
Insights into Decision Making
Analogies from Other Disciplines

Andreas Rüping

Sodenkamp 21 A, 22337 Hamburg, Germany
andreas.rueping@rueping.info

www.rueping.info

Introduction
Making decisions is part of our everyday life, and software projects are no 
exception. What architectural style would suit our application best? Should we 
go for the simpler design, or the more complex one that in return offers more 
efficiency? Should we use generic containers in our API or will typed objects be 
the better option? Who of the available team members should be working on the 
project? And who should be the team lead? Should we agree to the deadline the 
customer wants, or would it be safer (and more honest) to announce we’ll need 
a month longer?
Questions like these force us to make decisions, and each such decision must aim 
at the best possible solution, whatever ’best’ means in a specific context. Yet as 
we learn more and as conditions change, we may find that our decision wasn’t 
perfect and that we have to adapt our strategy. As cognitive psychologists don’t 
fail to remind us, questioning past decisions and looking for better strategies is 
an integral part of the human mind (Pinker 1997). However, changing decisions 
too frequently will cause ambiguous and inconsistent behaviour, and will result 
in a lack of decisiveness.
The goal must be to find strategies that are both adaptive and straightforward. 
This paper takes a look at other disciplines in search of suitable analogies: 
physics, biology, physiology, control engineering and economics.
The paper presents five patterns which all address a context that is best described 
as the decision-making processes in software engineering, and it takes its 
examples mainly from this area. The underlying principles, however, can be 
applied to decision making in general. The following diagram gives an overview.
Copyright © 2004 by Andreas Rüping. Permission is granted to publish this paper in the conference proceedings of EuroPLoP 2004.



1 Critical Mass

Problem There’s probably no limit to the information that could possibly influence 
a decision you have to make. How can you come up with a solid decision 
without turning information gathering into an endless process?

Forces Whatever role you take on in a project, making decisions is part of your job. Your 
decisions may address questions as diverse as who’ll be joining the team, what 
design is best, or what deadline you can agree to. In either case, you need some 
information on which you can base your decision. And obviously, the more 
information you have, the more you can use.
There is, however, an almost unlimited amount of information that you might 
take into account. There’s always some additional information that might help 
you and that you might consider. If you collect all the information that may affect 
your decision, you’ll be collecting information forever. This is not what you want.
Fortunately, this isn’t what you need either. What you actually need is sufficient 
information — the amount of information that allows you to check the 
important criteria that your decision has to meet.

CRITICAL MASS (1) DECISION 
DEADLINE (2)

FORWARD-BOUND 
REASONING (5)

ACCEPTANCE 
RANGE (4)

REFRACTORY 
PERIOD (3)

addresses the rationale 
that underlies all 
decision making

analyses qualitative 
constraints on decision 
making

describes time aspects 
that limit the frequency 
of change

examines qualitative 
preconditions for 
decision making

discusses time aspects 
that accelerate decision 
making



Analogy A nuclear fission occurs when a free neutron is captured by an unstable nucleus 
of a fissile material and the nucleus splits into two or more nuclei. A nuclear 
fission can produce free neutrons, which can then be captured by other nuclei. 
A nuclear chain reaction occurs when a nuclear fission produces, on average, at 
least one free neutron so that one fission can cause another. The critical mass of 
fissile material is the amount needed for a sustained chain reaction. The critical 
mass depends on the material, its shape and its purity.

Solution Make yourself familiar with the idea that sufficient information, rather 
than complete information, can be the basis for a solid decision. Each 
decision requires a critical mass of information. Surplus information may 
be useful, but it isn’t crucial for your decision.
The critical mass depends greatly on whatever concrete decision you have to 
make. In particular, the size and the criticality of your project have an influence. 
It’s therefore wise to determine the critical mass before gathering information. 
Here are some examples:
• When you have to make a design decision, a few experienced people should 

be confident that the proposed solution is technically sound. But there is no 
need to bring in more and more people — from some point onward, more 
opinions will probably hinder rather than help.

• When staffing a project, it’s important to choose the right people. But that 
doesn’t mean you have to check all details in their CVs. Talk to the people: 
if you get the impression they bring the right skills, things are probably fine.

• When you have to decide on a delivery schedule, avoid the pitfall of making 
plans that are too fine-grained. Breaking the project down into work 
packages that can be measured in weeks probably gives you the information 
you need.

If your decision is based on incomplete information, it’s likely that there are some 
open issues left. You’ll have to keep track of these open issues, so that you can 
address them when you revisit your decision after a REFRACTORY PERIOD.
Moreover, a decision based on incomplete information might be premature. This 
is a liability you have to accept in order to stay manoeuvrable. You can reduce the 
associated risk of failure by making series of smaller decisions rather than one big 
decision: an iterative and incremental process limits the effect of failure (Henney 
2004).

Example A team developed the graphical user interface for an airline’s check-in software. 
The customer had only vague ideas of what the user interface should be like, in 
terms of functionality and graphical appearance. There was no detailed specifi-
cation. So what should the team do?
The team discussed several use cases with the customer to achieve a common 
understanding. And although these use cases were incomplete, the team felt that 
they represented the critical mass of information necessary to get started. The 
team chose to build a prototype that would roughly match the use cases. The lack 
of further details was no problem — any additional details would be subject to 
change anyway since the customer’s representatives might change their minds 
the moment they would get to see the prototype.



Examples 
outside 

software 

Other instances of this pattern can be found outside the daily project business, 
even well beyond software:
• Before taking on a new job, people need sufficient information on what they 

can expect and what people they’ll be dealing with. But it’s impossible to 
know everything beforehand. The critical mass of information is that which 
allows people to feel confident that they’re making the right move.

• When people look for a house to live in, they often keep a checklist of 
criteria their new residence will have to meet. Such a checklist can do 
without many details, but it must contain the critical mass of information — 
those aspects that are crucial for a decision.

2 Decision Deadline

Problem In an attempt to come up with the best possible solution, people are 
sometimes tempted to look for useful information endlessly. How can you 
fit decision-making into the schedule of your project?

Forces There’s no question that important decisions take time. You have to check 
various options, evaluate the pros and cons, and come up with a conclusion. You 
need the CRITICAL MASS of information before you can make a decision.
Some information, however, can be hard to find or can be virtually impossible 
to obtain. Or there can be so many information sources that your search for 
information could go on and on endlessly. Either way you’re getting nowhere 
fast.
But you are probably bound to schedules in a project so you cannot delay your 
decision forever — at some point you have to decide. Others are waiting for your 
decision. If you fail to decide, someone else will probably make the decision, 
which wipes out the influence that otherwise you would have had.

Analogy Many birds build their nests after the mating season. They search their habitat 
for the ideal place for a nest — a place that offers the best protection from 
predators, the best protection from the weather, and the best environment for 
raising their young. Yet the search for the best possible place is driven by a time 
limit: the nest has to be ready before the eggs are laid and incubated. By instinct, 
birds begin building their nests in due time.

Solution Once you know that you have to make a certain decision, set yourself a 
deadline. Collect information until the deadline and then decide.
The time span that you give yourself should allow you to assemble the CRITICAL 
MASS of information that is necessary for your decision. Such time spans can 
therefore vary a lot:
• When you make a design decision, don’t wait until you have evaluated all 

options to the finest detail. Get an overview of what options you have, ask 
others for feedback, and follow your gut feeling.



• Assembling a team requires that you choose the right people, but by the time 
a project starts, the decision must be made. Allow for enough time to talk to 
potential team members and to get to know them a bit.

• A customer expects a rough schedule before a project begins. That’s only 
natural, and you have to come up at least with a rough estimate before you 
can analyse the job to the finest detail.

Working towards a decision deadline is essentially a time-boxing strategy that will 
help you focus on the criteria that are crucial for your decision. The advantages 
of time-boxing also materialize when the criteria keep changing, as is the case, 
for instance, when you are buying technology: there will always be new products 
or new versions, so if you don’t set yourself a deadline, you’ll postpone your 
decision forever.
If, once the deadline approaches, you feel that you still haven’t reached the 
CRITICAL MASS of information, you have to decide whether you need to defer 
the decision or whether you’d rather make it anyway. This comes down to the 
question whether quality or schedule is more important — which can only be 
determined individually.
When you have made your decision, you cannot assume that it will hold forever. 
Conditions might change, or you weren’t able to take all important criteria into 
account. Either way, it’s important you revisit your decision regularly, ideally after 
a REFRACTORY PERIOD has passed.

Example A team did a product evaluation of content management systems for a customer. 
The customer wanted to re-organise their web site soon, so the evaluation was 
driven by a deadline that was rather strict: the team had no more than two 
months for the requirements analysis and the actual product evaluation. 
Naturally, the team organised their job within the time frame that was given to 
them. They interviewed the customer to find out what the key requirements 
were. They weren’t able to analyse all details of the workflow processes the 
customer had in mind, but they were able to identify a small number of crucial 
criteria.
The team used the time they had for a brief market study of content management 
systems. They considered current releases only. Obviously future releases would 
include improvements and extensions, but the team understood that if they 
waited for the perfect product that matched the requirements best, they would 
wait forever. The team established a short-list of only three vendors based on the 
crucial criteria. The team then ran workshops with these vendors which provided 
insight into the three systems on the short-list. The team made a recommen-
dation based on this information.

Examples 
outside 

software

You come across decision deadlines outside software as well:
• A job decision is one that cannot be delayed forever. Someone who is 

offered a job is normally expected to make a decision within a few weeks.
• Looking for a perfect house can last for ages. There’s always the possibility 

of finding an even better house one day. But if people argue along these lines 
as an excuse to postpone their decision, they’ll never move in anywhere.



3 Refractory Period

Problem Immediately after a decision is made, there is a tendency to question the 
reasons and to revise the decision. How can you prevent decision-making 
from becoming an unstable process?

Forces Even if you have made the best possible decision, you must be aware that the 
basis for your decision can change: customer requirements can change, the 
programmers might gain new insight into the trade-offs between design alterna-
tives, or team members might become unavailable. You’ll have to check whether 
your decision turns out well and adjust your strategy if necessary. The agile 
software development methods advise us to reflect regularly on what we do and 
to check whether our strategy needs to be adapted (Cockburn 2001).
However, if you correct your decisions and change your strategy too frequently, 
your project will make only little progress. People will not trust you if you change 
your strategy too quickly and so suffer from a lack of decisiveness.

Analogy A heart contracts when it receives an impulse over the nervous system. Directly 
after the heart has received this impulse a period sets in during which the heart 
will not react to any further impulses and therefore will not contract again. This 
is the so-called refractory period (which for the human heart lasts for about 0.1 
seconds). Evolution has provided the heart with a mechanism that protects it 
against impulses that occur too frequently and that wouldn’t allow a coordinated 
contraction to be carried out.

Solution Once you have made a decision, define a time span that you allow to pass 
before you reconsider your strategy. After that time span has passed, 
correct your decision if necessary.
What that time span is depends greatly on the concrete decision — you’ll have 
to define it individually. It should be the minimum time span that you’ll need to 
try out the option you have chosen and to gather enough information to re-
evaluate your decision. The following scenarios give a good estimate:
• After making a design decision, allow at least a few weeks to pass before re-

evaluating the design and use this time to see how the pros and cons turn 
out. If you choose to build a prototype (Coplien Harrison 2004), that time 
span might well serve as a good refractory period.

• After making a staffing decision, give the people involved a few weeks to 
familiarise themselves with the project before considering a change in the 
team.

• After agreeing on a delivery schedule, wait at least half the time until the next 
milestone before considering to revise the schedule.

During the refractory period, reflect regularly on what you are doing and collect 
information that suggests that your decision might have been wrong, or less then 
optimum, but don’t take action yet.



Once the refractory period has passed, see to it that you come to a conclusion 
whether you’ll need to adapt your strategy or not, and take action if necessary. 
Whatever the conclusion will be, it should be based on FORWARD-BOUND 
REASONING. If you decide to take action, the next refractory period sets in.

Example A team had been discussing the software architecture for an e-government 
internet portal for a while. The main question was whether a portal server should 
be used or not. In the early stage of the project the team discussed the pros and 
cons of using a portal server, and as more people joined the team, more pros and 
cons were revealed. At some point the team felt they had gathered enough infor-
mation and decided they would build a prototype without using a portal server.
As far as the prototype was concerned, the team wouldn’t consider a change in 
direction. When the customer expressed doubts concerning the soundness of 
the architecture, the team made it clear that only the prototype would show. 
Once the prototype was completed, the team re-evaluated their design. They 
kept their original decision, though if there had been evidence that the alternative 
route would have been better, they would, at that point, have revised their 
decision.

Examples 
outside 

software

There are refractory periods in other decision-making processes as well:
• After taking on a new job, it is common practise to stay with this job for at 

least two or three years. This way people make sure they can contribute 
something useful to an organisation and avoid the impression of job-
hopping.

• After relocating to a new place, most people feel the deep desire to ’stay 
there for a while’ before they even think of moving again.

4 Acceptance Range

Problem Changes to a system can make the system better. Yet when changes offer 
only small benefits, these benefits can be outweighed by the effort that is 
necessary to perform the changes. How can you prevent changes from 
doing more harm than good?

Forces In the decisions you make in your projects, you always strive for the best possible 
solution. This should be the case whether you’re making technical, management 
or team decisions.
However, it’s only natural that after a while new ideas emerge that may let your 
decision look less than optimum: designs can be improved and management 
strategies can be refined. It is wise to look out for possible improvements — in 
fact the search for improvements is at the core of what is often referred to as a 
’learning organisation’. As a consequence, revising past decisions is, in general, a 
perfectly natural process.



Still, there is no way to deny that revising past decisions can represent an 
overhead effort that is not to be ignored. Implementing a new design, training 
new team members, negotiating a different delivery schedule with the customer 
are all things that use up time and effort, and it’s not always clear that this effort 
is justified by the expected benefits.
Moreover, all measurements undergo some uncertainty, so what seems to be a 
small improvement might in fact be no improvement at all. Revising past 
decisions for a tiny little improvement is therefore often counter-productive.

Analogy In control engineering, temperature control is a common task. It is typically 
accomplished by defining a range of acceptable temperatures. For instance, if you 
want the room temperature to be 20° C, the temperature controller may assume 
a range of ±2° C: the heating is switched on once the temperature drops below 
18° C, and is switched off once 22° C has been reached. This way, the heating 
system is prevented from switching on and off more or less continually and is 
immune to small measurement errors.

Solution Once you have decided for one out of several options, revise your decision 
only if it turns out that another option is significantly better than your 
original choice.
But what is a significant improvement? By analogy, you should define an 
acceptance range around what you currently consider the optimum solution and 
take action only if the current solution lies outside that acceptance range.
The acceptance range implies a certain ’improvement threshold’, the border 
beyond which an improvement becomes significant. Choose a better solution 
only if the potential for improvement lies beyond that threshold, as the following 
scenarios explain:
• Choose a better design only if that design is a significant improvement over 

the one you have now, and if that improvement isn’t outweighed by the 
effort you’ll have to spend on migrating the software.

• Replace a team member only if that person could do a much better job on 
a different project, or if there’s someone else who could work clearly more 
successfully on your project. A small plus in skills or experiences is easily 
outweighed by the negative consequences of discontinuity and the 
additional training efforts for a new team member.

• Work out a new schedule only if it has clear advantages that are worth the 
reorganisation.

Once you have implemented a new solution, it becomes the standard against 
which you’ll have to measure possible future improvements.

Example A team worked on an internet portal of an insurance company. This portal was 
intended to be used by bank accountants for selling insurance products at the 
bank counter. Recently, a series of small changes had been made to the system. 
There had been changes to the layout, both by modifying the CSS styles and by 
changing the templates within the content management system. Also, the team 
had made several changes to the functionality that the customer had classified as 



low priority. And although these changes were small, effort had to be spent on 
development, tests and deployment. The team felt they were more or less perma-
nently in the middle of the delivery stage, despite the fact that the actual improve-
ments to the system were only marginal.
At that point the team decided to perform no more miniature improvements. 
Refactorings would of course still take place regularly, whenever the expected 
benefits were large enough to justify the effort. For instance, one refactoring saw 
the extraction of common functionality to avoid redundant code. Another refac-
toring addressed the deployment processes and made them much smoother. 
These refactorings were significant and well worth the effort.

Examples 
outside 

software

The idea of this pattern — the principle that only significant improvements 
justify to take action — can also be found outside software engineering:
• A new job sounds like a good idea if that job offers more interesting tasks, 

more responsibilities, more money — or whatever someone may desire. 
And yes, it is a good idea to seize an opportunity. If, however, the new job 
offers only marginal improvements over the current job, it’s probably not 
worth the risks associated with a job change.

• People hesitate to move into a new place, even if that place has advantages 
over where they live now. Unless the living conditions improve clearly, the 
troubles associated with relocating don’t seem to be justified.

5 Forward-Bound Reasoning

Problem People are sometimes reluctant to make a change in their direction since 
this can let a previous decision look like a mistake. How can you make 
sure you take the best possible direction?

Forces Re-evaluation is an integral part of any sustainable strategy. Of course, there are 
good reasons not to permanently question decisions after you have made them, 
but to define a REFRACTORY PERIOD instead. But once this period is over, you 
have to revisit the decision and see whether it still holds, taking into account new 
information you have gained on the way. The re-evaluation may or may not 
suggest a change in direction.
Sometimes, however, people are scared to make a change in their direction, 
because such a change can be interpreted as admitting they made a mistake in the 
first place. People are then inclined to stick to their old decision, although that 
decision wasn’t good, afraid of admitting a mistake.
But this is not a sound way of thinking. It is inevitable that people make mistakes. 
In a way it’s natural that a past decision may need adjustment. The reasonable 
way to deal with mistakes is to learn from them and to make better decisions in 
the future.



Analogy When a stock goes down at the stock exchange, some people fall into the trap of 
trying to get their original investment back. They hang onto the stock, because 
they don’t want to admit that their decision to buy was perhaps wrong. But this 
isn’t a good strategy. Regarding buying or selling, all that matters is the future 
potential: if there are signs that the stock will go up again, people should keep it, 
but if it is likely that it goes further down, they should sell the stock.

Solution When you consider a change in direction, only look forward. Base your 
decision only on the future potential and the costs of the various options 
you may have.
There is no point in maintaining a decision of the past if that decision has turned 
out wrong. Your decision now shouldn’t be driven by the arguments of the past.
This of course does not mean that you shouldn’t look at the past and learn from 
it. It’s wise to reflect upon what worked well and what didn’t and to consider the 
conclusions for the future:
• You have to re-evaluate a design after a REFRACTORY PERIOD, for instance 

after you have used the design to build a prototype (Coplien Harrison 2004). 
This evaluation must be forward-bound, using techniques such as feedback 
meetings (Cockburn 2001, Schwaber Beedle 2002) and project retrospec-
tives (Kerth 2001) to see whether a better solution can now be devised. If 
the old design lies outside the ACCEPTANCE RANGE of the better option, 
don’t cling to the old design but choose the better option instead.

• Sometimes you have to admit that someone on a team isn’t doing a good job. 
This isn’t a conclusion you should jump to quickly, yet the situation may 
occur. If so, you have to look for the best solution for the future. Of course 
you have look into the reasons and to take possible hard feelings into 
account. But these are considerations of the future.

• Adjusting the schedules in a project can be hard. Still, if it becomes clear that 
you cannot meet a certain deadline, it’s better to take action and to figure out 
a plan that will work fine in the future. Though such a move may be difficult 
to explain, it is still clearly superior to continuing on the grounds of a plan 
that you know will fail.

Learning lessons from the past is easier if you choose to document the rationale 
behind the decisions you make. It is the rationale, not the mere decisions, that 
can be useful once you have to revisit your decision and examine whether it is 
still appropriate as far as future potentials are concerned (Rüping 2003).

Example A team developed a database access layer which could also manage versioning. 
Requirement analysis revealed that two different algorithms could be used to 
store and retrieve versions of the data: one that used more storage and had 
slower write access, but offered really quick read access, and another that used 
less space on the database, but had the drawback that read access was somewhat 
slower. After a thorough analysis, the team assumed that read access had the 
highest priority and decided to implement the first option.



Almost two years later, the amount of data stored in the database had grown to 
such an extent that nightly batches took too much time. Although the amount of 
data (and the problems associated with it) had been difficult to foresee two years 
before, it wasn’t easy for the team to admit the time had come to switch to the 
other implementation option. But there was no point in clinging to a solution 
that didn’t work properly any more, so the second option was implemented.

Examples 
outside 

software

Forward-bound reasoning plays an important role in life in general. Again, this 
doesn’t mean that we shouldn’t learn from the past — but it’s the future 
prospects that should drive our decisions:
• When people consider a career move, what matters is what they intend to 

do in the future and what options they have. There is no point in keeping a 
job if there are clearly better options for the future. Of course people may 
have the wish to complete a job or to stay loyal to an organisation, but that 
is still looking forward. 

• When people are going to move and look for a new place, it’s a wise strategy 
not to look for an exact copy of the place they had before, but for a place 
that suits their needs best. The decision must be driven by how people 
would like to live, not by the features the old place had.

Conclusions
As you will have noticed, some of the patterns in this paper aim to accelerate the 
decision-making process, while others reduce the frequency of change. As a 
whole, the collection of patterns is intended to demonstrate the tension that 
exists between the need to move forward and the need to establish a stable 
process.
At first sight, the patterns with an emphasis on steadiness seem to be opposed 
to the principles fostered by agile methods. Agile methods welcome change and 
express a need for reflection and the adjustment of one’s behaviour (Cockburn 
2001, Schwaber Beedle 2002).
But actually, this isn’t a contradiction to what the patterns in this paper explain. 
The patterns do acknowledge the need for reflection and change. They do, 
however, discuss a limit to the frequency of re-evaluation and change, so that the 
overall decision-making process doesn’t become unstable.
This is what we can learn from the analogies from nature: change can be too slow 
or too fast, and it is important to employ mechanisms that allow us to enjoy the 
balance.



Acknowledgements
First of all I’d like to thank Neil Harrison for the excellent shepherding for 
EuroPLoP 2004. The paper originally consisted of two patterns (REFRACTORY 
PERIOD and ACCEPTANCE RANGE). Neil offered valuable feedback on those 
and suggested I add more patterns. He came up with the idea for FORWARD-
BOUND REASONING and contributed the analogy to DECISION DEADLINE.
Thanks to Götz Hemicker for an insightful discussion of the physiology of the 
human heart which refreshed my understanding of the refractory period.
Finally, I’d like to thank the participants of the EuroPLoP 2004 workshop in 
which this paper was discussed. The workshop spawned much encouraging and 
constructive feedback. Special thanks to Kevlin Henney for a long list of detailed 
comments.

References
Cockburn 2001

Alistair Cockburn. Agile Software Development. Addison-Wesley, 2001.
Coplien Harrison 2004

James O. Coplien, Neil B. Harrison. Organizational Patterns of Agile Software 
Development. Prentice Hall, 2004.

Henney 2004
Kevlin Henney. “Stable Intermediate Forms”, in Klaus Marquardt, Dietmar 
Schütz (eds.), Proceedings of the 9th European Conference on Pattern Languages of 
Programs, 2004. Universitätsverlag Konstanz (UVK).

Kerth 2001
Norman L. Kerth. Project Retrospectives: A Handbook for Team Reviews. Dorset 
House, 2001.

Pinker 1997
Steven Pinker. How the Mind Works. Allen Lane, The Penguin Press, 1997.

Rüping 2003
Andreas Rüping. Agile Documentation — A Pattern Guide to Producing 
Lightweight Documents for Software Projects. John Wiley & Sons, 2003.

Schwaber Beedle 2002
Ken Schwaber, Mike Beedle. Agile Software Development with Scrum. Prentice 
Hall, 2002.


	Insights into Decision Making
	Analogies from Other Disciplines
	Andreas Rüping
	Sodenkamp 21 A, 22337 Hamburg, Germany
	andreas.rueping@rueping.info
	www.rueping.info
	Introduction



	1 Critical Mass
	Problem
	There’s probably no limit to the information that could possibly influence a decision you have to make. How can you come up with a solid decision without turning information gathering into an endless process?

	Forces
	Analogy
	Solution
	Make yourself familiar with the idea that sufficient information, rather than complete information, can be the basis for a solid decision. Each decision requires a critical mass of information. Surplus information may be useful, but it isn’t ...

	Example
	Examples outside software

	2 Decision Deadline
	Problem
	In an attempt to come up with the best possible solution, people are sometimes tempted to look for useful information endlessly. How can you fit decision-making into the schedule of your project?

	Forces
	Analogy
	Solution
	Once you know that you have to make a certain decision, set yourself a deadline. Collect information until the deadline and then decide.

	Example
	Examples outside software

	3 Refractory Period
	Problem
	Immediately after a decision is made, there is a tendency to question the reasons and to revise the decision. How can you prevent decision-making from becoming an unstable process?

	Forces
	Analogy
	Solution
	Once you have made a decision, define a time span that you allow to pass before you reconsider your strategy. After that time span has passed, correct your decision if necessary.

	Example
	Examples outside software

	4 Acceptance Range
	Problem
	Changes to a system can make the system better. Yet when changes offer only small benefits, these benefits can be outweighed by the effort that is necessary to perform the changes. How can you prevent changes from doing more harm than good?

	Forces
	Analogy
	Solution
	Once you have decided for one out of several options, revise your decision only if it turns out that another option is significantly better than your original choice.

	Example
	Examples outside software

	5 Forward-Bound Reasoning
	Problem
	People are sometimes reluctant to make a change in their direction since this can let a previous decision look like a mistake. How can you make sure you take the best possible direction?

	Forces
	Analogy
	Solution
	When you consider a change in direction, only look forward. Base your decision only on the future potential and the costs of the various options you may have.

	Example
	Examples outside software
	Conclusions
	Acknowledgements
	References



