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Status of this work 
This paper presents a work-in-progress collection of patterns that occur in 
model-driven and asset-based software development. We really appreciate 
feedback! 

The paper contains a couple of proto-patterns marked with a (P) after the 
pattern title. They describe ideas that may or may not evolve into full-blown 
patterns, and that are not (yet) described in proper pattern form. The proto-
patterns have been included in the paper to hint at possible directions for 
extending the collection of patterns. We encourage people to contribute to 
the collection by suggesting additional proto-patterns. We are specifically 
seeking material in the area of versioning and testing in the context of 
MDSD. 

What is MDSD 
Model-Driven Software Development is a software development approach 
that aims at developing software from domain-specific models. Domain 
analysis, meta modeling, model-driven generation, template languages, 
domain-driven framework design, and the principles for agile software 
development form the backbone of this approach, of which OMG’s MDA is 
a specific flavor.  

Here are a set of core values, which have been defined during a BOF session 
at OOPSLA 2003. 

 
We prefer to validate software-under-construction over validating 
software requirements 
 
We work with domain-specific assets, which can be anything from 
models, components, frameworks, generators, to languages and 
techniques.  
 



  

We strive to automate software construction from domain models; 
therefore we consciously distinguish between building software 
factories and building software applications 
 
We support the emergence of supply chains for software development, 
which implies domain-specific specialization and enables mass 
customization 

Model-driven software development is about making models first class 
development artifact as opposed to “just pictures”. Various aspects of a 
system are not programmed manually; rather they are specified using a 
suitable modelling language. These models are significantly more abstract 
than the implementation code that would have to be developed manually 
otherwise – they are specific to the domain for which the models are 
relevant. The modelling languages used to describe such models are called 
domain-specific languages (DSL).  

Like any other (formal) language, a DSL has three constituent parts: 

• A metamodel (also called abstract syntax) defines the building blocks of the 
language, and the rules how they might be combined to form legal 
models (sentences in the DSL) 

• A concrete syntax defines the actual notation used to specify models (or 
sentences). A particular metamodel might have several concrete 
syntaxes; concrete syntax can be textual (in which case sentences are 
often called specifications) or graphical (where sentences are often 
termed models). We use both terms interchangeably. 

• Finally, a DSLs needs to have semantics; the meaning of models has to 
be well-defined. We will return to the issue of semantics definition 
below. 

Models themselves are not useful in the final application. Rather, models 
have to be translated into executable code for a specific platform. Such a 
translation is implemented using model transformations. A model is 
transformed into another, typically more specific (less abstract) model; a 
series of such transformations results in executable code, since the last 
transformation is a model-to-code transformation. Because of today’s 
somewhat limited tool support, many MDSD infrastructures use just one 
generation step, directly from the models to code. Model transformation 
tools using the latter approach are often referred to simply as model-driven 
code generators.  

In addition to producing less abstract models (or implementation code), 
model transformations also serve the purpose of defining the semantics of 
the model they transform. By describing the rules of how a model is 
projected onto an implementation language, the meaning of the model is 



  

defined. Although this is a rather pragmatic approach of defining semantics, 
it works well in practice1.  

Complex systems typically consist of a variety of concerns, such as 
components and their interfaces, the description of the deployment 
infrastructure (hardware) or timing and concurrency concerns. It is often 
not practical to use a single modelling language for all of these aspects; 
specifically, different concrete syntaxes are often useful. For example, the 
components and interfaces can be described using (stereotyped) UML, the 
hardware and the deployment using XML, and dynamic and concurrency 
aspects using a specific textual language. The generator must be able to 
understand all of these, and integrate the different partial models into a 
coherent whole. Note that some aspects of an application – typically the 
application logic – might be sensibly described using a 3GL programming 
language. It is perfectly ok to use a 3GL, nobody should feel forced to 
“invent” a DSL if the general purpose programming language is efficient for 
the particular task at hand. 

The following illustration shows a mind map with the most important 
concepts. 

 

                                                
1 This definition of semantics has the disadvantage that you cannot formally ensure that if 
you have several sets of transformations which transform the models to different target 
languages (with well-known semantics) the defined semantics are the same. In practice you 
can use testing to make sure they are the same, but there is no formal way to ensure it. 



  

Pattern Form 
The patterns are documented in Alexandrian form. Since this form is now 
widely used and well known, we refer readers to Christopher Alexander's 
original work on pattern languages[Alexander 1977] for further details. 

Note that, just as in Alexander’s Pattern Language, we will qualify each 
pattern with no, one or two asterisks: 

• No asterisk means that we are not very sure about the patterns 
content. 

• One asterisk means that we think the patterns is valid, but we are not 
sure about details, formulations or all the forces. 

• Two asterisks mean that the pattern is a fact.  

The number and the quality of the known uses is also proportional to the 
number of asterisks.  

Overview 
The patterns are structured into several groups: Domain Modeling, Process & 
Organization, Tool Architecture, and Application Platform Development. The 
following illustration shows the relationships among some of the patterns, as 
well as their association to the groups mentioned. 
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The Patterns 

Process & Organization 

ITERATIVE DUAL-TRACK DEVELOPMENT ** 

You are developing a software system (family) using MDSD. One or more 
teams are working on one or more applications, and you need to develop a 
domain-specific infrastructure (application platform). You need to deliver 
iterations at fixed points in time, and the disruption caused by upgrading to 
new iterations of the infrastructure needs to be minimized. 

ÕÕÕ 

When building a new software system family, you actually have to 
develop two things: a concrete application as well as the MDSD 
infrastructure that helps you build the applications based on the 
family. Development of an elaborate infrastructure in parallel with 
application functionality can compromise the stability of scope of 
application development iterations because of the repeated 
refactoring of application code to the updated platform. 

The MDSD infrastructure consists of transformation definition, the meta 
model, the concrete syntax definition as well as the target platform(s). 

You cannot build applications based on the MDSD infrastructure unless the 
infrastructure is in place. Also, you cannot build the infrastructure if you 
don’t have a solid understanding of the application domain, typically gained 
by developing a couple of applications in the domain. 

Therefore: 

Develop the infrastructure as well as at least one application at the 
same time. Make sure infrastructure developers get feedback from the 
application developers immediately. Develop both parts 
incrementally and iteratively to achieve overall agility. To solve the 
chicken-and-egg problem, EXTRACT THE INFRASTRUCTURE from a 
running application. That means, in any particular iteration 
infrastructure development is one step ahead, and new releases of 
infrastructure are only introduced at the start of application 
development iterations.  
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ÕÕÕ 

In practice, to achieve sufficient agility, iterations should never be longer 
than four to six weeks and it is a good idea to use a fixed duration for all 
iterations. 

Note that this incremental, iterative process based on synchronized 
timeboxes does not mean that you should not do some kind of domain 
analysis as described in [Cleaveland 2001] before starting development. A 
good understanding of the domain is a useful precondition for doing MDSD. 
Once development is under way, further domain analysis is performed 
iteratively as required as part of the infrastructure workflow. 

An infrastructure team is at risk of leaping on interesting technologies and 
then hijacking the agenda to embark—with the best intentions—on 
bestowing the rest of the world with a new silver bullet. This risk can be 
managed by ensuring that the architecture group (i.e. consisting of 
representatives from the application development teams) is given the 
mandate to exercise SCOPE TRADING and VALIDATE ITERATIONS, so that the 
infrastructure being developed becomes a real asset from the perspective of 
application developers. 

As a downside of this approach, it requires effective synchronization among 
the different sub-processes, and versioning can become an issue, specifically 
with today’s MDSD tools. Also, updating (refactoring) the application 
models to comply to and utilize the new version of the infrastructure can be 
a non-trivial endeavor. 

Note that: 

• Once MDSD is well established in an organization, the technology 
infrastructure is highly standardized, and the focus of work shifts from 
standardizing use of technologies to building a domain-specific 
application platform, hence the term "application platform development" 
becomes a more accurate description over time.  



  

• In the minimal case of a one-person project, this pattern collapses into 
the requirement to cleanly separate the code base of infrastructure 
(application platform) from the code base of individual applications.  

ÕÕÕ 

The Family-Oriented Abstraction, Specification, and Translation 
(FAST) process [WL 1999] developed by AT&T has been used since 
1992 and clearly differentiates between domain engineering and 
application engineering. FAST is based on experience over two decades 
of developing software families and has been evolving further at Lucent 
Technologies where it has been applied to over 25 domains. 

One of the authors has been using iterative dual-track development 
since 1994, initially in conjunction with the programmable LANSA 
RUOM model-driven generator [LANSA], and later in several projects 
using different MDA tools.  

Also, the b+m generative development process (GDP, see[GPD]) which 
has been used for a long time in the area of model driven development 
uses this principle as its basic foundation. It has proven to be essential 
to MDSD 

Further concrete examples for the organization (team structure) of 
product line development are found in [Bosch 2000]. 

EXTRACT THE INFRASTRUCTURE ** 

You are developing a software system (family) using model driven de-
velopment techniques. You do not yet have an MDSD infrastructure for the 
respective domain in available. 

ÕÕÕ 

At the beginning of an MDSD project you often don’t know how to 
get started. You know, that you should use ITERATIVE DUAL-TRACK 

DEVELOPMENT, but how do you get started, anyway? You want to 
have at least one running application as fast as possible. 

Building a MDSD infrastructure requires you to think in terms of model 
transformations and meta models. You will have to scatter the 
implementation code over many transformation statements/rules (code 
generation templates, etc.). This is an approach many people are not use to. 

Also, you want to make sure you don’t have to debug the generated code 
forever in the early phases of the project. The generated code should have a 
certain minimum quality. You want to make sure it actually works. 

Therefore: 



  

Extract the transformations from a running example application. Start 
by developing this prototype conventionally, then build up the MDSD 
infrastructure based on this running application. Start ITERATIVE 

DUAL-TRACK DEVELOPMENT after this initial stage. 

Manually
Developed
Prototype

Transformations

DSL(s)

Metamodel

Application Model

Platform(s)
Application

Development

Infrastructure
Development

 

ÕÕÕ 

The prototype application should be a typical application in the respective 
domain, not overly simply, but also not too complicated. If you are building 
a big and complex system, only use a subsystem of the whole system as an 
example. 

There are two flavors of this pattern:  

� In case you have been working on applications in the respective 
domain for a while and want to introduce a model-driven approach, 
you EXTRACT THE INFRASTRUCTURE from the previously developed 
applications.  

� In case you start with a completely new software system family (green 
field), you should really develop a prototype in the sense of the word 
and EXTRACT THE INFRASTRUCTURE from it. 

Note that it is important that you extract the infrastructure from an 
application that has high-quality architecture since this will be the basis for 
your software system family. So, even if you do have a set of legacy 
applications, it might be a good idea to write a new prototype with a new, 
improved, cleaned-up architecture. 

Based on the experience of the authors as well as other practitioners, this 
infrastructure extraction (or “templatization”) takes roughly 20-25% of the 
time it takes to develop the prototype.  

This approach not only allows you to extract the transformations, it also 
helps you come up with a reasonable domain meta model as a basis for your 
DSL. Coming up with an expressive, small DSL also needs iterations as 
described in ITERATIVE DUAL-TRACK DEVELOPMENT. 



  

Note also that some kinds of generators (specifically those using text 
templates) support the extraction of template code from running programs 
very well.  

As a final remark we want to mention that the “templates” as mentioned 
above have nothing to do with C++ templates. Code generation templates 
are typically specific to a generator and allow you to navigate over the meta-
model. They provide all the usual control logic constructs, nesting, etc. 
Typically, they are quite small and simple to use. 

ÕÕÕ 

In a project to develop a model-driven infrastructure for embedded 
systems, the communication core for the system family will be 
completely generated from models. The project will first develop a 
complete implementation of the core for one specific scenario manually 
and then extract the generative architecture from this prototype. This is 
done although the company does have experience in the domain. 

This pattern was the motivation for the LANSA template language, and 
it was later used in 1993 as the foundation for LANSA RUOM, a 
customizable template language-based model-driven generator. One of 
the authors consistently used "templatization" of prototype code to 
automate pattern-based development in many projects from 1994 
onwards, to build insurance systems, distribution systems, enterprise 
resource planning systems, and electricity trading systems. Although 
today's MDSD tools still use non-standardized template languages, the 
fundamental process is the same. The authors can confirm the validity 
of this pattern for software development with LANSA RUOM [LANSA], 
Codagen Architect [Codagen], eGen [Gentastic], GMT Fuut-je [Eclipse 
GMT], the b+m openGeneratorFramework [GenFW]. 

Domain Modeling 

FORMAL META MODEL ** 

You are developing a MDSD infrastructure for a software system family. 
You want to define your applications (family members) using a suitable 
Domain Specific Language (DSL). 

ÕÕÕ 

A domain always contains domain-specific abstractions, concepts and 
correctness constraints. These have to be available in the DSL used 
for developing applications in the domain. How do you make sure 



  

your DSL and the application models defined with it are correct in 
the sense of the domain? 

Consider a DSL based on UML plus profile where you represent domain 
concepts as stereotyped UML classes. While UML allows you to define any 
kind of associations between arbitrary model classes, this might not make 
sense for your domain. Only certain kinds of associations might be allowed 
between certain kinds of concepts (stereotyped  classes). In order to come up 
with valid models, you have to respect these domain-specific constraints. 

Therefore: 

Use a formal means to describe your meta model. Describe it 
unambiguously and make it amenable for use by tools (IMPLEMENT 

THE META MODEL) to actually check your application models 
described using the DSL. TALK METAMODEL based on the FORMAL 

METAMODEL to verify it during its use. 

ÕÕÕ 

There are several useful notations for defining meta models. One very 
popular one, especially if you’re using a UML-based DSL is MOF. If your 
DSL is based on extending the UML (e.g. using a Profile), make sure your 
meta model is as restrictive as possible and only allows the constructs you 
want to support explicitly – “disable” all the non-useful default UML 
features. Another useful meta modeling technique can be based on feature 
modeling – especially if you’re mainly configuring applications with 
features. 

It requires quite some domain-experience to come up with a good domain-
specific meta model and DSL. In many organizations, however, a model-
driven approach is used primarily to auto-generate the “glue code” required 
to run business logic on a given technical platform. In such as case, you may 
want to use an ARCHITECTURE-CENTRIC META MODEL. 

If the latter approach is used, the main  purpose of the meta-model is to 
enforce specific architectural constraints and to provide an efficient 
mechanism for designers to express specifications that is free from concrete 
syntax of implementation languages and from implementation-platform 
dependent design patterns.  

When building the meta model, make sure you understand your domain. 
Building a glossary or ontology as a first step can help. Of course, the meta 
model is defined incrementally, using ITERATIVE DUAL-TRACK 

DEVELOPMENT. 

Note that a FORMAL METAMODEL is a very important precondition for 
coming up with a valid DSL and it is also the base for IMPLEMENTING THE 

METAMODEL – itself the basis for domain-specific tool support. However, 



  

you still need to verify that the metamodel actually represents the real-world 
domain correctly; you may want to TALK META MODEL to do this. 

ÕÕÕ 

The ALMA radio astronomy project uses the meta model defined below 
to define (parts of) its data model. The  meta model has been iteratively 
developed and finally it has been formally documented in the form 
below. The meta model is also implemented for use by the code 
generator tool. 

ALMA
Metamodel

UML Metamodel
UML::Class

Alma::Entity Alma::
DependentClass

/part

0..*

/part

0..*

Alma::
ValueType

Alma::
Alma

AbstractClass

attributes must
be primitive types
or value types

Alma::
Physical
Quantity

UML::Attribute

min : self.Type
max : self.Type

Alma::Bounded
Attribute

Type must be
int, long, float or
double

values : String

Alma::
EnumAttribute

1valueAttr
1unitAttr

{subsets
attribute}

{subsets
attribute}

Type of value
attributemust be
int, long, float or
doubleType of unit

attributemust be
String

must have only
the value and the
unit attribute, no
other attributes

/attribute

0..*

Alma::
Subsystem

/createdEntities
/usedEntities

the values are a
list of token
separated by !

{subsets
 dependency}

 

The following two diagrams show a somewhat more elaborate meta 
model that has been developed for large-scale distributed development 
of business applications, see [Bettin 2003] for more information. 



  

 

Another situation where a formal meta model really helped was while 
writing a book on model-driven development. We wanted to sort out the 
commonalities and differences between MDSD, MDA, GP and 
architecture-centric MDSD. The breakthrough came when we came up 
with a FORMAL META MODEL for the domain of MDSD and its 
specializations. 

 



  

Tool Architecture 

IMPLEMENT THE META MODEL ** 

You have a FORMAL META MODEL for your domain. 

ÕÕÕ 

Having a formally defined meta model for your domain is a good 
thing; however, you need to use it efficiently when developing 
applications that are part of the defined family. The meta model will 
not be useful if it is only documented on paper somewhere – just as 
any paper-only artifact. 

Manually checking models against the underlying meta model is an error 
prone and tedious task. Relying on off-the-shelf modeling tools typically 
does not help, since they don’t “understand” your meta model (this may 
change over time!). UML tools, even if they understood your meta model, 
could only check UML based models. 

However, to make sure your generator can actually generate and configure 
your application, you have to make sure your model is “correct” in the sense 
of the meta model. 

Therefore: 

Implement the meta model in some tool that can read a model and 
check it against the meta model. This check needs to include 
everything including declared constraints. Make sure the model is 
only transformed if the model has been validated against the meta 
model. 

ÕÕÕ 

This approach is in line with MDSD, since you want to make sure your 
meta model is not „just a picture“, but instead a useful asset in your MDSD 
process. You can generate the implementation for the meta model from the 
meta model itself using an MDSD approach, or implement it manually. 

The meta model implementation is typically part of the transformation 
engine or code generator since a valid model is a precondition for successful 
transformation.  

ÕÕÕ 

The b+m generator framework [GenFW] allows the implementation of 
the domain meta model using Java classes. Each meta model element is 
implemented as a Java class. When a model is read, the model is 
represented as instances of the meta model elements. Since all meta 



  

model classes can implement a CheckConstraints() operation that is 
called by the framework, it is easy to implement constraint checking. 
The generator uses the UML meta model as a default, which can be 
extended or replaced by the developer. 

LANSA RUOM was designed to not only provide an OO modeling 
capability, but also a limited degree of meta-modeling focussing on the 
definition of architectural constraints. LANSA RUOM allows users to 
define the allowable dependencies between different [user definable] 
types of components, and then prevents illegal dependencies from being 
defined in the RUOM modeling tool. This approach is distinctly 
different from the approach of standard UML modeling tools, where 
virtually no constraints are checked, and where only conformity with 
UML syntax is checked. See [Bettin 2001] for an example of a situation 
where conformity with standard UML syntax gets in the way of visually 
expressing architectural structure. The RUOM meta modeling 
capability has proved useful for many organisations.  

The eGen generator from Gentastic allows visual meta-modeling, and 
generates a design portal that enforces the constraints consistent with 
the cardinalities in the meta-model. This approach is ideal for the 
definition of domain-specific meta models. The main drawback in this 
particular example is the quality of the generated design portal. 

The current version of the GMT Fuutje tool allows limited soft-coded 
meta-modeling along the lines of UML tagged values, i.e. meta model 
elements can be extended with additional attributes. More extensive 
meta-model changes need to be realized in the form of Java code, 
probably somewhat similar to the approach taken in the b+m 
generator. 

The Codagen Architect generator is tied to the UML meta-model, and 
relies on tagged values to be passed from standard UML tools to the 
generator. This approach does not allow for any constraint checking at 
design time in the UML tool, and any "invalid" tagged values in UML 
models are detected only at generation time. 

IGNORE CONCRETE SYNTAX ** 

You want to transform a model or generate code from a model. 

ÕÕÕ 

Every model must be represented in some concrete syntax (e.g. XMI 
for MOF-based models). However, defining the transformations in 



  

terms of the concrete syntax of the model makes your transformations 
clumsy and cluttered with concrete syntax detail when you really want 
to transform instances of your meta model. How can you make sure 
your transformations do not depend on concrete syntax? 

Definition of transformations based on the concrete syntax is typically a 
very error-prone an inefficient task. Consider using XMI. XMI is a very 
complicated syntax. Defining transformations based on XMI (and maybe 
XSLT) is not very efficient. 

Also, in many cases several concrete syntaxes are useful for the same meta 
model, for example if you are using different DSLs for different TECHNICAL 

SUBDOMAINS. Defining the transformations based on concrete syntax 
unnecessarily binds the transformation to one specific concrete syntax. 

Therefore: 

Define transformations based on the source and target meta models. 
Make sure the transformer uses a three phase approach: 

• first parse the input model into some in-memory representation 
of the meta model (typically an object structure),  

• then transforms the input model to the output model (still as 
an object structure) 

• and finally unparse the target model to a concrete syntax  

Concrete
Syntax
Parser

Application
Model

(Concrete Syntax)

Source Model AST
(Instance of the

source metamodel)
Transformer

Target Model AST
(Instance of the

target metamodel)

Unparser/
PrettyPrinter

Target Model
(Concrete Syntax)

 

ÕÕÕ 

This approach results in a much more efficient and productive way of 
specifying transformations. It also makes the transformer much more 
flexible, because it can work with any kind of concrete syntax. This is 
particularly important in case of XMI-based concrete syntax, because the 
details of XMI vary between UML tools. You don’t want to bind you 
transformation to one specific tool (and maybe even tool version). 

Code generators (transforming a model to code) often do not use the full 
three phase approach, but directly generate textual output from the input 
model instance; creating an output AST instance would be overly 
complicated. Instead, templates are used that access the source meta model. 

Note that this approach fits together neatly with the IMPLEMENT THE META 

MODEL pattern. If done right, the same implementation can be used for both 



  

purposes. The templates can then access the meta objects directly; properties 
of the meta objects can be used to provide data for template evaluation as 
shown in the following illustration. 

It is also worth pointing out that compilers have been using this approach 
for a long time. They are structured into several phases, the first one parsing 
the concrete syntax and building an abstract syntax tree in memory, on 
which subsequent phases operate. 

Name() : String

<<metaclass>>
UML::Class public class <<Name>>

       implements <<Name>>Interface {
  // more
}

Metamodel Template

 

ÕÕÕ 

The diagram above is representative of most template language based 
generators/transformers. 

Revisiting the b+m generator framework, we already saw that it 
represented the applicable meta model as Java classes. The 
transformations are template-based (since it generates code directly). 
These templates can contain statements that reference the meta model 
and its properties. You do not see anything of the concrete syntax of the 
model. A front-end is responsible for parsing the concrete syntax and 
instantiating the meta model elements. 

Just as the B+m generator, Fuutje GMT, Codagen Architect, eGen, and 
LANSA RUOM all use a template language to shield the user from the 
concrete syntax of the model. In LANSA RUOM the template language 
is fairly weak, which is compensated by allowing fully user definable 
pre-template processors, which perform the role of translating between 
concrete model syntax and template variables at generation time. In 
eGen the available template variables and navigation are a direct 
reflection of the user definable meta model. 

As far as we know, most of today's MDA tools rely on non-standard 
template languages for the mapping of models to textual artifacts such 
as code. Limitations of these template languages and issues with 
proposed alternative approaches are sketched in [Bettin 2003b]. 



  

Application Platform Development 

TWO STAGE BUILD * 

You are working in the context of a software system family and need to 
design a model driven generator. 

ÕÕÕ 

It is often very complex to incorporate all product configuration steps 
into one transformation run. Features might have dependencies 
among each other. Different parts of the system are typically 
specified using different means. How can you build a simple, 
maintainable, and adaptable transformation process? 

Consider the selection of a target platform. Depending on the platform, 
different transformations must be executed. The selection of the platform 
thus determines which transformations to execute. It is very hard to 
incorporate all alternatives into one set of transformations that takes care of 
all possibilities. 

Other such issues are the selection of certain libraries, or typical cross-
cutting concerns. 

Therefore: 

Separate the generation run into two stages: the first stage reads 
some kind of configuration and prepares the actual generator for the 
core transformation. The second stage is the execution of the 
transformer and uses the preparations done in the first stage. 

Stage 1
Tool

System
configuration

Generator
configuration

Application
Model

Transformer/
Generator

Generated
Application

 

ÕÕÕ 

In many cases, the first stage uses a different tool (such as a batch file or an 
ant script) to prepare the generator itself. Also, while the model for the 
second phase often describes application functionality or structure, the 
specification for the first step is actually more of a tool configuration 
activity. 



  

As a consequence of the fact that there is no well-proven paradigm for 
transformation/template code management, each tool has its own 
idiosyncrasies. Usually the approach taken is driven much more by the tool 
architecture than the structure of the domain. Since many tools use a file-
based approach, the example given below is representative. 

Note that this approach is also used in open source distributions, where make 
install is used to prepare the makefile that in a second step builds the 
application.  

ÕÕÕ 

In the small components project, an XML-based specification is used to 
define the target platform, etc. Based on this, the ant tool is used to 
prepare the environment in which the generator operates; specifically, 
it copies the applicable set of template files to the locations from where 
the generator will load them. In a second stage, the generator itself 
processes the templates and thus generates code from the application 
model, this one being a combination of UML and XML. 

As indicated earlier, in LANSA RUOM pre-template processors read 
the model, and set up the template execution environment for each 
template. The pre-template processors are also the place for model-
driven integration, as they may access meta-information about pre-
existing systems as required, and make this information available to 
RUOM templates. Another interesting feature of LANSA RUOM is the 
existence of post-template processors, which allow the replacement of 
user definable tokens (post-template processor commands) with 
arbitrary code. The tokens need not always be present in the template, 
but may be part of the generated code—resulting from computations 
with template variable content. Thus in LANSA RUOM the build 
consists of three main stages. This feature would not be required in a 
template language that fully supports recursive template execution. 

In general there are significant differences in the way tools prepare and 
coordinate template execution. In eGen for example, code that links 
templates is physically separated from template code. In Codagen 
Architect, the template execution sequence and relationships between 
templates are indirectly specified via a classification scheme of 
templates and via the ordering in the list of templates. The common 
theme through all the tools is a "multi-stage" build. 



  

SEPARATE GENERATED AND  
NON-GENERATED CODE ** 

You are generating large portions of your application, but you still have to 
program some aspects manually. 

ÕÕÕ 

If only parts of the application is generated, “blanks” must be filled-
in by manual programming. However, modifying generated files by 
adding non-generated code creates problems in the areas of 
consistency, build management, versioning and overwriting of 
manually written code when regenerating. 

If generated code is never ever modified, the whole generation result can 
simply be deleted and regenerated if necessary. If the code is modified, there 
must be special protected areas that the generator does not delete when 
regenerating code; this requires the generator to actually re-read the 
generated code before regeneration and to preserve the protected areas. 
Consistency problems can arise (when the model is changed in ways that 
make the non-generated parts incompatible).  

Also, versioning is more complicated, since the manually written code and 
the code generated from the model are in the same file, although they should 
be versioned independently. 

Therefore: 

Keep generated and non-generated code in separate files. Never 
modify generated code. Design an architecture that clearly defined 
which artifacts are generated, and which are not. Use suitable design 
approaches to “join” generated and non-generated code. Interfaces as 
well as design patterns such as factory, strategy, bridge, or template 
method are good starting points (see [GHJV95]). 

Connected by Patterns, etc.

GeneratorApplication
Model

Generated
Source

Manually
Written
Source

Compiler/
Build Tool

Complete
System

 

ÕÕÕ 



  

As a consequence of using this pattern, the application is forced to have a 
good design that clearly distinguishes different aspects. Generated code can 
be considered a throwaway artifact that need not even be versioned in the 
version control system. Consistency problems thus cannot arise. 

There is another reason why this pattern is critical: Often the hand-crafted 
code (that is not practical to generate) is also the code that needs to be 
adapted when implementing a new variant of a product or a family member 
of a product line. Thus separating generated from non-generated code is 
critical for effective management of variants and helps to identify points of 
variation. 

On the downside, this approach sometimes requires a bit more elaborate 
design or some more (manual) programming.  

Sometimes, for performance reasons, there are situations when direct 
insertion of manually written code into generated code is unavoidable, this 
makes the introduction of protected areas mandatory. 

This pattern can be generalized in the sense that in many cases, you have 
several generators generating different parts of the overall system, for 
example in the context of TECHNICAL SUBDOMAINS. Manually written code 
can be seen as only a very special kind of generator (the programmer ☺). 
The architecture clearly has to cater for these different aspects. 

ÕÕÕ 

The following diagram shows, how generated and non-generated code 
could be combined, using some of the patterns mentioned above. 

a)

b)

c) d) e)

generated code non-generated code  

First of all, generated code can call non-generated code contained in 
libraries (case (a)). This is an important use, as it basically tells you to 
generate as few code as possible and rely on pre-implemented 
components that are used by the generated code. As shown in (b), the 



  

opposite is of course also possible. A non-generated framework can call 
generated parts. To make this more practicable, non-generated source 
can be programmed against abstract classes or interfaces which the 
generated code implements. Factories can be used to „plug-in“ the 
generated building blocks, (c) illustrates this. 

Generated classes can also subclass non-generated classes. These non-
generated base classes can contain useful generic methods that can be 
called from within the generated subclasses (shown in (d)). The base 
class can also contain abstract methods that it calls, they are 
implemented by the generated subclasses (template method pattern, 
shown in (e)). Again, factories are useful to plug-in instances. 

RICH DOMAIN-SPECIFIC PLATFORM ** 

You are generating code from domain-specific models. 

ÕÕÕ 

In the end, application models must be transformed to a certain 
target platform to be executed. The bigger the difference between the 
domain concepts and the target platform, the more complex the 
transformations have to be. With today’s tools this can become a 
problem. 

Transformations should be as simple and straightforward as feasible. This is 
mainly because of the fact that today’s development environments (IDEs, 
Wizards, Debuggers, etc.) are much more elaborate for “traditional” 
development. The more work can be done “the normal way”, the better.  

A good example for the problem described here is object-relational mapping 
tools. The impedance mismatch between the OO philosophy and the 
relational data model is a major problem that is only now being solved really 
well, although the problem has been around for a while. 

Therefore: 

Define a rich domain-specific application platform consisting of 
libraries, frameworks, base classes, interpreters, etc. The 
transformations will “generate code” for this domain-specific 
application platform. 
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- ...

Generated Applications

 

ÕÕÕ 

The code generated will not just consist of “real code”, but also of 
configuration files, deployment information and other artifacts that can be 
used by the DOMAIN-SPECIFIC PLATFORM. Incrementally grow the power of 
your DOMAIN-SPECIFIC PLATFORM (frameworks, libraries) as the depth of 
your understanding of the domain increases. This reduces the size and the 
complexity of the “framework completion code” that needs to be generated 
(and sometimes even hand-crafted). Transformations become less complex, 
which is desirable, given the limitations of today’s tools. 

Note that this pattern must not be overused, otherwise we are back to 
normal development. You should still model your business logic as far as 
possible with suitable DSLs and generate the implementation. Also, any 
kind of glue code or configuration data that is specific to the modeled 
application should be generated; LEVERAGE THE MODEL! 

Once the application platform grows near enough to the concepts in the 
DSLs, the complexity of the transformations will decrease. The generator 
can be limited to generating repetitive “glue code”. As long as tool support is 
still limited, this approach is very practical. In the end, this approach will 
allow you to use an ARCHITECTURE-CENTRIC META MODEL. 

The key to application platform design is the iterative, incremental approach 
in the context of ITERATIVE DUAL-TRACK DEVELOPMENT. Designing 
elaborate frameworks up-front consistently leads to failure.  Instead, small 
frameworks combined with code generation provide a solid base for iterative 
improvement. When generation gets hard to implement, usually the answer 
lies in improving the frameworks. Conversely when implementing 
framework features gets too hard, often generative techniques can provide an 
elegant solution. Depending on your deepening of the understanding about 



  

the system you will refactor back and forth between DSL/generator and 
platform. 

Note that as a consequence, you can use the core concepts of your 
application platform in the domain meta model. In general, a DSL and a 
framework/platform can be considered as the two sides of the same coin: the 
framework provides core concepts and functionality, whereas the DSL is 
used to “use” these concepts in an application-specific sense. 

ÕÕÕ 

The Time Conscious Objects (TCO) toolkit from SoftMetaWare [BH 
2003] is a good example of how a framework and generative techniques 
complement each other. In this case the framework provides support for 
the concept of "time", and the meta model enables "time conscious 
classes" to be tagged at a high level of abstraction with the appropriate 
level of time consciousness.    

Architecture centric MDSD as advertised by b+m and several other 
pragmatic MDSD people explicitly aims at representing the core 
concepts of the platform’s architecture in the domain meta model. 

An example of a domain-specific language that heavily depends on a 
rich domain-specific framework is provided in [Bettin 2002]. In this 
example the DSL is a visual notation for the specification of behavior in 
object-oriented user interfaces. 

On the "Zemindar" project one of the authors used a DSL to enable 
end-user programming of complex arithmetic and statistical functions 
at run-time. In this case the DSL did not have to be invented, and a 
third-party off-the-shelf Java spreadsheet component was used as the 
DSL. The same project also used a model-driven generator, but it 
would have been completely impractical to re-implement a framework 
for spreadsheet functionality from scratch—or even worse, to attempt to 
"generate" such functionality. 

TECHNICAL SUBDOMAINS ** 

You are building a large and complex software system family using MDSD 

ÕÕÕ 

Large systems typically consist of a variety of aspects they cover. 
Describing all of these in a comprehensive model is a very complex 
and daunting task. The model will become complicated and full of 
detail for a variety of aspects. Also, the DSL used for one aspect 
might not be suitable to describe some of the other aspects. 



  

Consider using a UML-based DSL to describe the application functionality 
(business logic). Now in addition you also have to describe persistence 
aspects as well as GUI design and layout. You will have to indicate persistent 
items in the DSL, such that appropriate code and table structures can be 
generated for persistence. It is very hard to put all that into the same model. 
A UML-based language is typically not suitable for those aspects. Trying to 
model GUI layout with UML is practically impossible. 

Also, having it all in the same model makes maintenance complicated and 
prevents the efficient separation of work packages for different teams. 

Therefore: 

Structure your system into several technical subdomains. Each 
subdomain should have its own meta model, and specifically, its own 
suitable DSL. Define a small number of GATEWAY META CLASSES, i.e. 
meta model elements that occur in several meta models to help you 
join the different aspects together. 

Technical Subdomain 1
(e.g. Business logic)

Metamodel
1

DSL 1

Technical Subdomain 2
(e.g. Persistence)

Metamodel
2

DSL 2

Technical Subdomain 3
(e.g. GUI)

Metamodel
3

DSL 3

 

ÕÕÕ 

This pattern is especially useful if you IGNORE THE CONCRETE SYNTAX in 
your transformation engine since it allows you to represent the gateway 
meta model elements (those that occur in several subdomain meta models) 
using the different concrete syntaxes of the different domains, while 
representing them in the same way inside the transformer (and thus 
providing a natural integration of the different meta models). 

Note that this pattern deals with the partitioning of the system into several 
technical subdomains, not with structuring the whole system into different 
functional packages. The latter is of course also useful and should be done 
too. 

A very specific TECHNICAL SUBDOMAIN is MODEL DRIVEN INTEGRATION. 
Mapping and wrapping rules can be very nicely specified using a suitable 
DSL. GENERATOR-BASED AOP can also be a way to handle cross-cutting 
TECHNICAL SUBDOMAINS. 

ÕÕÕ 

The Time Conscious Objects (TCO) toolkit from SoftMetaWare is 
explicitly designed to unobtrusively fit into existing architectures as a 
technical subdomain. I.e. TCO assumes that a pre-existing system may 



  

be based on an arbitrary object-oriented modeling language (which 
could be UML or plain old Java code), and the very simple DSL of TCO 
allows users to annotate the model with information about the level of 
time consciousness of objects.    

The small components project uses a UML based DSL for specifying 
interfaces, dependencies, operations and components. It uses a 
completely different DSL based on a suitable XML DTD to define 
system configuration, component instance location and technical 
aspects configuration such as remoting middleware. 

The DSL for specification of behavior in object-oriented user interfaces  
[Bettin 2002] can easily be used in combination with other modeling 
languages such as standard UML to specify object structure. 

MODEL-DRIVEN INTEGRATION * 

You need to integrate your MDSD developed software with existing systems 
and infrastructure. 

ÕÕÕ 

Green field software development projects are rare, mostly new 
software is developed in the context of one or more existing systems 
that will still be around for a while. Additionally, often there is a 
desire to phase out some of the legacy systems over time, and to 
incrementally replace them with an implementation that better 
addresses business needs and that is based on a current technology 
stack. Integration among different – new and legacy – systems is thus 
part of many projects, model-driven or not. 

Depending on the integration strategy the code may need to be generated in 
the context of the current technology stack and/or the relevant technology 
stack of the system to be integrated with. Generated artifacts may also 
include appropriate data-conversion scripts for one-off use. Typically, 
integration revolves around mapping of APIs using a systematic approach, 
including necessary data conversions.  

Therefore: 

Extend the model-driven software development paradigm to the 
domain of integration among software systems. Mapping information 
between systems is most valuable when captured in a model. 
Approach integration as part of MDSD, not outside of MDSD. Define 
a TECHNICAL SUBDOMAIN for MODEL-DRIVEN INTEGRATION. If it gets 
complex, consider using one TECHNICAL SUBDOMAIN per system. 
Define the DSLs in these domains that enable you to express the 



  

mapping of relevant elements in your business domain model and the 
existing legacy systems. Use automation to ensure that “switching-
off” of legacy systems is possible even after you've left the project. 

ÕÕÕ 

Integration with exiting systems is a strength and not—as sometimes 
alleged—a weakness of a model-driven approach.  

In case of integration between two separate model-driven systems, it may be 
beneficial to split the integration code generation between both systems such 
that the knowledge about the different technology stacks does not have to be 
duplicated in template definitions etc. 

For simple integration issues a TECHNICAL SUBDOMAIN may be overkill, and 
it may be sufficient to use UML tagged-values or an equivalent concept in a 
DSL to capture the mapping between relevant elements in your business 
domain model and elements in existing systems. Only take this approach if 
this information does not clutter up and detract from the domain model, 
and only if the integration is between systems/sub-systems that are not 
legacy systems that are due to be phased out.   

In particular if a legacy is planned to be phased out, ensure that integration 
code can easily be removed once it is no longer needed, otherwise dead code 
leads to architectural degradation over time. Make use of an Anticorruption 
Layer as described in [Evans]. Specify the mapping using EXTERNAL MODEL 

MARKINGS. 

Consider automating the gradual "switching-off" of legacy systems to the 
degree where it amounts to identifying switched-off parts using the DSL in 
the relevant subdomain model. Be a good citizen and make life easy for 
coming generations—remember that the people who may be switching-off 
the last parts of a legacy system in three years may know very little about 
the integration code. 

ÕÕÕ 

One of the authors has used this pattern many years ago in conjunction 
with LANSA RUOM to integrate for example with legacy infrastructure 
for security. The RUOM feature of pre-and post-template processors 
was essential in this context.  

GENERATOR-BASED AOP * 

You are developing a software system (family) using MDSD techniques. You 
generate implementation code using some kind of code generator. 

ÕÕÕ 



  

In many applications, cross-cutting concerns must be handled 
consistently and in a well-localized manner. Programming languages 
do not provide support to modularize these concerns; adding another 
tool (i.e. an aspect weaver) is often not possible because of 
insufficient support, tool availability or developer skills. How can you 
still handle cross-cutting concerns in a consistent way? 

In the case of a business application that should be made available to several 
clients, it is often required to bill each client’s use to the respective client. It 
is thus necessary to log the execution of each operation and determine the 
cost associated with the invocation. 

Another cross-cutting aspect that needs to be handled in this scenario—as 
well as in many other scenarios—is authorization (checking whether a client 
has the right to access specific functionality or to read, modify, or delete 
specific information). A client may only be allowed to see data it "owns", 
and it may also be restricted to usage of a subset of the overall application 
functionality.  

To ensure consistency, you want to make sure these aspects need not be 
manually handled by application developers – rather, some form of AOP 
should be used to handle these cross-cutting aspects in a centralized manner. 

Therefore: 

Implement the handling of cross-cutting concerns with the help of 
the generator. You can either take advantage of the generator’s 
integral features (e.g. consider that it generates many instances of a 
meta model element with the help of one transformation/template) or 
use the generator to implement proxies, interceptors and other AOP-
addressing design patterns in the generated system. Consider the 
cross-cutting concern a TECHNICAL SUBDOMAIN and provide a 
suitable DSL for it. 

anOperation(x): String
anotherOperationx,y):void

<<Service>>
SomeService

anOperation(x): String
anotherOperationx,y):void

SomeService

anOperation(x): String
anotherOperationx,y):void

SomeServiceOperations
delegate

manually
implemented
business logic

 
String anOperation(x)  {
  checkSecurity(this, "anOperation", {x} ,
                          someClientID);
  bill(this, "anOperation", someClientID );
  return delegate.anOperation(x)
}
 

generated

 

ÕÕÕ 



  

As a consequence of applying this pattern, you don’t have to use an 
additional tool (the aspect weaver) while still being able to handle cross-
cutting concerns. Of course it is not possible to address all kinds of cross-
cutting concerns; aspect-weavers that operate on language level such as 
AspectJ are much more powerful and of more general-purpose applicability. 
However, in many circumstances, the generator-based approach is sufficient. 
In addition, you always have the freedom to adapt the structure of the 
generator (and maybe of the application platform architecture) to allow 
handling of the aspects you require. 

ÕÕÕ 

In an EJB project this approach was used to generate exactly the kind 
of proxy mentioned above. Dynamic security checks were implemented, 
as was very expressive auditing and logging. 

PRODUCE NICE-LOOKING CODE … 
WHEREVER POSSIBLE ** 

You generate application code from models.  

ÕÕÕ 

In many cases, the idea that developers never see generated code is 
unrealistic. While developers never modify generated code, they will 
probably see the generated code when debugging the application or 
when verifying the transformation engine configuration. How can you 
make sure developers actually understand generated code and are not 
afraid of working with it? 

The prejudice that “you cannot read/work with/debug generated code” is a 
well established one. In some settings this is even the reason why code 
generation, and model-driven development is not used at all. Fighting this 
prejudice is thus crucial. 

Therefore: 

PRODUCE NICE-LOOKING CODE … WHEREVER POSSIBLE! When 
designing your code generation templates, also keep the developer in 
mind who has to – at least to some extent – work with the generated 
code.  

ÕÕÕ 

There are several things you can do to make your code look nice: 

• You can generate comments; in the templates, you have most if not 
all information available to add meaningful comments. Typically you 



  

can even adapt comments to the generated code by templatizing 
comments. 

• Because of typically unsufficient “whitespace management support” 
in many tools you have to decide whether you want to make your 
templates look nice, or whether the generated code should look nice. 
A good approach is to make sure the templates look nice and use a 
pretty printer/formatter tool to reformat the generated code after it 
has been generated. Such pretty printers are available basically for 
every programming language, as well as for XML, etc. 

• A third very useful aspect is to include a so-called “location string” to 
the code generated by a particular template/transformation. This 
describes the model element(s) from which the particular section of 
code has been generated. It is good practice, especially for debugging 
purposes, also to include the name of the template/transformation 
and the "last changed" timestamp of the template/transformation 
used to generate the code. An example could be GENERATED 
FROM TEMPLATE SomeOperationStereotype [2003-10-04 17:05:36] FROM  
MODEL ELEMENT aPackage::aClass::SomeOperation(). 

Using this pattern can make a big difference. It basically says that you 
should stick to coding conventions and style guides also in generated code. 
Especially, useful indenting is crucial!  

Also note that if you templatize a "quality" prototype, you should already 
have all the comments at hand. 

This pattern should really apply to generated and to hand-crafted code. In 
practice, all too often hand-crafted code is very messy. There is a small 
caveat regarding the generation of optimized code that may be required in 
some cases, where the results won't look nice. These cases should be 
explicitly identified and described – and the respective code should be 
separated from the rest. 

ÕÕÕ 

Is there a non-trivial example somewhere that says more than just “yes, 
we also did it?” 

DESCRIPTIVE META OBJECTS ** 

You are developing a software system (family) using model driven de-
velopment techniques. You generate implementation code using some kind 
of code generator. 

ÕÕÕ 



  

When using a RICH DOMAIN-SPECIFIC PLATFORM for your model-
driven development, the application often needs information about 
some model elements at run time to control different aspects of the 
application platform. How can you make model information available 
at run time and associate it with generated artifacts? How can you 
build the bridge between generated code and framework parts? 

Consider you want to build an application that needs to provide domain-
specific logging mechanisms. The application will need to output the value 
of the attributes of a generated class into the log file. To make this possible, 
the logger needs to know the names and values of all attributes of a class. 
Especially in languages that don’t feature reflection, you cannot easily 
implement such a mechanism generically.  

Another problem could be that you annotate object attributes with 
additional information, such as a nice label, a regular expression for contents 
checking or min/max values for number attributes. At run time you need to 
be able to access this information e.g. to build a GUI dynamically.  You 
cannot easily embed this information in programming-language native 
classes. 

Therefore: 

Use the information available at generation time to code-generate 
meta objects that describe the generated artifacts. Provide a means to 
associate a generated artifact with its meta object. Make sure the 
meta objects have a generic interface that can be accessed by the 
RICH DOMAIN-SPECIFIC PLATFORM. 



  

<<pk>> name : String
   {label="Nachname"}
firstname : String
   {label="Vorname"}
age : int
   {label="Alter",
    min=0, max=100}
zip : String
   {label="PLZ",
    regexp="99999"}

SomeClass

name : String
vorname : String
age : int
zip : String

SomeClass

attributeNames : String =
   {"name", "firstname",
    "age", "zip"}

:SomeClassMetaObject

getAttributeNames() : String[]
getAttribute(name:String):AttributeMetaObject

<<interface>>
ClassMetaObject

getName() : String
getValue() : Object
setValue( Object newVal ) : void
getLabel()

<<interface>>
AttributeMetaObject

getRegexp() : String

<<interface>>
StringAttributeMetaObject

getMin() : int
getMax() : int

<<interface>>
NumAttributeMetaObject

meta

name : String = "zip"
label : String = "PLZ"

:StringAttributeMetaObject

name : String = "age"
label : String = "Alter"
min : int = 0
max : int = 100

:NumAttributeMetaObject

...

<<instanceof>>

<<instanceof>> <<instanceof>>

Generated
Code

Model

 

ÕÕÕ 

This pattern makes selected parts of the model available in the application in 
a native, efficient way. Another (theoretical) alternative would be to store 
parts of the model with the application – however, access to a complex 
model is typically slow, and therefore this approach is not feasible. 

There are different ways of how a meta object can be associated with its 
generated artifacts. If the artifact is completely generated, you add a getMeta 
object() operation directly to the generated artifact. If this is not feasible (e.g. 
if you want to keep your artifacts free of these things) you can also use a 
central registry that provides a lookup function MetaRegistry.getMeta 
objectFor(anArtefact). The implementation (i.e. the mapping) for the operations 
will be generated, too. 

The meta objects cannot just be used for describing a program element, but 
also to work with it. This leads to a GENERATED META OBJECT PROTOCOL. 

ÕÕÕ 

One of the most well-known examples of this approach is JavaBeans, 
where the BeanInfo class describes the Bean itself in the way described 
above, mainly for use by GUI tools. The only difference is that 
JavaBeans are note typically generated, but manually written. 



  

An early OR-Mapping framework called LPF has generated meta 
objects that described generated relational table structures. These were 
used at run time to manage persistence. 

The LANSA 4GL environment, which goes back to 1987, is based on an 
"active repository" that provides access to extensive meta-information 
about LANSA objects. The LANSA RUOM model-driven generator 
makes extensive use of the LANSA repository.  

Another example is in the context of the Small Components project. 
This is based on C++, and the descriptive meta objects are used to 
“emulate” reflection. Note that direct model access would not be 
possible since the infrastructure is intended for embedded systems 
where performance and code size is critical. 
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