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Abstract.  Computer-based hard real-time systems (where "hard real-time" denotes that 
the missing of a deadline will cause high risk to human lives or environment) become in-
creasingly used in safety-critical application domains like avionics, automotive, or high-
speed process control.  Crucial to their successful utilisation is a reliable communication 
among their components as well as strict constraints on transmission times.  Triple-T is a 
group of patterns that not only guarantees transmission durations, but also provides for 
solving related dependability issues. 
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1. Introduction 
A system is considered to be "real-time", if response (to events etc.) has to occur within given 
time-spans, making timely response an essential feature [Pont 01] (clause 1.4).   Think of a 
PC, equipped with a framegrabber being able to convert an incoming video-signal into a digi-
tised format like MPEG at a rate of 25 frames per second.  If it cannot encode a frame within 
40 milliseconds, it will be too slow and eventually loose frames.  In contrast, a word process-
ing application on the same PC: of course, the user likes to have it as fast as possible, but be-
sides raising the frustration level of its user above a critical threshold, it will have no effect if 
the application runs several percent slower than promised or assumed. 

As long as a real-time system may miss a deadline without causing significant risk to humans 
or environment, as can be assumed with the framegrabber example, it is called "soft", other-
wise "hard".  For instance, electronic brake-controls in cars are considered to be "hard real-
time", because untimely reactions may easily lead to accidents. 

In general, hard real-time systems become increasingly wide-spread in safety-critical applica-
tion areas like automotive, avionics, robotics etc.  Although hard real-time and dependability 
are not automatically connected, they are – so to speak – closely related by implication, be-
cause only those real-time systems whose failures may cause severe damage are considered 
'hard', but those systems are also considered as safety-critical. 

Now, the failure of an import hardware component of a safety-critical system may compro-
mise the operability of the whole system.  Hence, it must be tolerant against hardware fail-
ures.  This can (in some cases only) be achieved with redundancy, meaning duplicated hard-
ware components, where a breakdown of some component is compensated by its duplicate.  
This again nearly enforces communication among the system's components and realisation in 
a distributed form, at least for allowing negotiation between the duplicates and the rest of the 
system. 

                                                           
* (c) Copyright 2005 Wolfgang Herzner. Permission is granted to Hillside Europe e.V. to publish and distribute this paper as 
part of the EuroPLoP conference proceedings 
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Since we are dealing with hard real-time, it becomes essential that communication among 
system components also adheres to strict transmission times, at least with respect to hard real-
time functionalities.  This leads to the topic of this paper: reliable communication with guar-
anteed transmission times for hard real-time systems. 

Such systems are often "embedded" in the sense of being part of larger structures like cars or 
airplanes.  However, the patterns described in this paper do not necessarily presume "em-
beddedness" of the systems where they are applied. 

Another aspect, however, which is less evident, is that many solutions for distributed hard 
real-time systems try to avoid the concept of a (communication) master.  Although redun-
dancy could solve the problem of having such a master as a critical part of the whole system, 
the implied architectural asymmetry makes it less feasible than symmetrical approaches, 
where each component (or node) may act as a temporary master in certain situations, if neces-
sary. 

After a terminology glossary, we introduce a running example, which will be used in the pat-
terns descriptions to show how the patterns can be applied.  Then, the bus architectures for 
hard real-time communication, where the described patterns have been found, are outlined 
briefly, followed by the descriptions of the Triple-T patterns. 

We consider the presented patterns as a basic set for reliable hard-real-time systems, which 
will be extended in the future. 

Finally, it should be noted that task scheduling for hard real-time applications is not a topic of 
Triple-T, which concentrates simply on communication. 

1.1 Terminology 
To ease understanding of the described patterns, common terms are explained in this clause. 

Component: A component is an encapsulated building block that is of use when building a 
large system. Components are characterised by their interfaces with respect to compos-
ability and are described by their data properties and their temporal properties [Kopetz 
97]. 

Fail silent: If a system either produces correct results or no results at all, i.e., it is quiet in case 
it cannot deliver correct service, it is fail-silent [Kopetz 97]. 

Fault / error / failure: A failure is an event that denotes a deviation between the actual service 
and the specified service. An error is an unintended incorrect internal state of a com-
puter system. The cause of an error and therefore the indirect cause of a failure, is a 
fault [Kopetz 97]. 

Fault hypothesis.  Fundamental assumption about the fault-tolerant behaviour of a system.  A 
commonly used is the “single fault hypothesis”: a system must continue to operate cor-
rectly as long as not more than one of its components fails. 

FCU: A fault containment unit can fail in an arbitrary failure mode without affecting the 
proper operation of the components not affected by the fault [Kopetz 03]. 

FTU: A fault-tolerant unit is an abstraction that is introduced for implementing fault tolerance 
by active replication. An FTU consists of a set of replicated units that produce replica 
determinate result messages, i.e., the same results at approximately the same points in 
time [Kopetz 97]. 
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Hard real-time: A real-time system must react to a stimuli from the controlled object within 
time intervals dictated by its environment. If a catastrophe could result if the deadline is 
missed, the deadline is called hard [Kopetz 97]. 

Jitter: A measure for variability of processing or communication actions, e.g. the difference 
between maximum and minimum durations of a certain kind of action, or the variance 
of arrival times.   It has to be distinguished from delay: a transmission system with high 
but constant delay has no jitter. 

Node: A node is a self-contained computer with its own hardware and software, which per-
forms a set of well-defined functions within the distributed system [Kopetz 97]. 

NP-hard /  NP-complete: The complexity class of decision problems that are intrinsically 
harder than those that can be solved by a nondeterministic Turing machine in polyno-
mial time. When a decision version of a combinatorial optimization problem is proven 
to belong to the class of NP-complete problems, which includes well-known problems 
such as satisfiability, travelling salesman, the bin packing problem, etc., then the opti-
misation version is NP-hard (e.g. http://www.nist.gov/dads/HTML/nphard.html). 

Periodic / sporadic / aperiodic/ (task): A periodic task has many iterations, and there is a 
fixed period between two consecutive releases of the same task. The request time of a 
sporadic task is not known a priori, and there is a minimum separation between any two 
requests of a sporadic task. If there is no constraint on the request times of task activa-
tions, the task is called aperiodic [Cheng 02], [Kopetz 97] 

Task: A task is the execution of a sequential program. It starts with the reading of the input 
data and the internal state, and terminates with the production of the results and updat-
ing the internal state [Kopetz 97]. 

TDMA: Time Division Multiple Access is a distributed static medium access strategy where 
the right to transmit a frame is controlled by the progression of real time. To every node 
which has to transmit data, at least one sending slot is assigned, where it transmits one 
data frame each. If there are no data to send, an empty frame is transmitted [Kopetz 97]. 

Validity (time) span: The information content, valid at time of updating the internal state, 
stays valid for the amount of time defined by the validity span [Poledna++01]. 

Worst Case Execution Time (WCET).  The maximum time some task or processing step may 
need to execute to completion [Kopetz 97]. 

1.2 Running Example: Brake-by-wire 
As accompanying example for illustrating the patterns, we use the so-called "Electro Me-
chanical Brake (EMB)".  It is considered as the future of a pure brake-by-wire technology for 
cars since it eliminates brake fluids and hydraulic lines entirely. Furthermore it can include all 
brake, safety, and stability functions in one system. The principle layout of an EMB is given 
in Figure 1.  On each wheel the braking force is generated by an independent brake node. The 
speed of the wheel is measured and sent to the pedal node, which is the main control node of 
the system. This node measures via two sensors the position of the brake pedal, calculates the 
brake force for each wheel, transmits the new brake force to each wheel node and simulates 
the real pedal feeling for the driver. A second pedal node exists working in parallel with the 
first to make sure the system can work if one node goes down. 
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In this example, we added sensors S8 to S12 to show an additional safety function, namely 
automatic emergency braking. To realise that, the pedal node needs both the speed of the car 
and the distance to the next obstacle in driving direction.  While S8 and S9 serve to measure 
the current speed of the car in longitudinal and lateral direction, respectively, S10 to S12 are 
distance measure sensors for catching the distance to objects in front of the car.  If the emer-
gency braking algorithm calculates that a crash will occur definitely (e.g. the distance to an 
obstacle falls below the “best case” braking distance), it initiates an emergency braking to 
minimise the harm caused by an accident. 

The need for a reliable and time-critical communication in this example (and hence its justifi-
cation as running example in this paper) should be clarified by following scenario. Assume 
the electrical connection to one of the brake nodes is interrupted. Since this now isolated node 
cannot receive the brake force messages anymore, a solution is that it immediately stops brak-
ing (as long as it is not in emergency braking state) and the needed brake force is redistributed 
over the remaining three nodes. This again requires that all remaining nodes, and the pedal 
nodes in particular, learn about the lost node as fast as possible and with maximum safety.  

In contrast to this scenario, the force feedback to the real pedals is not of the same time-
criticality (though still has to occur reliably). It will therefore not be considered as important 
in the rest of the paper. 

 

 
 

Figure 1 : Electro Mechanical Brake 
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1.3 Known Uses 
The patterns described in this paper have been found in a number of bus architectures for 
safety-critical real-time systems.  Since they will be repeatedly referenced in the Known Uses 
clauses of the individual patterns, they are shortly outlined in this clause.  It can be skipped at 
first reading, and be revisited whenever wanted. 

ARINC 659 (SAFEbus) 
The standard ARINC 659 [ARINC 93] was developed by Honeywell under the name 'SAFE-
bus' for the Boeing 777, where it serves as Airplane Information Management System 
(AIMS).  It is presumably the most expensive (and mature) time-triggered bus architecture, 
because not only all bus interfaces are duplicated per node and the bus itself is quad-
redundant, the whole AIMS is duplicated.   

TTP 
TTP (Time-Triggered Protocol) realises the time-triggered architecture (TTA), which has 
been developed for about twenty years by Kopetz and colleagues at the Technical University 
of Vienna [Kopetz++94], [Poledna++01].  Although only the interconnect bus is duplicated, it 
offers a degree of dependability not much lower than that of ARINC 659, due to a number of 
clever algorithms – where fundamental ones like the clock synchronisation have been for-
mally verified – and the possibility to use node and task replicas in a well supported manner.  
Applications can be found in the automotive industry, avionics, and special vehicles.  At pre-
sent it supports transmission rates up to 25 Mbit/s.  

FlexRay 
Developed by a consortium including BMW, Motorola, and Infineon, Byteflight provides up 
to 10 Mbit/s transmission rates, message priorities which assure deterministic behaviour for 
high priority messages, and the possibility to mix synchronous and asynchronous transmission 
[Teepe++04]. 

A follower of ByteFlight <http://www.ixxat.de/english/produkte/byteflight/byteflight_intro-
duction.shtml>, FlexRay is currently under development by a consortium including BMW, 
DaimlerChrysler, Motorola, and Philips.  It can be regarded as some combination of TTP and 
ByteFlight: The synchronous data transmission enables time triggered communication to meet 
the requirement of dependable systems, while asynchronous transmission allows each node to 
use the full bandwidth for event driven communications.  Although full details are not pub-
licly available, it appears that it is intended to provide somewhat less safety and fault-
tolerance than TTP to achieve lower costs and higher flexibility.  It primarily targets the 
automotive domain; first prototype hardware components are available. 

TTCAN 
The TTCAN (time-triggered communication on CAN) protocol is based on CAN. It provides 
mechanism to schedule CAN messages time-triggered as well as event-triggered. TTCAN is 
based on the CAN data link layer protocol and does not infringe it at all [Zeltwanger 04].  The 
main focus of TTCAN is on substituting CAN bus on segments in a car, where time-triggered 
communication is needed and CAN is already deployed for years (e.g. power-train).  TTCAN 
provides transmission rates up to 1Mbit/s [Führer++00]. 
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Spider 
A "scalable processor-independent design for electromagnetic resilience" (SPIDER) has been 
developed by Miner and colleagues at the NASA Langley Research Centre [Miner 00].  Serv-
ing primarily as research platform for recovery strategies for faults caused by radiation in-
duced high-intensity radiated fields and electromagnetic interference (HIRM/EMI), SPIDER 
supports several bus configurations like bus, star, or central ring.  It uses a time-triggered pro-
tocol only. 

Cost Comparison 
Although this paper does not primarily focus on cost issues, it may be of interest to get a 
rough impression of what has to be paid for a certain level of dependability.  Since, however, 
it is almost impossible to get real cost figures from providers or implementers, only a relative 
estimation of the deployment costs of the known systems can be is given: CAN (<)< TTCAN 
< FlexRay < TTP < SAFEbus. Since Spider is primarily a research platform, is has not been 
considered in that relation. This means, that any of the introduced techniques is (considerably) 
more expensive than the commonly used CAN-bus [ISO 03], which also shows the lowest 
level of dependability. 

1.4 Patterns-Outline 
Triple-T is a system of five patterns, which together establish a base for the development of 
distributed safety-critical (hard) real-time systems.  While fault-tolerance patterns have al-
ready been described, e.g. in [Adams++96] and its update [Hanmer++99] for user interfaces 
in real-time control systems, in [Saridakis 02] for fault-tolerance against system failures or in 
[Saridakis 03] for fault containment, and patterns for time-triggered embedded systems on 
dedicated hardware platforms in books like [Pont 01], Triple-T concentrates on reliable com-
munication among nodes in a distributed system with high safety and hard real-time require-
ments. 

 
Figure 2 :  Relationship among Triple-T patterns 
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PRESCHEDULED PERIODIC TRANSMSISSION is the entry point into Triple-T.  It describes how 
guaranteed transmission times can be achieved to meet hard deadlines.  TIME-TRIGGERED 
CLOCK SYNCHRONISATION provides a solution for keeping the local clocks synchronised with-
out central master.  SYNC FRAME addresses how the whole communication can be initiated, as 
well as how nodes can enter an already running communication.  The BUS GUARDIAN is neces-
sary for keeping faulty nodes from disturbing the communication among healthy nodes.  Fi-
nally, TEMPORAL APPLICATION DECOUPLING describes how application( task)s can be decoup-
led from the communication process to ease both their development and their scheduling. 

 

In the rest of the paper, these patterns are described. 

2. Prescheduled Periodic Transmission 
Also known as: TIME-TRIGGERED COMMUNICATION, TIME-DIVISION MULTIPLE ACCESS (TDMA) 

2.1 Context 
Hard real-time systems which have to be distributed for fault-tolerance reasons, and where the 
communication among the components shows the following characteristics: 

• Most if not all of the messages to be exchanged between components are small (e.g. single 
sensor measures), but have to be frequently transmitted. 

• Transmission times must be guaranteed (a consequence of being hard real-time). 

• Break-down of a node must be detected by the remaining nodes within a given time (a 
consequence of being fault-tolerant). 

2.2 Example 
Consider the brake-by-wire system in a car as discussed in the introduction.  Here, typical 
components are the sensors for the brake-pedal position, wheel angle speeds, vehicle speed 
(longitudinal and lateral), and distance measures to frontal obstacles.  The computing compo-
nents analyse the situation in front of the car from speed and distance measures, they evaluate 
the resulting brake forces on all wheels, and the actuators turn the latter force information into 
physical brake forces, as well as actuators provide feed-back to the driver by adjusting both 
position and resistance strength of the brake-pedal.  Except for the driver feedback, all corre-
sponding information has to be transmitted frequently with assured transmission duration, 
usually every few milliseconds, but are of small and fixed size.  And whenever a node ceases 
to function, this has to be recognised by the remaining nodes in the same time range, to adapt 
the system's behaviour immediately to the new resource situation (e.g. by redistributing the 
needed brake force over the remaining three brake nodes). 
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2.3 Problem 
How can required transmission times be guaranteed, when many, mostly small, messages 
have to be sent repeatedly, and it has to be recognised as soon as possible, whenever some 
node fails to deliver its service? 

When using conventional event-driven communication, where each node sends a message as 
soon as it has one to transmit, we are faced with several problems. A first problem is that it is 
almost impossible to guarantee requested transmission times, due to the risk of collisions on 
the bus.  If, for instance, two nodes start to send almost simultaneously, so that they have not 
yet recognised each other, both messages are corrupted and have to be retransmitted, even 
raising the danger of another collision.  A well-known consequence of this effect is that (non-
switched) Ethernet loads of more than about 30% of its maximum capacity significantly raises 
transmission times.  

 
Figure 3 :  Example for collisions on Ethernet 

Figure 3 illustrates this effect.  Nodes A and B send almost simultaneously, so their transmis-
sions collide and are disturbed.  Then, each of them waits a node-specific time before it re-
transmits.  In the meantime, the same happens to nodes C and D.  Due to their individual re-
transmission times, C collides with A at its next try, while D succeeds.  Happy about its suc-
cessful transmission, it starts to transmit a new message, which collides with the third try of 
A, while C succeeds at its fourth try.  So, in the shown interval, there have been 12 transmis-
sion tries with only 2 of them successful. 

Another concern is that nodes may go out of function in various ways. If they are able to send 
a corresponding information to the other nodes before shutting down, the remaining system 
can adjust to the new situation.  If, however, a nodes ceases without warning, the other nodes 
may recognise this only by detecting that they are not receiving messages from that node 
anymore.  (This presumes that any node sends at least one message regularly, even pure ac-
tuator nodes.)  Although this is possible, it has to take potential transmission delays due to 
collisions as discussed before into account, which may cause unacceptable delays or jitter. 

Finally, a rather minor issue is that we need headers for each message – containing the sender 
identification, the type/meaning of the transmitted information, sending/creation time, and 
possibly the intended recipient(s) if we do not broadcast – which tend to need significantly 
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more bits than the actual data. If, for instance, only one data byte is needed, e.g. representing 
the brake pedal position in percent of "down", a major part (two thirds or more) of the avail-
able bandwidth is consumed by framing information, but not by relevant data.  If we take the 
first problem into consideration as well, then we have to conclude that in the given context the 
net utilisation of the available bandwidth must stay clearly below 10% to be able to assure a 
requested transmission time with a probability of about 99% or more – which is still below 
the 10-9 failures/hour required for hard real-time systems. 

Why not using Token Ring? 
An alternative to Ethernet-like transmission could be a token ring (e.g. 
http://www2.rad.com/networks/1996/toknring/toknring.htm).  Here, all nodes are connected in 
a ring-like network, where a so-called token is passed from one node to the next.  The token is 
some sort of message, where other messages may be appended.  When a nodes receives the 
token, it removes all messages dedicated for itself, and appends messages to be sent to other 
nodes, and forwards the token to the next node.  Since only that node holding the token is 
allowed to send, collisions are avoided. 

As long as nodes behave correctly, bandwidth utilisation can be significantly higher than with 
Ethernet.  However, a single faulty or slow node can cause at least significant delays.  In addi-
tion, nodes which erroneously start to transmit without token may cause collisions and se-
verely hamper the communication.  And even without such problems, transmission times are 
difficult to guarantee, because transmission times between two specific nodes depend on the 
number of nodes between them. 

As a consequence, token ring does not represent a reasonable solution to the given problem. 

2.4 Solution 
Use a periodic transmission schedule, where each message has at least one time-slot assigned 
where it is allowed to be transmitted, and with a period which is short enough to fulfil the 
shortest needed transmission time within the system.  Furthermore, define for each message 
the precise phase within the period when it has to be sent. 

 
Figure 4 :  Example for periodic transmission schedule 
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data sent is completely described by its phase within the period, it is not necessary to send a 
header with it; consequently, only the pure information need to be contained in a message.  
Data which have to be transmitted more frequently than others may have more than one time 
slot assigned within a period, as indicated with message a.  

(Use BUS GUARDIAN for prohibiting nodes from transmitting outside of their slots.) 

Basically, this pattern implies broadcast communication rather than multicast or even point-
to-point communication.  Of course, each node listening on the bus can ignore data not rele-
vant for it or the tasks running on it, respectively. 

This communication is called "time-triggered" (opposite to "event-triggered"), because the 
progression of time is the only reason for a transmission. 

Sometimes, the set of all transmitted information within a period is considered as "public 
state" of the system, which gets continuously updated, such that after each round each node 
within the system conceptually has knowledge of the most recent state values. 

2.5 Implementation 
The first step is the specification of the schedule, which has to occur during the design of the 
overall system.  Following questions have to be considered when preparing the schedule. 

Constraints for the Schedule 
Highest transmission frequency needed.  

This will define the shortest period.  It essentially depends on the highest possible and 
desired refresh rate for any information to be transmitted. 

Lowest refresh rate needed.  
Some data may be generated with frequencies significantly lower than the shortest 
transmission time needed.  If, for instance, some measure value cannot be read more 
than four times a second, but needs a greater amount of bytes to be transmitted (which, 
for example, could apply to visual sensor data) it can make sense to consider this in the 
schedule. 

Validity time spans.  
Messages have to be scheduled such that the sum of the time span the corresponding 
data stay in the sending node and in the receiving node(s) until being processed, as well 
as the transmission time itself do not exceed the respective validity time span. 

Aperiodic messages.  
It may be necessary to allow transmissions of aperiodic or even sporadic messages, for 
example diagnostic information. 

Future extensions.  
If the available bandwidth is not already exhausted, it is wise to anticipate the need for 
new messages within existing slots as well as for new slots for future additions, by add-
ing free ‘space’ to both time slots and transmission period.  The reason is that as long as 
future extensions do fit into the free time slots, no re-design is needed for the existing 
communication, because it is safely not affected by these extensions. 
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Available bandwidth.  
Of course, the available bandwidth affects the free space left over for aperiodic trans-
missions and future extensions. 

Preparing the Schedule 
The highest needed transmission frequency determines the shortest period within the sched-
ule.  To leave room for positioning messages within the schedule with respect to their validity 
time spans, it is sensible to take even a shorter period than implied by the highest needed 
transmission frequency. 

If there are transmission frequencies significantly lower than the highest one, as indicated by 
the lowest refresh rate needed, it may make sense to use more than one period, resulting in a 
hierarchical period system, where the number of shorter periods is an integer multiple of the 
longer one.  For instance, the shortest period is 10ms, while the longest is 250ms, resulting in 
25 short periods within one long.  Of course, that hierarchy may consist of more than two lev-
els. 

Message slots are now placed within the periods in a way that validity time spans are not vio-
lated.  In particular, so-called "processing pipes" have to be considered: if task A (e.g. a sen-
sor task) on node 1 sends message X to task B (a computing task) on node 2, which processes 
it and sends message Y to task C (an actuator task) on node 3, then X and Y have to be sched-
uled such that both B can process X before its validity time span expires and produce Y right 
in time so that it can be processed by C before Y's validity time span is exceeded. 

If time slots for aperiodic messages are needed, they are scheduled in unused spaces of the 
schedule prepared so far.  Since these slots shall serve for transmission of data from various 
nodes, a special protocol is needed to control communication within such time slots. 

Finally, free transmission time is computed by subtracting all time slots needed so far from 
the available transmission bandwidth. 

See "Running Example Resolved" for a diagram showing a possible schedule. 

Using the Schedule 
The schedule will finally be installed at each node of the system in a way that the transmis-
sion control unit of each node knows the whole system schedule at runtime, or at least those 
parts relevant for it. 

2.6 Running Example Resolved 
We start with listing the assumed frequencies with which individual data are or can be pro-
vided. 

 

Datum Unit Source Size (Bytes) Min. Time (ms)†

Brake pedal position mm. S6, S7 1 (unsigned int.) 44 

Wheel speed (front left … rear right) °/sec S1 … S4 2 (signed int.) 2 

                                                           
† Minimal sampling time for sensors; WCET for control algorithms 
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Car speed longitudinal cm/sec S8 2 (signed int.) 5 

Car speed lateral mm/sec S9 2 (signed int.) 18 

Minimum front distance Cm S10 … S12 2 (unsigned int.) 95 

Front distance credibility 0→no, 1→ok S10 … S12 1 bit 95 

Wheel brake force (per wheel) milliNewton PN1, PN2 2 (unsigned int.) 9 

Brake pedal feed back position Mm PN1, PN2 1 (unsigned int.) 9 

Brake pedal feed back force milliNewton PN1, PN2 1 unsigned int.) 9 

Table 1 :  EMB-example, characteristics of transmitted data 

If "front distance credibility" is 1, the "minimum front distance" shall indicate the smallest 
measured distance to an obstacle, otherwise, the latter value is of no use.  (Although this 'cau-
sality' suggests to transmit "minimum front distance" as event rather than time-triggered, we 
keep it as time-triggered for simplicity.)  The 9 milliseconds for data provided by the EMB 
processing nodes are assumed to result from strong WCET (worst case execution time) esti-
mations.  Actuators are not considered, because they only receive data, but let assume that the 
wheel brake nodes cannot process brake force commands more often then every 10 ms. 

Obviously, the maximum of the PN's 9 ms and the actuator nodes' 10 ms define a basic 
transmission frequency; however, it is not the best way to force the whole data exchange into 
one 10 ms period, simply because some data like brake pedal position cannot be provided so 
often.  But the longer intervals can appropriately be fit into multiples of this period, making a 
hierarchical schedule as shown in Figure 5 plausible.  There, messages are denoted by their 
source sensor, or "a"…"c" for the processor node's output as given in the order of Table 1. 

 
Figure 5 :  EMB example schedule 

Subperiod 1 

ms 0 ms 10 

Subperiod 2 

Subperiod 3 

Subperiod 4 

Subperiod 5 

Subperiod 6 

Subperiod 7 

Subperiod 8 

Subperiod 9 

Subperiod 10 

S1 S2 S3 S4 S8 a1 b1 c1   S12 a2 b2 c2 

S1 S2 S3 S4 S8 a1 b1 c1 a2 b2 c2 

S1 S2 S3 S4 S8 a1 b1 c1 S10 a2 b2 c2 

S1 S2 S3 S4 S8 a1 b1 c1 S11 a2 b2 c2 

S1 S2 S3 S4 S8 S9 a1 b1 c1 a2 b2 c2 

S1 S2 S3 S4 S8 S9 a1 b1 c1 a2 b2 c2 

S1 S2 S3 S4 S8 S9 a1 b1 c1 a2 b2 c2 

S1 S2 S3 S4 S8 S9 a1 b1 c1 a2 b2 c2 

S1 S2 S3 S4 S8 S9 a1 b1 c1 S6 S7 a2 b2 c2 

S1 S2 S3 S4 S8 a1 b1 c1 S6 S7 a2 b2 c2 



13 of 31  

The period consists of ten subperiods of 10 ms each, resulting in a period of 100 ms.  For each 
message, an own slot is defined.  Every message with a delivery period up to 10 ms is trans-
mitted in each subperiod, and the lateral car speed every second subperiod.  The other, less 
frequently provided messages are distributed such that the lengths of the subperiods is nicely 
balanced, resulting in a net bandwidth of less than 20 bytes per subperiod, or some 20 Kbit.  
Even with modest bus capacities, there is enough spare space per subperiod for future exten-
sions, indicated by the blank areas at the end of each subperiod. 

2.7 Consequences 

Benefits 
Guaranteed transmission time.  Transmission time of a message within a time-triggered slot 

can be guaranteed to the frequency it is scheduled, because due to the schedule each 
node sends only when it is planned and therefore no transmission collisions occur.  (See 
BUS GUARDIAN for assuring that this is actually the case.) 

Fast detection of erroneous nodes. That a node misses its slot is conceptually immediately 
detected by the other nodes.  Hence, fail-silent nodes can inform the remaining nodes in 
the system simply by not sending anymore.  This is a significant advantage of time-
triggered communication over event-triggered one, which needs various additional 
mechanisms for detecting erroneous nodes like I AM ALIVE or YOU ARE ALIVE [Saridakis 
02]. 

Minor message header needed.  Since message content is completely defined by its position 
within the schedule, no information about sender, content type, creation time and alike 
need to be attached to the message.  Though, some framing information may be needed 
to let both receiving communication controllers detect transmission at all, and to safely 
distinguish data messages (data frames) from synchronisation frames (see TIME-
TRIGGERED CLOCK SYNCHRONISATION).  However, for small messages like sensor values 
or control values for actuators, which are often represented by single or small sets of 
bytes, this may be a significant reduction of transmission overhead. 

High bandwidth utilisation. Since within the time-triggered parts of the schedule no collisions 
occur, bandwidth can be utilised up to almost 100%. 

Composability.  If new messages which need to be added can be placed into free slots (unused 
spaces), then the communication can be extended without any risk of affecting existing 
transmissions, which cannot be guaranteed with event-triggered transmission.  With 
only the latter available, communication has to be re-designed (re-tested, re-certified) as 
a whole every time messages are added.  
Of course, this argument applies only to transmission, while all affected tasks (that 
which sends the new message and all which read it) have to be re-tested/certified.  But if 
a new subsystem is added, which uses its own messages, then only this subsystem as a 
whole has to be tested and certified. 

Liabilities 
Synchronisation needed.  Time-triggered communication relies on synchronisation of all par-

ticipating nodes, which has to be kept much stronger than in event-driven communica-
tion.  TIME-TRIGGERED CLOCK synchronisation provides a solution for that, based on 
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PRESCHEDULED PERIODIC TRANSMSISSION, while SYNC FRAME helps to establish commu-
nication at all. 

Risk of transmission disturbance.  Fault nodes can easily disturb communication by transmit-
ting out of phase.  BUS GUARDIAN helps to avoid this. 

More complex application development.  Application tasks must adhere to the transmission 
schedule with respect to sending and receiving data.  TEMPORAL APPLICATION DECOUP-
LING tells how this complexity can be significantly reduced. 

Inflexibility.  The time-triggered parts are highly inflexible at run-time.  For instance, commu-
nications which need more than half of the bandwidth to be occupied by one sender at 
some time, and to be occupied by another node at some other time, cannot be realised 
with such transmission schedules defined at design time.  Of course, it is possible to 
switch between different schedules, but this is hard to implement with respect to main-
tain dependability during schedule switching. 

High design effort.  Developing correct schedules is an NP-hard problem.  Currently no meth-
ods exist which can evaluate the optimal schedule for any given set of constraints.  In-
stead, so-called heuristic schedulers are used which may fail to find a solution even if 
one exists. 

Transmission overhead through unnecessary transmission.  It can be argued that the avoid-
ance of message headers is traded against transmission more often than necessary.  This 
will be the case if constraints laid upon the system designer by the used developing 
tools do not allow e.g. various transmission periods or the use of aperiodic (event-
triggered) messages in dedicated time slots. 

Power consumption.  Highly periodic transmission may consume more power than event-
driven transmission.  In power-aware environments, this could become a critical issue. 

2.8 Known Uses 
All bus architectures described in the introduction support time-triggered transmission.  Be-
sides TTP, where the periodic transmission schedule is named MEDL (Message Description 
List), and Spider, all also support event-triggered transmission, in principle in the described 
way.  TTP provides two levels of schedule hierarchy: a so-called "bus cycle" can consist of a 
power of two "TDMA rounds", where all rounds are of equal length and layout with respect to 
node-specific time slots, but within each round, each node may send different messages (or 
none at all) within its time slot. 

FlexRay differs slightly from the others in the way that each node gets only those parts of the 
schedule loaded, which concern messages it is interested in.  This has the advantage of a 
somewhat higher flexibility, because on adding a new node to an existing system with ex-
ploiting composability, the schedule in existing nodes need not be updated, but at the cost of a 
higher start-up complexity; see Known Uses clause of SYNC FRAME.  Likewise, a TTCAN 
controller only gets the necessary information it needs for time-triggered sending and receiv-
ing of messages as well as for sending of spontaneous messages. 
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2.9 Related Patterns 
For executing both application tasks and system tasks serving for transmission, the CYCLIC 
EXECUTIVE pattern or – in special cases – the ROUND ROBIN pattern can be applied [Douglass 
03].  CO-OPERATIVE SCHEDULER [Pont 01] can be used on the operating system level to execute 
tasks in alignment with the transmission schedule. 

3. Time-Triggered Clock Synchronisation 

3.1 Context 
Hard real-time systems which have to be distributed for fault-tolerance reasons, where PRE-
SCHEDULED PERIODIC TRANSMISSION is applied to guarantee that requested transmission times 
are not violated, and where a central clock is not available. 

3.2 Problem 
Each node has a local clock oscillator.  Even optimally calibrated clocks on different nodes 
will diverge due to different physical and environmental parameters.  But keeping the clocks 
of all nodes synchronised is crucial for a successful time-triggered communication.  How can 
this be achieved in the absence of a central clock, with sufficient precision for the requested 
transmission rates? 

3.3 Example 
Consider our brake-by-wire application.  Here, we have got five distributed nodes, each of 
them using an own oscillator.  To keep hardware costs low it is common practice in cost-
sensitive applications to deploy cheap quartz oscillators.  These devices feature a  low fre-
quency stability and a high temperature drift.  Therefore some kind of clock synchronisation 
is necessary. 

3.4 Solution 
Compare precisely the actual arrival times of messages received from other nodes with the 
scheduled arrival times, and use an error compensating function of these differences to correct 
the own clock. 

The solution is based on the transmission schedule.  As soon as a node has successfully joined 
the communication on a time-triggered bus, it can simply compare the arrival times of the 
messages within time slots of the other nodes with the corresponding times given in the 
schedule.  If, for instance, on a node K, message a from node 1 arrives two ticks later than 
scheduled, message b from node 2 five ticks later, and message c from node 3 one tick earlier, 
then K can deduce that it is a bit too early (i.e. (2+5-1)/2 = 3 ticks) and has consequently to 
delay its own clock for that value. 
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Figure 6 :  Comparison of scheduled with measured message arrival times 

If this local clock correction is applied in each node, all clocks are kept aligned up to a certain 
maximum of tick differences.  For instance, node 3 would probably delay its clock a little bit 
as well, while nodes 1 and 2 would speed up their clocks. 

3.5 Implementation 
Since TIME-TRIGGERED CLOCK SYNCHRONISATION is vulnerable to "wild clock readings"‡, it is 
desirable to exclude these from the clock correction calculation.  This could be done by limit-
ing the allowed difference between scheduled and measured arrival time to a maximum value.  
Nodes whose messages arrive too early or too late (i.e. the corresponding arrival time differ-
ences exceed this limit), not only are not considered for clock correction, but this can also be 
a hint that these nodes are faulty.  This limit can even be used to judge the own clock: if all 
(or most) readings from the other nodes are uniformly too early or too late, this indicates that 
the own clock has gone wild rather than all the others. 

A variant is the Welch-Lynch algorithm, also known as "t-fault-tolerant midpoint" 
[Welch++88].  If up to t faulty nodes shall be tolerated by n+1 nodes in the system, then the 
differences are increasingly or decreasingly ordered, and the average of the (t+1)st and (n-t)th 
value computed.  Of course, this requires n > 3t. 

Once a necessary clock correction has been identified, several methods exist to apply it.  If the 
own clock counter (i.e. the mapping of quartz periods to clock ticks) can be adjusted, then it is 
feasible to apply the correction by appropriately adjusting this mapping; this has the advan-
tage of a maximally smooth clock correction.  If, however, such an adjustment is not sup-
ported, excess ticks must be skipped and missing ticks must be added.  This could be done at 
begin of the next transmission period.  However, since such a correction is a 'hard' or 'jump-
ing' clock correction on the one side, and has to affect the whole node including operating 
system and application tasks, jumps of several ticks may be dangerous.  It appears therefore 
preferable to distribute the insertion or omission of clock ticks over a longer period of time. 

This leads to the question of the frequency with which these measurements and corrections 
shall be executed.  The highest frequency would be that of the transmission schedule; that 
means that each transmission round the arrival time deviations are measured and the resulting 

                                                           
‡ This term denotes effects caused by an erroneous node clock, which runs significantly faster or slower than 
those of other nodes in a system, or even irregularly. 
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clock correction computed.  Since the necessary calculation are rather simple, and the result-
ing corrections can be expected to be very small, this appears to be the best solution. 

3.6 Consequences 

Benefits 
No further mechanism needed. Since this pattern relies on the periodic transmission schedule, 

it can be implemented without the need for further communication like distributing spe-
cific clock-sync messages. 

Fault-tolerance included. Too large arrival time deviations indicate faulty nodes automati-
cally.  Likewise, methods like Welch-Lynch automatically avoid poor clock sync due to 
wild clock readings. 

Liabilities 
No sync with external time.  All clocks will synchronise to the average of all participating 

clocks.  If this average deviates significantly from standard time, the whole system will 
drift apart from standard time. 

Minimum number of nodes needed.  If the clock synchronisation shall be tolerant against t 
simultaneously faulty nodes, then at least 2t+2 nodes are needed (2t for ignoring t ex-
treme measures on both ends, 1 for the good reading, and 1 recipient). 

3.7 Known Uses 
TTP uses Welch-Lynch.  However, there is a distinction between nodes with ordinary clocks 
and such with accurate clocks (expensive), and only the latter are considered.   

FlexRay also uses the standard Welch-Lynch.   

3.8 Related Patterns 
An alternative is to use a “central clock” as described in the SHARED-CLOCK (S-C) SCHEDULER 
[Pont 01] (p.543-5), where a master sends tick messages at regular intervals within the 
framework of the transmission schedule, and all slave nodes adapt their time to these master 
ticks.  As already discussed, this is vulnerable to faulty masters, as long as no smart fault-
tolerance mechanisms like duplicating fail-safe masters are applied.  However, a benefit of 
this pattern is it can be coupled with an external clock, thus allowing to align a whole cluster 
with standard time. 
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4. Sync Frame 

4.1 Context 
Distributed hard real-time systems, which have to be distributed for fault-tolerance reasons, 
and which use PRESCHEDULED PERIODIC TRANSMISSION  to guarantee that requested transmis-
sion times are not violated. 

4.2 Problem 
Once a node is started (or restarted after a failure) and ready to join the communication: how 
does it synchronise with the other nodes, i.e. how does it recognise the current transmission 
phase?  Since transmitted information contains essentially application specific data and pre-
sumably error correcting code like CRC for transmission error detection, it is difficult for a 
node which wants to join to interpret the received bit sequences correctly. 

A similar problem exists at start-up of the whole system, when initially no transmission oc-
curs at all.  How one gets the periodic transmission finally running?  A special constraint is 
that start-up should work without master, as argued in the introduction. 

4.3 Example 
Consider our brake-by-wire application.  When the ignition key is turned, all nodes boot and 
after initialisation and self-test they are ready to communicate.  However, since no node is 
sending so far, how can the synchronised communication become established, which is neces-
sary for running the pre-defined transmission schedule?  Note that without an established 
communication, the local node clocks are not yet synchronised as well. 

4.4 Solution 
Let special messages be transmitted, which unambiguously identify the phase within the 
transmission schedule when they are sent.  These messages are called “synchronisation 
frames”, or "sync-frame" for short.  

In detail, the solution consists of several steps. 

First, define a sync-frame, containing a unique bit pattern, which can safely be distinguished 
from application data, and additional information like the actual phase within the schedule 
when it is sent.  

Second, for each node – or at least a number of nodes, see Implementation clause, reserve a 
special part of its time slot where it will transmit the sync-frame, usually at begin of the slot.  
If a hierarchical schedule is used, then this may be needed only on the highest level. 

Now, an "out-of-sync" node which wants to join a running communication, listens until it 
recognises the bit pattern of the sync-frame.  From the additional information it learns the 
current phase within a transmission period, which allows it to settle its own transmission con-
trol. 
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If it does not receive a sync-frame for a certain period of time, e.g. a bit longer than the long-
est period within the predefined schedule, then it starts sending such a frame by itself.  If 
other nodes, also being in the start-up phase, receive this sync-frame, they can synchronise 
and start to transmit.  This again is detected by the sender of the sync-frame, which can now 
start to transmit in its time slots, and the communication is established.  If no node is respond-
ing, either because no other node is ready, or due to a collision on the bus, the sending of 
sync-frames is usually repeated.  

If two starting nodes send sync-frames simultaneously, these will be corrupted and not suc-
cessfully received by any node of the system.  To avoid that the same collision appears again, 
each node must wait a different time, such that, in the worst case, after any possible combina-
tion of collisions among nodes, finally one will succeed.  See next clause, Implementation, for 
how these different waiting times are determined. 

 
Figure 7 :  Control diagram of SYNC FRAME 

In Figure 7, “Sync’d” means that the node knows the current phase within the transmission 
schedule, and can therefore start to send and/or receive messages.  “Send sync-frame” in-
cludes initiating local processing of the transmission schedule; hence, a sync-frame is sent at 
precisely that phase it is scheduled for the given node.  Consequently, “Got response?” = 
“yes” means that the sync-frame sending node receives valid messages from other nodes.  
This indicates to it that other nodes have successfully received its sync-frame and established 
their transmission schedules in synchronisation with its own. 

4.5 Implementation 
How the identification bit pattern of sync-frame looks like, depends on the general encoding 
of application data and other information on the bus.  Since some form of redundancy will be 
needed to detect transmission errors, e.g. CRC or some other error correcting encoding, appli-
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cation data are usually embedded into – though small – control frames, or encoded.  This al-
lows for reserving specific patterns for the sync-frame.  In most cases, quite a few bytes are 
needed for it. 

It is not necessary that each node sends sync-frames during the normal transmission period.  
Rather, it has only to be guaranteed that even in the assumed worst case at least one healthy 
node remains which sends sync frames.  If m nodes are accepted to fail simultaneously, then 
obviously at least m+1 nodes must transmit sync frames.  With the common "single fault hy-
pothesis", this means at least two nodes.  Therefore, Figure 7 shows how nodes which have 
sync-frames scheduled behave at startup (we will call those nodes sync-nodes); those which 
have no sync-frames scheduled simply listen. 

An important pre-requisite for efficient application of SYNC FRAME is that the waiting periods 
of sync-nodes between two consecutive sync-frame transmissions are sufficiently different for 
all nodes.  In particular, no waiting period must be an integral multiple of some other within a 
system.  Since these periods are defined prior to runtime (e.g. at installation or even at con-
struction time), it is straightforward to fulfil this request.  For instance, consecutive odd num-
bers where the product of the smallest with the number of sync nodes is larger than the largest 
could be used.  Then, a sync-node will safely transmit a sync-frame successfully without col-
lision latest after one collision with each of the other sync-nodes in the system.  Of course, the 
number of retries (see Figure 7) has to be larger than the number of sync-nodes.  As a conse-
quence, the individual waiting should be determined during scheduling. 

This constraint has to be considered whenever a system is reconfigured; for example, when 
during maintenance in a car an old node is replaced by a new one, or even new nodes added. 

A risk of this pattern is that a faulty node may be incapable to detect sync-nodes or even any 
communication although it is already going on.  In this case, it will start to send sync-frames 
without need.  To avoid this, further mechanisms are necessary, like BUS GUARDIAN. 

A further risk are so-called “Byzantine” situations at start-up.  This includes all situations 
where either a node switches irregularly between faulty and non-faulty behaviour, or the 
healthiness of a node is judged differently by different nodes.  Many possible faults can be 
detected by healthy nodes (by sophisticated extensions of the algorithm sketched in Figure 7 
or by methods not addressed by Triple-T) and corrected by the whole system as long as the 
underlying fault hypothesis is not violated.   However, if not all components are fail-silent, it 
is impossible to safely exclude undetectable and hence unsolvable Byzantine situations.  For a 
more thorough discussion of this topic, have a look at corresponding literature, e.g. 
[Driscoll++03]. 

A possible effect could be that several sync-frames emitting nodes try establishes successfully 
communication among a subset of the whole cluster, thus creating so-called “cliques” 

4.6 Running Example Resolved 
In our running example, we assume that it is sufficient to transmit sync frames once per pe-
riod, and by two nodes.  We choose the processor nodes (PN1, PN2) for that.  Since currently 
in sub-period 3 the fewest messages are scheduled (see Figure 5), we add the sync frames 
there at the begin of the time slots of PN1 and PN2, namely before a1 and a2, respectively, as 
indicated by the grey boxes in Figure 8. 
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Figure 8 : Subperiod 3 with sync frames  

For the content of these sync frames, we choose a unique bit pattern, followed by one bit indi-
cating the number of the processing node it is sending, i.e. '0' for PN1, and '1' for PN2.  And 
we choose 111 and 113 ms as their waiting periods between sync-frame transmissions. 

4.7 Consequences 

Benefits 
Decentralised start-up.  There is no need for a master to initialise communication. 

Speed.  A new (or restarted) node may join within two periods.  And as long as no series of 
increasingly unlikely sync-frame collisions occur, start-up of a whole system will occur 
within a few periods. 

Self-stabilisation.  As long as no faulty or malicious node disturbs working transmissions of 
good nodes, this pattern finally integrates all good nodes into a communicating system. 

Liabilities 
Limited fault-tolerance.  In presence of faulty nodes, communication may not settle or being 

significantly hampered, as long as no further mechanisms are used to suppress errone-
ous sync-frame sending of such nodes.  BUS GUARDIANS allow for coping with determin-
istically detectable faulty nodes.  

Increased complexity.  Sync-frames have to be considered during evaluation of the transmis-
sion schedule, as well as different waiting times for all nodes be computed. 

Reduced bandwidth.  Sync-frames don’t carry application-relevant information and therefore 
reduce the bandwidth available for that.  However, since sync-frames are rather short 
and need to be sent too often, the bandwidth loss is usually about 1% or less. 

4.8 Known Uses 
In ARINC 659, actually two flavours of sync-frames are used.  "Long Resync" frames are 
transmitted during a running communication.  Hence, an out-of-sync node first listens for 
such a "Long Sync"; if it fails to recognise any for a certain length of time, it send an "Initial 
Resync", indicating to the other nodes that it wants to restart the whole communication. 

On TTP, sync-frames are called "I-frames".  If they are transmitted in a time slot together 
with application data, the whole frame is called "x-frame".  In addition, clever algorithms are 
implemented to minimise the danger of Byzantine errors during start-up. 

Since FlexRay-nodes get only their own part of the transmission schedule loaded, they have 
to learn the full configuration by observing message traffic during start-up, which again 
makes communication initialisation more complicated and vulnerable to misbehaving nodes.  

2 Sub-period 3 S1 S2 S3 S4 S8 a1 b1 c1 a2 b2 c2 1 
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This risk is reduced by restricting the creation of sync-frames to dedicated nodes, which then 
can be built more expensive, but also more reliable than the majority of the remaining nodes.  
Of course, this approach weakens the symmetry property intrinsic to SYNC FRAME. 

4.9 Related Patterns 
PRESCHEDULED PERIODIC TRANSMISSION  is a precondition for applying SYNC FRAME.  BUS 
GUARDIAN helps to avoid sending invalid sync-frames by faulty nodes during rejoin. 

5. Bus-Guardian 

5.1 Context 
Hard real-time systems which have to be distributed for fault-tolerance reasons, and where 
PRESCHEDULED PERIODIC TRANSMISSION is applied to guarantee that requested transmission 
times are not violated. 

5.2 Problem 
How can it be guaranteed that a node or its communication handler, respectively, actually 
sends data on the bus only in the time slots reserved for it?  In particular, how can it be as-
sured that an erroneous node does not disturb the communication among correct nodes by 
"babbling" into their time slots?  (In general, a "babbling idiot" failure occurs, if an erroneous 
node does not adhere to the rules of the communication protocol and sends messages at arbi-
trary points in time.) 

5.3 Examples 
Consider, for instance, a node basically following the transmission schedule of the whole sys-
tem it is member of.  However, due to an electrical fault (perhaps induced by a transient elec-
tro-magnetic field disturbance), it sporadically produces noise on the bus outside its own time 
slots. 

Another typical problem are so-called "slightly out of specification" – or "SOS" – errors, 
caused when digital devices work close to the voltage border between the representation of '0' 
and '1'.  If, for example when using TTL levels, '0' is represented by 0 Volt and '1' by 5 Volt, 
and the border is 2 Volt.  Then a device which looses power will increasingly represent '1' 
close to this border.  This may result not only in transmission errors – which should be de-
tected by recipients, but also in complete misbehaviour of that device, which again can turn it 
into a "babbling idiot". 

5.4 Solution 
For each node, provide a separate device – the "bus guardian" – which restricts transmission 
to the nodes own time slots. 
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Figure 9 :  Bus guardian effect on faulty output signal 

Essentially, the bus guardian's signal is ANDed with the output signal of the communication 
handler of TEMPORAL APPLICATION DECOUPLING.  Of course, partially truncated signals, where 
transmission overlaps own time slots, will not be received correctly by healthy nodes; there-
fore, the healthy nodes will recognise the erroneously sending node as being faulty. 

5.5 Implementation 
There are several implementations of BUS GUARDIAN possible.  One solution is to realise it as 
some sort of filter, the other to AND its output with that of the communication handler 
through a simple AND-gate, as indicated in Figure 10. 

 
Figure 10 : Possible implementations of BUS GUARDIAN 

A variant of alternative b) would be that the guardian itself controls a gate in the output line of 
the node communication handler. 
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An important aspect is the independence of the bus guardian from the element it has to guard.  
If, for instance, it shares physically the schedule presentation, internal clock, and power sup-
ply with the communication handler, and is even located on the same board close to it, then 
common mode failures are more likely to occur, diminishing the effectiveness of the BUS 
GUARDIAN pattern.  Geographic separation, own power supply, duplicated schedule presenta-
tion, and a separate clock source, raise the implementation costs, though.   

When a bus guardian fails, it may either not allow any transmission of its guarded node at all, 
which results in a fail-silent FCU containing the bus guardian and node guarded by it.  Or it 
may allow transmission at wrong period phases.  As long as the guarded node transmits cor-
rectly, its transmission will be corrupted, resulting in being considered as faulty by the re-
maining nodes.  As a consequence, a faulty bus guardian will be recognized in the same way 
as a faulty node. 

Alternative: Central BUS GUARDIAN 
A possible alternative to individual bus guardians is to use a star configuration of the bus, and 
place the bus guardian into the centre of the star, where it opens the line for each node corre-
sponding to the schedule.  Then, only one bus guardian is needed for the whole network, 
which, however, turns it into a single point of failure.  This can be neutralised by duplicating 
the whole network (which is necessary for fault-tolerance in any case).  And since then only 
two bus guardian units are needed, they may be more expensive. 

 

Bus guardians essentially consist of two functional components: the one which, according to 
the schedule, decides when to open and close the output channel of its guarded output unit, 
and the one which actually controls that channel.  While the first component is usually is real-
ised in software, the latter is in general realised in hardware, because it is much simpler, and 
its correctness can easier be proved. 

BUS GUARDIAN adds an important aspect of fault-tolerance to PRESCHEDULED PERIODIC 
TRANSMISSION, and is easier realised when TEMPORAL APPLICATION DECOUPLING has been 
applied.  They often apply TIME-TRIGGERED CLOCK SYNCHRONISATION by themselves to avoid 
common mode failure with their guarded host. 

5.6 Running Example Resolved 
In our EMB application, we will use the solution shown in Figure 10 b).  All bus guardians 
share the schedule description with their guarded nodes, and are placed on the same board as 
the communication controller (to reduce development costs), but they apply TIME-TRIGGERED 
CLOCK SYNCHRONISATION independently from their guarded hosts.  This avoids that any error 
occurring during clock computation within their host gets propagated to them, which would 
cause the bus guardian to allow transmission at wrong times. 
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5.7 Consequences 

Benefits 
Suppression of out-of-sync transmissions.  Actually, without BUS GUARDIAN a time-triggered 

communication cannot be realised fault-tolerant. 

Liabilities 
Increased system costs.  The usage of bus guardians raises the hardware costs of the whole 

system. 

Increased complexity.  Bus guardians add complexity to the system architecture, which affects 
design and development as well as maintenance.  A possible counter-measure is the us-
age of centralised guardians. 

5.8 Known Uses 
ARINC 659 uses a pair of communication handlers (called BIUs – Bus Interface Units – 
there); each operated as bus guardian of the other.  TTP uses a bus guardian with separated 
power supply and clock, but on the same chip as its communication controller, and also shares 
the MEDL with it.  A star solution as described is also possible.  Although not yet published 
in detail, FlexRay seems to implement BUS GUARDIAN quite similar to TTP, but shares some 
resources with the node.  In SPIDER, bus guardians are separated from nodes and placed in a 
central hub or star coupler. 

5.9 Related Patterns 
BUS GUARDIAN often apply TIME-TRIGGERED CLOCK SYNCHRONISATION by themselves to avoid 
common mode failure with their guarded host.  BUS GUARDIAN can be regarded as a temporal 
variant of OUTPUT GUARD [Saridakis 03]. 

6. Temporal Application Decoupling 
Also known as: APPLICATION/COMMUNICATION BUFFER 

6.1 Context 
Hard real-time systems which have to be distributed for fault-tolerance reasons, and where 
PRESCHEDULED PERIODIC TRANSMSISSION is applied to guarantee that requested transmission 
times are not violated. 

6.2 Problem 
How can it be achieved that all application tasks adhere to the transmission schedule with 
respect to send data at the correct points in time, as well as being able to accept data in that 
moment when they arrive?  Or, the other way round: how can it be avoided that application 
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tasks disturb the transmission schedule by not sending/receiving at the correct schedule 
phases? 

While such a periodic transmission provides a bunch of significant benefits for communica-
tion in dependable hard real-time systems, it lays a severe burden on the application tasks 
executed on the nodes of the distributed system: they have both to send and receive at precise 
points in time.  Being a bit too early or too late (typically counted in micro- or even nano-
seconds) for the corresponding I/O-operation, a task will definitely miss its time slot.   

One could think performing each I/O-dependent task in an own thread, which is suspended at 
the corresponding position and reactivated when that operation has been performed.  This 
approach, however, not only requires a potentially large number of threads to be handled, 
which may be hard if not impossible to realise in the main application area of the Triple-T 
patterns, namely embedded systems, it also may lead to poor CPU-utilisation and therefore 
increased risk of deadline violation.  It may also introduce some level of indeterminism, 
which is undesirable in hard real-time applications. 

6.3 Example 
Consider our brake-by-wire application, where we have a couple of sensors and actuators. 
Each of them must be read (sensors) or written (actuators) at a specific point in time. Co-
ordinating these timing constraints with those of the transmission schedule can become very 
challenging for the application. 

6.4 Solution 
Decouple the production and processing of data to be transmitted from the actual transmission 
by providing a buffer where application tasks put the data to be transmitted as soon as they 
are available, where received data are stored for reading by the application tasks.  Further, a 
task (with highest priority), which is activated according to the transmission schedule, sends 
data when the corresponding time slots are encountered, and puts received data relevant for 
the tasks on its node into the buffer.  Therefore, this pattern has the following participants (see 
Figure 11): 

The application task is responsible for producing and putting data into the buffer to be 
transmitted before the corresponding time slot within the current period arrives.  Like-
wise, it is responsible to read data from the buffer after they have been received. 

The communication handler adheres strictly to the periodic transmission schedule.  Accord-
ing to that, it puts data to be sent from the buffer to the bus, as it takes data received 
from the bus into it. 

Note that for data transmitted in time-triggered mode, no queuing is necessary, because ac-
cording to the system state semantics of such data, every new value written to the buffer 
overwrites the previous value of the same (state) variable.  This, however, is not necessarily 
true for information transmitted in time slots reserved for event-triggered data; here, applica-
tion tasks have to read received information before it is overwritten in the next period. 
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Figure 11 :  TEMPORAL APPLICATION DECOUPLING structure 

Figure 12 below shows an example of buffer access during a schedule period. 

The activation boxes of the application tasks indicate that these do not necessarily start with 
reading and terminating with writing values, and are not necessarily executed strictly periodi-
cally.  And the dashed arrow for "value w" indicates that data not needed on local host may 
but need not to be placed in the buffer. 

 
Figure 12 :  Example sequence diagram for TEMPORAL APPLICATION DECOUPLING 

read data to be sent write received data 

write data to be sent

Application Task Application Task 

read received data 

Communication Handler 

Send  /  Receive  Buffer

Bus 

A : Appl.Task B : Appl.Task Buffer Comm.Handler Bus 
Msg. u 

Value u
Msg. v 

Value v

Msg. w 
Value w 

Msg. u 
Value u

Msg. v 
Value v

Value x
Msg. x 

Value y
Msg. y 

read v

write y

read u 

write x 
Pe- 
riod 



28 of 31  

6.5 Implementation 
To allow simultaneous though controlled access to the buffer from both the application tasks 
and the communication handler, a dual-ported RAM could be used.  The communication han-
dler must have higher access priority than any application task. 

Size and structure of the buffer can be derived from the transmission schedule.  In its simplest 
form, it could have the same layout.  For example, with respect to the schedule as sketched in 
Figure 4, it would start with an entry for message a, one for message b, and so on, thus mak-
ing no distinction between entries for sending and receiving, respectively.  Of course, no 
space is needed for messages received from other nodes, which are not relevant for applica-
tion tasks on the local node.  For them, no space needs to be reserved in the buffer. 

Depending on the specific application, it may be necessary to assure that application tasks 
update their output fields in the buffer every time these fields have been sent, as they read and 
process their input fields every time these have been received.  Typically, tasks have to write 
date to the buffer (and read them from it) with the same period they are transmitted.  This can 
be checked by setting a flag for each buffer entry when it is written and reset it when it is 
read. Detecting a flag in the wrong state by the communication handler when accessing the 
corresponding buffer entry indicates a late application task, which can be interpreted as dead-
line violation and may trigger appropriate fault handling. 

If executing the communication handler on the same CPU as the application tasks is too risky, 
it may be installed on another CPU. 

6.6 Running Example Resolved 
We will consider the EMB processing nodes only.  These have to receive all sensor data, and 
provide their own output.  Hence, their buffer could be arranged as shown in Figure 13. 

 
Figure 13 : layout of temporal application decoupling buffer of EMB PNs 

The same message identifiers are used as in Figure 5, with the exception that PN output val-
ues are simply named 'a'…'c', because processing nodes do not care about the output of their 
replicas.  For simplification, single bit values are represented by one byte in the buffer. 
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6.7 Consequences 

Benefits 
Simplification of application task scheduling.  Equation constraints (i.e. "operation x of task A 

has to be performed at time t"), where 'x' denotes sending or receiving data, are replaced 
by range constraints ("operation y of task A has to be performed between t0 and t1"), 
where 'y' denotes writing data to the buffer or reading them from it, respectively. 

Better CPU utilisation.  Since there is more freedom for placing tasks along the time line, a 
more compact scheduling is usually possible. 

Simple task monitoring.  The read/write flags as mentioned in the Implementation clause can 
be used to easily detect deadline violations of application tasks. 

Liabilities 
Synchronised access on buffer needed.  Race conditions have to be avoided where some 

buffer value is changed from one side while the other is reading it.  If the hardware of 
the buffer memory does not directly support synchronised access, appropriate software 
mechanisms are not trivial. 

Memory waste.  The decoupling is done by memory cells (e.g. DPRAM).  If memory is ex-
pensive, as it is usual the case for embedded systems, it must be kept as small as possi-
ble.  FlexRay and TTCAN address this problem by storing only messages which are 
processed at this node.   

6.8 Known Uses 
In ARINC 659, a so-called bus interface unit (BIU) is used to decouple applications from the 
bus; in FlexRay controller host interfaces (CHI) for the same purpose; and TTP calls the 
communication handler communication controller, and the buffer communication network 
interface (CNI). In TTCAN, a  Module Interface is used for accessing Message RAM and 
Trigger Memory. 

6.9 Related Patterns 
The HALF-SYNC/HALF-ASYNC architectural pattern [Schmidt++00] resembles TEMPORAL APPLI-
CATION DECOUPLING in that it separates synchronous from asynchronous processing layers.  In 
contrast to HALF-SYNC/HALF-ASYNC, however, in TEMPORAL APPLICATION DECOUPLING the lay-
ering appears to be reverted: here, the lower layer (i.e. the communication system) is syn-
chronous.  In addition, TEMPORAL APPLICATION DECOUPLING does not use a queuing mecha-
nism; instead, missing deadlines by the tasks within the upper, asynchronous layer is consid-
ered as failure. 

If, for instance, tasks and communication handler are realised as threads within the same 
computing environment, the synchronisation patterns (e.g.THREAD-SAFE INTERFACE) as de-
scribed in the same book can be used for controlling buffer access.   
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