example).

Process Instance

Business Object Reference

1

*

Business Object
* 1

points to

Business Object Container

Process Engine

1

*

1

*

Process Control Data

figure 13: business object reference

Consequences
 Flexible management and maintenance of business objects in a Process-Driven

Architecture.
 Controlled concurrent access to business objects in different process instances.

 Allows changes to business objects without affecting the process control data,
as only references are stored in the process control data.

 Business object data will only be loaded from the container when required
during process execution in the application.

 Performance increase in the process engine, because no large amount of business
data is carried for process execution.

 On the other hand, there is also a trade-off concerning performance, because
the business object must be retrieved from the container in every activity.

 The process control data structure must keep the references to those external
business objects and must contain attributes in order to store these references.

 This solution implies higher development effort compared to modelling the
business data in the process control data structure.

Related Patterns
Application of this pattern principally influences the design of a process control data

structure as attributes are required to store references to external business objects.
Consequently, it will influence the design of a generally applicable process control
structure. For this reason, GENERIC PROCESS CONTROL STRUCTURE is related to this
pattern. Thus, if the GENERIC PROCESS CONTROL STRUCTURE pattern is applied then
generic attributes to store references to business objects must be defined in the process
control data structure.

Example
This pattern has been implemented using reusable attributes in a generic process

control structure that reference business objects in a database. The chosen DBMS in
these projects has been DB/2 or Oracle. All projects have used Java as the programming
platform in order to access the business objects from applications. The metadataID of each
business object reference identifies the type of business object, which basically points to a
concrete database where the object is contained in. The objectID attribute of a business
object reference points to an entity in that database.

Via access classes in a Java framework implementation, a business object can be
dynamically determined by a given reference (metadataID and objectID). The framework
implementation searches for the objectID in the database identified by the metadataID and
generates a Java access object that allows to read and write attributes of the business
object. Additionally, check-out and check-in operations are provided to enable concurrent
access to business objects from various applications.

Event Based Process Instance

Context
A business process shall be implemented where an activity is defined that is event

based, and the event implies automatic instantiation of a process on a process engine.

Problem
The technical representation of a business process implies that a process

instance is created and started on a process engine with a defined initial state after
an event occurred. How can a process instance be created automatically, in case
an event based activity occurs in a business process that implies automatic
process instantiation, e.g. a customer placing an order?

There is a very practical example of this issue. Sometimes there are event based
activities modelled in business processes that have a very long duration. For instance, an
activity that waits for something to happen, i.e. an event, and then initiates the next
process-step. Often it takes weeks and even months until that event occurs. Principally,
there is nothing wrong about modelling those event based activities—it is actually the
preferred way of modelling.

However, it may cause serious performance problems, because all those process
instances exist in the process engine but nothing really happens with them, as they are all in a
waiting position. This may result in a lot of unnecessary data in the process engine (more and
more waiting process instances are in the queue) and may thus make the response time of
the process engine slower and slower. We have to keep in mind that a process engine manages
all kinds of processes and it is efficient not to generate unnecessary workload in the process
engine in order to keep the performance of the engine adequate. Moreover, one has to
remember that in some projects several thousand process instances are created every day.
It would thus be useful if those “temporarily useless“ process instances could be removed
from the process engine and restored later, after the desired event has occurred.

Solution
Externalise event based activities to an external event handler component and

split the original business process in several parts at the points where event based
activities appear. The event handler stores the relationships between events and
processes to be created on a process engine, as well as the initial state of these
processes. If an event is fired, the event handler automatically looks up which
processes are associated to that event and creates an instance of the processes on
a process engine with the defined initial state.

The solution to this issue is externalisation of those problematic event based activities
to an external event handler component and to split the process model in several parts.
That means, an event based activity is transformed into an activity that externalises the
state of the process instance to that external event handler component (actually, this is an
application of the MEMENTO design pattern [GoF94]) and the process model is divided at
the point where such an event based activity occurs. The event handler component

observes whether the event occurs and activates the next part of the process if the desired
event occurs. The state of the previous part of the process is restored when the next part
of the process is created. Thus, an original process model including one event based
activity will be split into two process models. The first part is instantiated normally and
terminates after having registered its state at the event handler. The second part is
automatically instantiated by the event handling component right after the event has
occurred.

Principally, those two process instances are independent for the process engine. The
dependency must be managed by that external event handler component. In order to
achieve this, it is useful to provide an artificial process-ID in order to link the different
instances. That artificial process-ID will be part of the externalised state and will thus be
restored in the following part of the process. The process control data structure must
contain a process-ID attribute for these purposes.

Process model part 2

activity 1START activity 2 activity 4 activity 5 FINISH

activity 1 activity 2 save
state activity 3 activity 4 activity 5START

Event Handler
Component

(waits for event)

save state instantiate process
restore state

Original process model

Process model part 1

event
based
activity

activity 3

FINISHSTART FINISH

figure 14: process split via external event handler

A client may register at an event handler to listen to certain events in order to
instantiate a business process with a defined starting state. The event handler observes
events and instantiates the defined business process with the defined starting state if an
event occurs that someone registered listens to. As a result, the event handler is
connected to several event originators that fire events. Thus, a client could be any
application and any system and not only a process-activity implementation.

For this reason, the solution is an event based interface to the process engine. The
mentioned starting state of the business process can be defined as the current contents of
the process control data structure, because it will define the internal process data of the
business process, i.e. its state. The structure of the design pattern can then be modelled as
pictured in the UML diagram below.

ProcessControlData

Event

+register(in events : Event[], in el : EventListener)
+fire(in e : Event)

«interface»
EventBasedProcessInterface

Client

ConcreteEventBasedProcessInterface

EventOriginator

+createProcessInstance(in state : ProcessControlData, in processName : String)

«interface»
CreateProcessAdapter

create instance

event originators
call fire() method

client calls
register() method

+getState() : ProcessControlData
+getProcessName() : String

-state : ProcessControlData
-processName : String

EventListener
*

*

-is observed by1..*

-listens to1..*

*

register

*

fire event

ConcreteAdapter ProcessEngineAPI

figure 15: event based process instantiation

The diagram in figure 15 shows that the pattern applies the basic principles of
asynchronous event processing and messaging on the context of process instantiation. Moreover,
there is some relationship to the principle of callback, as the control is temporarily
transferred to an event handler and the specified object to be called is the
CreateProcessAdapter in case an event occurs.

Consequences
 Automated event based process instantiation can be implemented generically.

 The pattern solves the performance problem related to waiting activities with
very long duration. There is a conflict between the demand of a direct
implementation of a business process and the technical limitations that might
be involved. The design pattern solves this conflict by splitting the original
business process into several parts, externalising the event handling, and by
loosely coupling the partial processes via an artificial process-ID.

 Flexible event based networking of processes, as a process instance might fire
events that cause other processes to be instantiated dynamically on a different
process engine in a B2B constellation, for instance.

 The process control data structure must contain an attribute to store the
artificial process-ID.

Related Patterns
Application of this pattern principally has an impact on the design of a process control

data structure as a special attribute is required to store the artificial process-ID.

Consequently, it will influence the design of a generally applicable process control
structure. For this reason, GENERIC PROCESS CONTROL STRUCTURE is related to this
pattern. Thus, if the GENERIC PROCESS CONTROL STRUCTURE pattern is applied then a
reusable process identifier attribute must be defined in the generic process control data
structure.

Example
Apart from the application already mentioned in the pattern solution section, which

deals with splitting an original process definition in several parts, there are some other
types of applications. The very point in this context is that not necessarily a whole cross-
boundary business process (end-to-end) is depicted with workflow technology, but only a
certain part of the original business process, which might only be related to the internal
business of a company or an organisational unit within a company. Thus, it certainly
depends what boundaries are defined that shape the relevant aspects to be considered
using workflow technology.

For instance, in a Supply Chain Management system this pattern has been applied for
automatic process instantiation in a situation where an event based interface to several
other legacy applications needed to be implemented. These applications are creating
events via MQ messages. The messages are picked up by an event handler, as an incoming
message represents an event that needs to be processed. A special input queue has been
defined for the event handler.

Moreover, that event handler transforms this application specific input message into an
XML message that suits the format of the WebSphere MQ Workflow XML interface and
sends the XML message to this messaging interface. Depending on the data in the input
message, which basically identifies the application firing the event, different processes are
automatically instantiated. The event handler has been implemented in Java and runs on
WebSphere application server. In this application, the event handler manages the
relationship to the internal business, whereas those legacy applications are viewed as
external components that are only indirectly integrated into the process flow by an event
processing mechanism.

Other implementations of this pattern can be found in many document management
applications, where a process is automatically instantiated after a document has been
scanned. The type of process to be instantiated depends on the type of document that has
been scanned. Usually, special scanning software with Object Character Recognition (OCR)
features is used, such that the software recognises the document type automatically and
instantiates the corresponding business process to process the document.

Events that happen in this context are newly scanned documents posted to the event
handler. Conclusively, the scanning software plays the role of the event originator.
Furthermore, the event handler thus queues the documents that have been scanned and
creates the process instances. Often, the process instances then carry references to
scanned documents that are stored in a content management system, which is another
application of the BUSINESS OBJECT REFERENCE pattern. Applications of this kind are
very common in the banking and insurance industry.

Furthermore, there are applications generally related to B2B or B2C constellations,
where service interfaces are offered to create certain process instances. Actually, the
offered service is a business process. The type of business process to be instantiated
depends on the service request. Some implementations already use WebServices as the
service interface implementation. For instance, one project has been conducted in the
German railway industry, where business customers may request certain railway routes
from point A to point B, via several stations at a certain date and time. The request is
made via a web-based user interface and a corresponding business process is instantiated
to construct the route and to report the finished route back to the customer. Thus, in this
case placing a service request is an event to automatically instantiate a process.

Generic Process Control Structure

Context
Process models are viewed as reusable components in terms of providing the

possibility of invoking any process as a sub-process or directly invoking them from
various independent applications.

Problem
When process models are viewed as reusable components in terms of reusable

sub-processes, there is a problem in case the data structures of the called
processes do change. This problem occurs due to the data dependency between a
calling and a called process. That data dependency results from the fact that
changes to data structures that actually represent interfaces between calling and
called processes will imply data inconsistencies, because the calling process does
not know about the change and thus assumes an invalid version of the interface.
How can those data inconsistencies be avoided in long running process instances
in the context of dynamic sub-process instantiation?

When a process is instantiated, a clone of its process template will be generated and the
clone, i.e. the process instance, will be executed on the process engine. Analogous to object
instantiation in Java, for instance, the process definition will be determined at
instantiation time. Thus, the process instance will execute the model that has been valid at
instantiation time. Furthermore, a process instance may run for several months,
depending on the business process that it implements, as there are business processes that
have a duration of several months, e.g. supply chains. This longevity of processes is rather
the general rule than the exception. The biggest issue in this context is the changing of
data structures in conjunction with sub-processes, because the data structure definitions
are statically bound to the process instance at instantiation time, which causes data
inconsistencies when the data structures of dynamically instantiated sub-processes are
changed.

Consider the following scenario: process A is instantiated with a certain definition of a
data structure. This process contains a sub-process B. That means, there will be a certain
point in time, when process A dynamically instantiates process B as a sub-process. The
process model defines how process A transfers the necessary data to process B by
mapping rules, as process B may have different data structures. This mapping of data is
defined by the corresponding implementation of the processes. Thus, there is a data
dependency of these processes. Hence, we imagine there is a running instance of process
A but we assume that process B has not yet been instantiated, i.e. process A has not come
to the point where process B is dynamically instantiated. In figure 16 this situation is
indicated by event 1, or rather the timeframe between event 1 and event 3.

Furthermore, we assume that a new requirement has been implemented in a new
version of process B. This new version modifies the data structures of process B, for
example, by changing the data type of an attribute in the structure, and is deployed after
process A has been instantiated. In figure 16 this situation is indicated by event 2. We have
to keep in mind that the data mapping rules for process A instantiating process B have

been statically bound at instantiation time of process A. If our running instance of
process A now comes to the point where process B is dynamically instantiated as a sub-
process, it will instantiate the new version of B by applying the old data mapping rules.
The result is data inconsistency.

In figure 16 the described situation is indicated by event 3. By this example, it becomes
clear, how process control data structures represent interfaces between processes and
what impact changes to these interfaces can have.

Step 1 Step 2 Step 3

Step 1 Step 2

Step 4

Process A

Process B

TIME

EVENT 1:
instantiate
process A

EVENT 2:
change in
process B

EVENT 3:
process A

instantiates B
(mapping fails)

FAILURE !

data
mapping

fails

figure 16: data inconsistency during process execution

Unfortunately, even version control may not really provide a suitable approach to a
solution, because it is actually not possible to version the single data structure interfaces
without versioning the process models that use them, as the data structures are statically
bound to the process models. In order to introduce a new version of a data structure it
will thus be necessary to create a new version of all processes using this data structure as
an interface when calling another process.

For instance, in the example in figure 16 it would be necessary to create a new version
of processes A and B in order to introduce a change in the data structure interface
between them. That means, the data dependencies between processes must be managed
somehow, because it is necessary to identify the effect that a potential change to a data
structure will have and to find out what processes are affected.

Additionally, this change will only take effect with a new instance of process A—all the
running instances of processes A and B still have to apply the old version. It may thus
take a long time until the change really has an effect, namely at the point in time when all
old instances of process A have terminated and only new versions of process A and B are
instantiated. The effects that many cascading changes will have over a longer period of

time result in a large amount of different versions of the same processes running in
parallel and all these different versions must be handled by the applications using them.
Usually, this results in unacceptable maintenance effort and complexity of the system. It
might be a solution in case the processes are only running over a very short period of
time, e.g. a few seconds, but in businesses processes that run for several weeks and
months a nearly unmanageable complexity might be generated.

Solution
Use a generic process control data structure that is only subject to semantic

change but not structural change. That means, a generic interface in terms of a
generic process control structure is defined between processes that standardises
all necessary aspects for controlling a process. Attributes in this generic structure
can be used for different purposes and thus with varying, i.e. generic semantics.
The concrete semantics of attributes are defined by providing additional attributes
that contain meta-information.

If a generic and reusable process data structure is used for all processes it is actually
possible to avoid those structural changes on data structures. This generic data structure
has to depict a meta-model for process control data structures, i.e. it has to include all
concerns for process control. This solution introduces the concept of designing a meta-
structure that captures the requirements of many concrete process control data structures
by applying the principle of semantic abstraction. The key aspect here is that a structural
change to data is crucial but a semantic change is not. This is a practical example that
there may be situations where a structural change to data can have unacceptable effects.
Consequently, a structural change must be avoided.

The conflict that can be observed here results from the design comfort of flexible
definitions of data structures on the one hand and the negative effects that flexible
definitions of data structures do actually have on the other hand. This conflict is resolved
by the concept of a meta-structure that abstracts the semantics of concrete data structures
and which thus allows semantic flexibility but not structural flexibility. The next UML
diagram in figure 17 illustrates the generic relationships. Consequently, it will not be
necessary to change the control structure of a process as the generic structure depicts all
necessary general aspects for controlling processes.

Concrete Data Structure

Generic Data Structure

-abstract semantics 1

-concrete semantics *

semantic representation

Concrete Sub Structure
-consists of

1 *

-consists of1

*

Generic Sub Structure
-consists of

1 *

-consists of1

*

is subject
to structural change

is subject to
semantic change but
not structural change

figure 17: the principle of a generic process control structure

In order to define such a generic process control structure, it is necessary to gather the
general requirements for controlling a process. If the BUSINESS OBJECT REFERENCE
pattern is applied this is even easier, as no business data must be included in the process
control data structure. Thus, one can exclusively focus on aspects that are necessary for
controlling the process flow.

Consequences
 Data mapping problems are solved, because no structural changes will occur.

 Process modelling is much simpler and less error prone, because no difficult
mapping rules must be applied.

 Process models can be easily reused, because interfaces between these processes
are structurally standardised.

 Applications have to take care of interpreting the semantically flexibly used data
structures.

 There might be quite some design effort necessary to develop a standardised
generic data structure that suits all purposes of the enterprise and that captures
all necessary meta-information. However, it is actually possible to achieve this,
because the general concerns of process control can usually be clearly classified
and defined if the principle of separation of concerns is followed, which means
that no application specific business data is contained in the process control
data. Moreover, the principle of encoding generic semantics in the data
structure provides a tool for designing the process control structure according
to generic requirements.

 The semantic flexibility usually implies additional development effort, because it
must dynamically be decided, based on the meta-information, how to interpret
the contents of the structure. Thus, complexity is increased at this level.

 There is also additional effort necessary to handle semantic errors. Semantic
errors will usually be detected by inconsistencies between the meta-information
and the contents. These error detection and handling algorithms must be
implemented by the application or a general framework.

 It is recommended to define a format for the meta-information, e.g. an XML
schema. However, the specification of this data format represents an additional
development effort and the format might also be subject to change.

 Type safety is becoming more complex, because type safety must be ensured by
programming the consistency check, based on a self defined meta-model.

Related Patterns
In case the patterns ACTIVITY INTERRUPT, PROCESS INTERRUPT TRANSITION,

BUSINESS OBJECT REFERENCE, PROCESS BASED ERROR MANAGEMENT, and EVENT
BASED PROCESS INSTANCE are applied, this will have implications on the design of a
generic process control data structure. Thus, applying these patterns will consequently
imply the definition of generic attributes that depict the concerns of these patterns in a
generic process control structure.

 If the ACTIVITY INTERRUPT pattern is applied, a generic attribute to handle
activity interrupts must be defined in the generic process control data structure.

 If the PROCESS INTERRUPT TRANSITION pattern is applied, a generic attribute
to handle process interrupt transitions must be defined in the generic process
control data structure.

 If the BUSINESS OBJECT REFERENCE pattern is applied, generic attributes to
store references to business objects must be defined in the generic process
control data structure.

 If the PROCESS BASED ERROR MANAGEMENT pattern is applied, generic
attributes to handle error messages must be defined in the generic process
control data structure.

 If the EVENT BASED PROCESS INSTANCE pattern is applied, a reusable process
identifier attribute must be defined in the generic process control data structure.

Example
The following list of requirements represents an example how a requirements

specification for a generic process control data structure could look like. It will further be
demonstrated how these requirements can be transformed into a design for a generic
process control data structure and how this design can be implemented using WebSphere
MQ Workflow. Furthermore, the following requirements specification considers all
mentioned related patterns:

 Multiple references to external business objects that are subject of the business process
are necessary. This requirement results from the BUSINESS OBJECT REFERENCE pattern.

 Staff information must be defined in order to dynamically assign who/what is the actor
of which activity (it could be a person, an organisational unit , or a role, etc.).

 It must be possible to set actual process control data to handle conditional transitions
between activities.

 A set of flexibly usable filter and sorting attributes is required, in order to define dynamic
filter and sorting constraints on user work-lists based on different application data.

 Error management, e.g. in case an integrated business service reports an error. This
requirement results from the PROCESS BASED ERROR MANAGEMENT pattern.

 It must be possible to abort a process in case the process must not finish normally due to
external circumstances. This requirement results from the PROCESS INTERRUPT
TRANSITION pattern.

 Controlled activity interrupt must be possible in case the data of an activity is
manipulated but the process must not yet continue to the next step. This requirement
results from the ACTIVITY INTERRUPT pattern.

 Text messages shall be used as a tool for interpersonal communication between activities.

 An application specific business process ID is needed in order to implement relationships
between principally independent sub-processes. This requirement results from the EVENT
BASED PROCESS INSTANCE pattern.

 A set of multi-purpose string objects are required that can be flexibly used. Sometimes it is
necessary to have some kind of container for application specific process information.
For this reason, it is necessary to have such a container in the data structure. As no
complex business data should be transported in the process, string objects are absolutely
sufficient.

 It is necessary to store meta information about the data structure contents in order to
provide some variability on the semantics of the data structure. One could imagine
several versions that unambiguously define different semantics of the multi-purpose objects,
for instance. The meta information thus indicates how to interpret the contents of the
flexible parts of the data structure.

 A set of numeric and string helper attributes are required that temporarily store data for
later reuse, e.g. for data mapping purposes.

 An attribute is required for setting expirations of activities dynamically. Some process
engines have a feature that an activity may expire, in case the activity has not been
processed in a defined time. This expiration time can be defined statically in the process
model or dynamically at runtime. For this reason, an attribute is required to set the
expiration time dynamically, if required.

The resulting generic process control structure that depicts these requirements could
look as defined in figure 18. This structure can then be implemented on the process engine
and can be used in every process. As a result, the interfaces between processes are
structurally standardised.

-metadataID : String
-activityInterrupt : Boolean
-processInterrupt : Boolean
-message : String
-processID : String
-strHelper : String[]
-intHelper : Integer[]
-expiration : Integer

GenericProcessControlStructure

-objectID : String
-metadataID : String

BusinessObjectReference

-semantics : String
TransitionControl

-value : Boolean
BoolControl

-value : Integer
IntegerControl

-value : String
StringControl

-actors : String[]
-parallelActors : String[]
-lastActor : String

Staff

-value : String
-purpose : String

MultiPurpose

-name : String
-value : String

FilterAttribute

-normalisedReturncode : Integer
-specificErrorCode : String
-errorMessage : String
-reportingSystem : String
-administrator : String
-abort : Boolean
-retry : Boolean
-ignore : Boolean

ErrorInfo

1

1..*

1
1..*

1

1..*

1

1..*

11

1

1

figure 18: example of a generic process control structure

The model in figure 18 illustrates how the semantics of the control data can be variably
defined. For instance, the abstract class TransitionControl defines the attribute “semantics”
to set the semantics of a control object dynamically. Thus, a BoolControl object might
contain the semantics “credit limit > 50000 Euro”. In another process model the same
object might be associated to different semantics. The corresponding Boolean attribute
“value” will indicate whether the condition is true or false.

Another example is attribute metadataID from class GenericProcessControlStructure. Via this
attribute meta-information about the concrete semantics of the structure can be obtained.
For instance, the actual meta-information could be stored in a container outside the process
engine as an XML schema, and the metadataID just points to that metadata object. In this
case, it would be an application of the BUSINESS OBJECT REFERENCE pattern. However,
the meta-information provides a unique interpretation of the contents of the structure for
the applications using it. The other elements of the presented generic process control data
structure also follow this principle of semantic abstraction.

This example demonstrates how a generic process control data structure can encode
generic semantics and thus define an interface between processes that does not need to
change as far as its structure is concerned, because it is possible to standardise the

necessary general structural aspects for controlling processes by this interface. As a result,
interface dependencies between processes are reduced to a minimum level of complexity
and changes to the control structure are manageable, as those changes will only reference
varying semantic interpretations of certain attributes within a process as a component,
and will not populate among different processes (loose coupling).

The following code is a WebSphere MQ Workflow implementation of the example of the
GENERIC PROCESS CONTROL STRUCTURE pattern in figure 18. The code is presented in
WebSphere MQ Workflow’s process definition language called FDL (Flowmark Definition
Language). Multiplicities of the originally presented model in figure 18 have been restricted
to fixed values, as FDL only supports fixed sized arrays. Moreover, FDL does not
support the Boolean data type. For this reason, Boolean attributes have also been depicted as
strings, defining a business rule that only string values of “TRUE” and “FALSE” are
allowed to represent the Boolean values. Moreover, the type Integer is not supported as well
but only type Long. As a result, attributes of type Integer are depicted as Long.

STRUCTURE 'ErrorInfo'
 'normalisedReturncode': LONG;
 'errorMessage': STRING
 DESCRIPTION "";
 'reportingSystem': STRING
 DESCRIPTION "";
 'administrator': STRING
 DESCRIPTION "";
 'abort': STRING
 DESCRIPTION "";
 'retry': STRING
 DESCRIPTION "";
 'ignore': STRING
 DESCRIPTION "";
END 'ErrorInfo'

STRUCTURE 'FilterAttribute'
 'name': STRING;
 'val': STRING
 DESCRIPTION "";
END 'FilterAttribute'

STRUCTURE 'BusinessObjectReference'
 'metadataID': STRING;
 'objectID': STRING;
END 'BusinessObjectReference'

STRUCTURE 'Staff'
 'actors': STRING(20);
 'parallelActors': STRING(30);
 'lastActor': STRING;
END 'Staff'

STRUCTURE 'MultiPurpose'
 'val': STRING;
 'purpose': STRING;
END 'MultiPurpose'

STRUCTURE 'StringControl'
 'semantics': STRING;
 'val': STRING;
END 'StringControl'
STRUCTURE 'IntegerControl'
 'semantics': STRING;
 'val': LONG;
END 'IntegerControl'

STRUCTURE 'BoolControl'
 'semantics': STRING;
 'val': STRING;
END 'BoolControl'

STRUCTURE 'GenericProcessStructure'
 'metadataID': STRING
 DESCRIPTION "";
 'activityInterrupt': STRING
 DESCRIPTION "";
 'processInterrupt': STRING
 DESCRIPTION "";
 'message': STRING
 DESCRIPTION "";
 'processID': STRING
 DESCRIPTION "";
 'strHelper': STRING(5)
 DESCRIPTION "";
 'intHelper': LONG(5)
 DESCRIPTION "";
 'expiration': LONG
 DESCRIPTION "";
 'errorInfo': 'ErrorInfo'
 DESCRIPTION "";
 'filterAttributes': 'FilterAttribute'(6)
 DESCRIPTION "";
 'objects': 'BusinessObjectReference'(30)
 DESCRIPTION "";
 'staff': 'Staff'
 DESCRIPTION "";
 'multiPurpose': 'MultiPurpose'(30)
 DESCRIPTION "";
 'boolCtrl': 'BoolControl'(30)
 DESCRIPTION "";
 'strCtrl': 'StringControl'(30)
 DESCRIPTION "";
 'intCtrl': 'IntegerControl'(30)
 DESCRIPTION "";

END 'GenericProcessStructure'

The data structure has originally been modelled with the Buildtime [WFBT03] process
modelling tool of WebSphere MQ Workflow. Once defined with Buildtime, the data structure
can be associated to any process model defined in Buildtime. Exported process models will
then contain the data structure. The contents of the data structure can then be passed
from one activity to the next. The next FDL example illustrates how this is done. The
sample shows a simple process definition with two activities. The generic process control

structure is associated to the process as input and output data structure as well as to the
two activities. Rows that represent this assignment of the data structure are in bold font.

PROCESS 'GenericControlStructureSample'(
'GenericProcessControlStructure',
'GenericProcessControlStructure')

 DO NOT PROMPT_AT_PROCESS_START
 PROGRAM_ACTIVITY 'Activity1' (

'GenericProcessControlStructure',
'GenericProcessControlStructure')

 START MANUAL WHEN AT_LEAST_ONE CONNECTOR TRUE
 EXIT AUTOMATIC
 PRIORITY DEFINED_IN INPUT_CONTAINER
 PROGRAM 'Foo'
 SYNCHRONIZATION NESTED
 END 'Activity1'
 PROGRAM_ACTIVITY 'Activity2' (

'GenericProcessControlStructure',
'GenericProcessControlStructure')

 START MANUAL WHEN AT_LEAST_ONE CONNECTOR TRUE
 EXIT AUTOMATIC
 PRIORITY DEFINED_IN INPUT_CONTAINER
 PROGRAM 'Foo'
 SYNCHRONIZATION NESTED
 END 'Activity2'
 CONTROL
 FROM 'Activity1' TO 'Activity2'
 DATA
 FROM 'Activity1' TO 'Activity2'
 MAP '_STRUCT' TO '_STRUCT'
 DATA
 FROM 'Activity2' TO SINK 1
 MAP '_STRUCT' TO '_STRUCT'
 DATA
 FROM SOURCE 1 TO 'Activity1'
 MAP '_STRUCT' TO '_STRUCT'
END 'GenericControlStructureSample'

Known Uses

The patterns described in this paper have been used in IBM development projects in
various industries such as telecommunications, insurance, railway, and banking all around
Europe, based on WebSphere MQ Workflow [WFAC03]. For instance, IBM has developed a
large scale Supply Chain Management solution for one of the largest automobile
companies in Germany where all patterns described in this paper have been applied. The
system has gone productive in 2002.

WebSphere MQ Workflow implements a process engine that has originally been designed
according to the basic standards of the WfMC [WfMC95]. Fundamentally, it consists of a
Buildtime component [WFBT03] to model the process flows, and a Runtime component
[WFRT03], where the defined processes are instantiated and executed. Moreover, it offers
APIs in several programming languages, e.g. Java and C++ [WFPG03]. Cross-platform
application integration is supported via XML messaging interfaces. The process models
are exported from the Buildtime component in a process definition language format called
Flowmark Definition Language (FDL) [WFBT03]. This process definition language is derived
from the Workflow Process Definition Language (WPDL) standard [WfMC99], which has been
developed by the WfMC. Exported process definitions can then be imported into the
Runtime component. FDL language thus functions as the process definition interchange
format between the Buildtime and Runtime components.

References

[AKVC03] “Patterns for e-Business – A Strategy for Reuse” – J. Adams, S. Koushik, G.
Vasuveda, G. Calambos, IBM Press, 2003 4th ed.

[DS+00] “Pattern-Oriented Software Architecture. Volume 2: Patterns for Concurrent and
Networked Objects” – D. Schmidt et al., John Wiley & Sons 2000

[FB+96] “Pattern-Oriented Software Architecture” – F. Buschmann et al, John Wiley & Sons
1996

[FLDR00] “Production Workflow, Concepts and Techniques” – Frank Leymann, Dieter Roller,
Prentice Hall 2000

[GoF94] “Design Patterns – Elements of Reusable Object Oriented Software” – E. Gamma, R.
Helm, R. Johnson, J.Vlissides, Addison Wesley 1994

[Prior03] “Workflow and Process Management” – Carol Prior, Maestro BPE Pty Limited,
Australia 2003

[WFAC03] “WebSphere MQ Workflow 3.4 – Concepts and Architecture” – IBM corporation
2003

[WFBT03] “WebSphere MQ Workflow 3.4 – Getting Started with Buildtime” – IBM corporation
2003

[WFMC00] “Workflow Management Coalition – Workflow Standard Interoperability Wf-XML
Binding” – WfMC May 2000

[WfMC95] “The Workflow Reference Model” – WfMC 1995

[WfMC96] “Workflow Client Application (Interface 2) Application Programming Interface
(WAPI) Specification” – WfMC 1996

[WfMC99] “Interface 1: Process Definition Interchange Process Model” – WfMC 1999

[WFPG03] “WebSphere MQ Workflow 3.4 – Programming Guide” – IBM corporation 2003

[WFRT03] “WebSphere MQ Workflow 3.4 – Getting Started with Runtime” – IBM corporation
2003

References to Websites

[FileBPM] http://www.filenet.com/English/Products/Business_Process_Manager/

[FuFlow] http://www.fapl.fujitsu.com/services/software_wkflow_iflow_01.html

[MQWF] http://www-306.ibm.com/software/integration/wmqwf/

[OrFlow] http://otn.oracle.com/products/ias/workflow/release261/workflow_ds.html

[StaffPS] http://www.staffware.com/products/

