
C++ Patterns
Executing Around Sequences

Kevlin Henney
kevlin@acm.org

kevlin@curbralan.com

Abstract

Sequential control flow forms the backbone of any procedural program. Just as common function, data,
and structure in a C++ program can be factored out using functions, classes, and templates, common
control flow schemas can also be named and abstracted. One such recurring schema, or programming
cliché, is the embracing or bracketing of a sequence by a pair of actions, such as resource acquisition and
release operations executed around the actual resource usage code.

The patterns in this paper document idiomatic practices for abstracting such control flow in C++. They are
connected into a language and further explored through a narrative example.

Pre- and Post-Sequence Actions

Paired actions – where a function is called before some statement sequence and a corresponding function
afterwards – are commonly associated with resource acquisition and release. Pre- and post-sequence
actions are a common feature of block-scoped resource management – e.g. allocate memory, use it,
deallocate it – and this programming cliché can be found time and time again across many programs.

Such repetition suggests a missing abstraction, and is both error prone (from the programming
perspective) and prone in the presence of error (not exception safe). What is needed is a way to capture
this control flow form, encapsulating it so that it is simple and exception safe.

Exceptions, Complexity, and Abstraction

Idioms are context dependent. As with multi-threading, the presence of exceptions invalidates many
assumptions and practices, blowing working code out of the water and into the deep abyss of debugging.
Exceptions make a handful of long-standing and well-respected C++ idioms inappropriate for modern
C++ [ISO1998]. For instance, the basic rules for safe assignment have changed from the ORTHODOX
CANONICAL CLASS FORM [Coplien1992] to post-standard C++ [Henney1998, Sutter2000], such that the
original form is no longer considered safe. Adopting old styles with new rules tends to lead to disgraceful
rather than graceful failure, and exceptions are an inevitable feature of modern C++ programs.

Perhaps the greatest upset to any well-laid plan of action is something out of the ordinary: The least
favorite chore for most programmers is handling exceptions! The number of ways something can go
wrong seems to outnumber the ways it can go right, leading to exception code that dwarfs the core
program logic. Standard C++ provides a general exception-handling model that addresses the control and
information flow issues. However, as it is non-local in effect it also affects the way the conventional
control flow is – or should be – expressed. In many modern programs exceptions are not something that
can be ignored safely, although there are cases when they can be avoided. For instance, errors that are
expected rather than exceptional should rely on more traditional schemes of communication, such as
returning error codes, e.g. failure to open a file.

The presence of exceptions in a program can have a significant impact. It is possible, if care is not taken,
for an object to be left in an indeterminate state, thereby leaving the whole program in an unstable state.
Safety – and hence stability – can be classed at one of three levels [Sutter2000]:

 The basic guarantee states that in the presence of exceptions, the throwing object will not leak
resources. The object will be in a stable and usable, albeit not necessarily predictable, state.

 The strong guarantee states that the program's state will remain unchanged in the presence of
exceptions, that is, commit-or-rollback semantics.

 The nothrow guarantee promises that exceptions are never thrown.

In code, exception safety can be achieved in one of two ways:

 Code may be scaffolded explicitly with try, catch, and throw to ensure explicit and graceful
recovery.

 Exception-neutral code is code that works in the presence of exceptions without requiring explicit
exception-handling code. Such code can also be described as exception agnostic.

A sign of weakness in a class design is that it forces its user to remember lots of particular and subtle
conditions of use: "function a must be called before b, unless condition c is true, in which case d must
follow e, etc.". Such interfaces suggest that the design is incomplete, the user of the class is doing work
that a good design would not require: Their code is verbose and repetitive, and writing it is error prone.

The Patterns

Table 1 lists the patterns described here in thumbnail form, providing a summary of the problem and
solution for each. Other key patterns used in this paper are described toward the end in thumbnail form in
Table 2.

Name Problem Solution
EXECUTE-AROUND OBJECT How do you abstract

the execution of a pair
of actions that surround
a sequence of
statements, or a single
action that follows a
sequence?

Provide a helper class for
declaring a local object before
the sequence. Its constructor is
provided with any arguments
necessary to perform the before
action, and any that must be
remembered for the destructor
to perform the after action.

EXECUTE-AROUND PROXY How can you apply
EXECUTE-AROUND
OBJECT conveniently
for individual calls on
an object?

Provide a PROXY that forwards
function calls to the target
object, with each call wrapped
by an EXECUTE-AROUND
OBJECT.

EXECUTE-AROUND POINTER How do you define an
EXECUTE-AROUND
PROXY when the
actions performed on a
target object are the
same for all functions?

Define a SMART POINTER whose
operator-> returns a
temporary SMART POINTER. The
temporary's operator->
performs the before action and
its destructor performs the after
action.

EXECUTE-AROUND FUNCTION How do you safely
group and execute a
sequence of statements
that must be enclosed
by a pair of actions, or
followed by a single
action?

Provide a function or object that
holds the sequence of
statements and pass it to another
function for execution. The
called function also executes the
before and after actions as
necessary.

Table 1.Thumbnails for patterns documented in this paper, listed in order.

The patterns may be organized into a pattern language, as shown in Figure 1. The natural entry points into
the language are the EXECUTE-AROUND OBJECT and EXECUTE-AROUND FUNCTION patterns, and the
arrows show subsequent flow through the language.

EXECUTE-
AROUND FUNCTION

EXECUTE-
AROUND OBJECT

EXECUTE-
AROUND PROXY

EXECUTE-
AROUND POINTER

may be
implemented
in terms of

for individual
member
function calls

for the same
action on all
function calls

for grouped
member
function calls

Figure 1. Patterns and their successors for abstracting execution around sequences in C++.

The patterns are presented using a brief, low-ceremony pattern form: pattern name; a problem–solution
thumbnail; one or more examples; a more detailed description of the problem, identifying the forces; a
more detailed description of the solution, identifying the consequences. The collection of patterns is
followed by a pattern story that combines many of the patterns in an evolving worked example.

EXECUTE-AROUND OBJECT

Define a helper object that executes actions before and after a sequence of statements in its constructor(s)
and destructor.

Example: Critical Sections

Synchronization of data access is vital in the presence of multiple threads. Synchronization primitives,
such as mutexes and semaphores, provide locking and unlocking operations to brace a critical section of
code. At most one thread is permitted to execute in a critical section; its code is effectively atomic with
respect to other threads. Operating system primitives are better wrapped up in classes than used in their
raw API form:

class mutex
{
public:
 void lock();
 void unlock();

};

A mutex object is used typically to guard another shared resource object of some kind:

resource shared;
mutex guard;

The following code is typical of its use:

{
 guard.lock();
 // use shared
 guard.unlock();
}

However, this is unsafe. What if an exception is generated before unlock is called? The guard object
will remain locked, blocking further access to the shared object. The following code addresses these
exception-safety concerns directly:

{
 guard.lock();
 try
 {
 // use shared
 }
 catch(...)
 {
 guard.unlock();
 throw;
 }
 guard.unlock();
}

Yes, this code is exception-safe; no, it is neither elegant nor brief. A solution that is both economical and
safe places the responsibility for acquisition and release into a separate object, using the invocation of the
destructor at scope termination – exceptional or otherwise – as the call stack unwinds:

template<typename lockee>
class locker
{
public:
 locker(lockee &to_lock)
 : target(to_lock)
 {
 target.lock();
 }

 ~locker()
 {
 target.unlock();
 }
private:
 lockee ⌖
};

In practice this solution is more robust and briefer than the previous versions, the unsafe version included:

{
 locker<mutex> critical(guard);
 // use shared
} // destructor for critical called

The critical region is now tied directly to a scope. The decision to make locker a template class allows
it to be used with any resource acquiring and releasing interface that supports lock and unlock member
functions.

Example: Scoped Dynamic Memory Management

Objects that are created and destroyed within a local scope are normally variables whose lifetime is tied to
the scope and automatically managed. Large objects, objects for which the relevant constructor can only
be determined at the point of creation, and polymorphic objects whose type is similarly determined late,
must be created and destroyed explicitly by the programmer with new and delete expressions:

{
 resource *ptr = new resource;

 ptr->update();

 delete ptr;
}

Exceptions thrown before the delete expression will cause a memory leak. In the following (rather
cumbersome) code, try, catch, and a re-throw are employed to cure the amnesia:

{
 resource *ptr = new resource;
 try
 {

 ptr->update();

 }
 catch(...)
 {
 delete ptr;
 throw;
 }
 delete ptr;
}

The standard C++ library provides a template class, std::auto_ptr, to abstract the management and
safety of such scope-bound allocations. In addition to its destructor's release semantics,
std::auto_ptr offers a familiar working syntax by also being a SMART POINTER:

{
 auto_ptr<resource> ptr(new resource);

 ptr->update();

}

This idiom applies generally to predictable acquisition-and-release control flow, not simply block-scoped
new and delete. In the following class a device is created in the constructor and destroyed in the
destructor:

class log
{
public:
 log()
 : out(new null_device)
 {
 }
 log(const std::string &name)
 : out(new file(name))
 {
 }
 ~log()
 {
 delete out;
 }

private:
 device *const out;
};

The scope of the owning object is still said to own the allocated object, although not in the conventional
sense of block scope. std::auto_ptr can automate such housekeeping tasks:

class log
{
public:
 log()
 : out(new null_device)
 {
 }
 log(const std::string &name)
 : out(new file(name))
 {
 }
 ~log()
 {
 } // destruction of out is automatic

private:
 const auto_ptr<device> out;
};

std::auto_ptr simplifies the coding for two cases: a heap object whose lifetime should be bound
safely to an enclosing scope, and an exception-safe transfer of object ownership through arguments or
return values. However, its design has evolved through many unsatisfactory compromises to the point that
its change-of-ownership semantics and its full interface are less than intuitive. It is standard, however, and
the const auto_ptr idiom [Sutter2000] allows it to be used simply and in a manner closer to its
original intent. There are many alternative implementations of this idiom for local memory management
that are more direct and less surprising, including the Boost library's [Boost] scoped_ptr and
scoped_array, and the practices described by Cargill for object ownership [Cargill1996].

Problem

How do you abstract the execution of a pair of actions that surround a sequence of statements, or a single
action that follows a sequence? Such code is as common as it is error prone: It is all too easy to forget the
action following the sequence – unlocking a lock, releasing a resource, deleting an object. The duplication
of such code suggests that there be some way of wrapping up the control flow.

The throwing of exceptions, which in their eagerness to short-circuit the rest of the sequence also bypass
the post-sequence action, further complicates the matter. An exception will propagate along the call chain,
clearly notifying someone along it of the bad news, but in doing so will create bad news of its own: A case
of the messenger shooting the sender and, by dint of relationship, the receiver.

Unlike Java or Win32 extensions to C and C++, standard C++ does not support a finally block which
is executed regardless of the outcome of its associated try block. Direct solutions, fashioned from try,
catch, and throw, trade clarity for safety. It is not immediately obvious by inspection whether or not
they are in fact correct. Presented with such complexity it is perhaps understandable that many

programmers adopt the ostrich posture when confronted with exception safety. They would as soon
plunge their head in the sand as consider the intricacies of such code, hoping the issue will either go away
or that somehow it does not apply to their code, and if it does it is not their problem.

However, exception safety cannot be ignored in any system that uses exceptions, which is, almost without
exception (sic), any standard C++ program. Direct solutions convert small and simple pieces of code into
longer and more complex ones. For a trained eye, code is just about manageable at that scale. Much
production code is already complex and scarred by the ravages of continued development; tracing normal
control flow becomes a feat in itself, without the additional worry of exceptional code.

Any of the conventional forms of discontinuous control flow – break, continue, return (and
goto) – can give rise to problems similar to those with throw, leaving a sequence prematurely and
unresolved. It is a common coding guideline to caution against jumps and multiple exit-points from loops
and functions: It is a common reluctance on the part of programmers to follow such recommendations,
exacerbating the problems of premature ejection.

Solution

Provide a helper class that should be used to define an object before the sequence of statements. Its
constructor is provided with the necessary arguments to perform the pre-sequence action and for the
destructor to later perform the post-sequence action.

In C++, a constructor is called on creation of an object for the sole purpose of initializing it; that is, the
constructor describes the "boot sequence" for an object. Conversely, a destructor is automatically called at
the end of an object's life to finalize or clean it up – that is, to shut it down in an orderly fashion. The
calling of a destructor is deterministic: For stack variables lifetime is tied to the enclosing scope.

It is this determinism that allows constructor and destructor calls to straddle a sequence. A helper object
can take advantage of this, executing the pre-sequence action in the constructor and the post-sequence
action in the destructor. Where the helper object must execute against another object, the object and any
additional state must be passed into its constructor.

The relationship between helper object lifetime and the destructor is crucial: This idiom addresses not
only control-flow abstraction but also exception safety. Destructors are called for stack objects as the
stack is unwound on leaving a scope. Stack unwinding occurs as a result of either normal flow out of the
scope or exceptional flow from a throw. Therefore clean-up actions occur independently of outcome:
after sequential flow to the end of a block; following a jump statement, such as return; the result of a
thrown exception. Thus, destructors in C++ play the role of finally blocks in other languages.

If the post-sequence action taken depends on whether or not an exception has been thrown, the
std::uncaught_exception function can be used to determine the reason the destructor is being
called. However, caveat programmer: The result of std::uncaught_exception is worthless if the
stack was already being unwound when the helper object was created.

The EXECUTE-AROUND OBJECT pattern is found at the heart of the misnamed RESOURCE ACQUISITION IS
INITIALIZATION idiom [Stroustrup1997] – misnamed because what makes this pattern tick is what happens
in the destructor and not in the constructor. Resource acquisition often occurs independently of the
EXECUTE-AROUND OBJECT, as in the case of memory acquisition. RESOURCE RELEASE IS FINALIZATION
would perhaps be a better name for resource-based applications of EXECUTE-AROUND OBJECT. Resource
acquisition and release is only one application of this control flow abstraction. Other uses include the
restoration of state. Here the helper object plays the role of a 'Jeeves class' [Glassborow2000] by cleaning
up and restoring particular things to the way they were before, e.g. a handler or a cursor replaced only for
the duration of a particular task.

The elegance and brevity of the EXECUTE-AROUND OBJECT pattern counterbalances the ugliness and
wordiness of alternative, less-safe solutions. It requires the definition and comprehension of an additional
class, but once written and understood it may be applied repeatedly. EXECUTE-AROUND OBJECT may be
used to address sequence of actions outside a block, so long as it is tied to a meaningful lifetime, e.g.
within another object where the pre- and post-sequence actions lie at each end of the enclosing object's
own life.

Where the EXECUTE-AROUND OBJECT encloses a single member function call on a target object that is the
subject of the EXECUTE-AROUND OBJECT, EXECUTE-AROUND PROXY and EXECUTE-AROUND POINTER
offer alternative, briefer approaches. EXECUTE-AROUND FUNCTION is an alternative to EXECUTE-AROUND
OBJECT that focuses on encapsulating named sequences of use.

EXECUTE-AROUND PROXY

Provide a PROXY object to execute actions before and after each function call on an object.

Example: Loading and Saving State

Consider a class for representing lookup table objects in some kind of efficient persistent store. The state
of the object can be loaded from and saved back to the store (or an intermediate caching layer, as
appropriate), and access to the store can be locked for reading – permitting multiple simultaneous readers
– or for writing – excluding all but the current writer from access. The const-ness of each member
function reflects the view of the persistent store:

class table
{
public:
 void lock() const; // acquire lock for reading
 void lock(); // acquire lock for writing
 void unlock() const; // release read lock
 void unlock(); // release write lock
 void load() const;
 void save();
 value_type query(key_type) const;
 void modify(key_type, value_type);

};

An EXECUTE-AROUND OBJECT can be introduced to address exception-safety concerns. In this case, the
locker template class introduced in a previous example can be reused directly. The following fragments
show read and write locks being applied:

value_type reading(const table &data, key_type key)
{
 locker<const table> critical(data);
 data.load();
 return data.query(key);
}

void writing(table &data, key_type key, value_type value)
{
 locker<table> critical(data);
 data.load();
 data.modify(key, value);
 data.save();
}

In the writing example, changes are saved only if all is successful – that is, there are no exceptions.

Although the basic locking has been taken care of, the manipulation of the target has been obscured by
details of persistence management. For simple calls to individual functions – query or modify – this
detail dominates the code. Employing a PROXY to encapsulate the bracketing allows further simplification
of client code, hiding both the exception-safe locking and the persistence management. Users need only
call the function they require, and the appropriate locking, loading, etc. will happen:

class table_view
{
public:
 table_view(table *to_view)
 : target(to_view)
 {
 }
 value_type query(key_type key) const
 {
 locker<const table> critical(*target);
 target->load();
 return target->query(key);

 }
 void modify(key_type key, value_type value)
 {
 locker<table> critical(*target);
 target->load();
 target->modify(key, value);
 target->save();
 }

private:
 table *target;
};

The table_view provides a subset of the features defined in table, making its interface source
compatible with table. Factoring out the commonality between the two classes into a common interface
class would be the next refinement, allowing genuine runtime substitutability.

Example: Setting and Restoring State

Actions that block a user interface for a few seconds are normally accompanied by a change in cursor,
from standard pointer to hourglass. In the absence of exceptions, the following code demonstrates a
typical style for an API and its use:

{
 cursor *old_cursor = view->set_cursor(cursor::wait);
 // perform long task
 view->set_cursor(old_cursor);
}

This exchange can be made exception-safe and more convenient by with an EXECUTE-AROUND OBJECT:

{
 cursor_exchange scoped(view, cursor::wait);
 // perform long task
}

Rather than acquiring and releasing a resource, the cursor_exchange class installs and restores it:

class cursor_exchange
{
public:
 cursor_exchange(component *view, cursor *new_cursor)
 : exchanged_view(view),
 old_cursor(view->set_cursor(new_cursor))
 {
 }
 ~cursor_exchange()
 {
 exchanged_view->set_cursor(old_cursor);
 }
private:
 component *const exchanged_view;
 cursor *const old_cursor;
};

A data object, such as a document, that is viewed by a separate windowing component will possess only a
few operations in need of a wait cursor. It is tempting to set and reset the cursor in the document object
itself. However, the document object is often decoupled from the windowing API – a common layering
that supports parallel development, unit testing, and reuse. The alternative is to provide the wrapping at
the point of call:

class document
{
public:
 virtual void cut(selection *) = 0;
 virtual void repaginate() = 0;

};

void repaginate(document *target, component *view)
{
 cursor_exchange scoped(view, cursor::wait);
 target->repaginate();
}

Not all operations require a wait cursor and they may be handled directly:

void cut(document *target, selection *selected)
{
 target->cut(selected);
}

The choice of which functions should or should not use a wait cursor will be hardwired into the calling
code, and it is likely that such assumptions will be duplicated (consistently or otherwise) across a
program. Another drawback is for any task described by single function, e.g. repaginate, more effort
is required in code to set up the call than to execute it. This can also lead to acquisition scopes that are too
long. In the following code only the repagination needs a wait cursor, but all statements following it also
fall in its shadow:

void repaginate(document *target, component *view)
{
 // preceding tasks
 cursor_exchange scoped(view, cursor::wait);
 target->repaginate();
 // follow-on tasks, also "in waiting"
}

Programmers resort to various tricks to narrow the acquisition scope:

void repaginate(document *target, component *view)
{
 // preceding tasks
 {
 cursor_exchange scoped(view, cursor::wait);
 target->repaginate();
 }
 // follow-on tasks, not "in waiting"
}

void repaginate(document *target, component *view)
{
 // preceding tasks
 cursor_exchange(view, cursor::wait), target->repaginate();
 // follow-on tasks, not "in waiting"
}

The first trick introduces a compound statement whose scope encloses precisely the required lifetime. The
second is subtler, relying on the sequential execution of the comma operator and the creation of a
temporary cursor_exchange object destroyed at the end of the statement.

A PROXY can be introduced to implement the same interface as the document, applying the bracketing
actions as necessary:

class viewed_document : public document
{
public:
 virtual void cut(selection *selected)
 {
 target->cut(selected);
 }
 virtual void repaginate()
 {
 cursor_exchange scoped(view, cursor::wait);
 target->repaginate();
 }

private:
 document *target;
 component *view;

};

This leads to a single point of change and simplified, transparent use:

void repaginate(document *target)
{
 target->repaginate();
}

Problem

How can you encapsulate the execution of other actions around individual function calls on an object
conveniently, safely, and transparently? The case of a single member function call on a single object
enclosed by pre- and post-call actions is sufficiently common that it demands greater convenience than is
perhaps offered by an EXECUTE-AROUND OBJECT.

An EXECUTE-AROUND OBJECT provides a simple and sure way of wrapping a block of code between pre-
and post-sequence actions. However, no compile-time error occurs if the programmer forgets to declare an
EXECUTE-AROUND OBJECT, so although the risk has been reduced there is still some scope for omission
and runtime error. This is more often the case when the actions being executed around comprise not so
much a sequence as a single statement. The preparation to make such a statement safe often outweighs the
detail of the single statement.

Although not necessarily a danger, a common pessimizing problem is for the lifetime of the EXECUTE-
AROUND OBJECT to be longer than necessary, stretching beyond the single statement requiring its
attention to the end of the enclosing scope a few statements away. Programmers often resort to tricks to
reduce the enclosing lifetime, inserting compound statements or creating temporary objects at the
beginning of comma separated expressions.

When the single statement being enveloped by the lifetime of the EXECUTE-AROUND OBJECT is a member
function call on an object, itself the subject of the EXECUTE-AROUND OBJECT's attention, the temptation is
to perform the execution around on the inside of the function called rather than on the outside. However,
such a rearrangement may be inappropriate or impossible:

 Although individual function calls would be catered for well, sequences of member function calls
would be excluded.

 Different contexts of use may require different paired actions or none at all.

 The source code for the target class may not be available for modification.

However, in favor of such an approach, the executing-around actions can be tailored to each member
function as necessary.

Solution

Provide a PROXY that forwards function calls to the target object, enclosing each call between the
necessary pre- and post-call actions. The PROXY offers the same core interface as the target object, either
by inheritance or mimicry.

The EXECUTE-AROUND PROXY introduces another level of indirection and an additional object to allow
both the usage code and the target code to be independent of the executing-around actions. This allows
actions to be changed without affecting either client or target, or the use of different kinds of EXECUTE-
AROUND PROXY according to need. As a PROXY, an EXECUTE-AROUND PROXY can also take on other
roles, such as lazy object loading or reference counting.

An EXECUTE-AROUND OBJECT may be used within each PROXY function to simplify implementation and
factor out common code. Each forwarding function in the PROXY can take into account the exact pre- and
post-call action requirements of functions on the target.

However, the cost of specialization is often generality. Where pre- and post-call actions between many of
the forwarding functions is similar it must be repeated. If the actions for each function forwarded are the
same, all the functions will follow the same structure, differing only in the target function called. Each
EXECUTE-AROUND PROXY is written specifically for a single target class or class hierarchy, template-
based genericity is not supported. If genericity is a genuine issue, and function forwarding is similar for
all functions, EXECUTE-AROUND POINTER provides an alternative to EXECUTE-AROUND PROXY.

EXECUTE-AROUND POINTER

Provide a SMART POINTER object that executes actions before and after each function call on an object,
given that the actions performed are the same for all functions.

Example: Loading and Saving State

Revisiting a previous example, consider a slightly different interface to the table class:

class table
{
public:
 void lock() const; // acquire lock for reading
 void lock(); // acquire lock for writing
 void unlock() const; // release read lock
 void unlock(); // release write lock
 void load() const;
 void save();
 bool changed() const;
 value_type query(key_type) const;
 void modify(key_type, value_type);
 void reset(key_type);

};

The locking functions are as before, but now one more modifier function, reset, has been shown and a
query function, changed, has been added. changed returns true if the state of the object has changed
since it was loaded. The result of manipulating the object, through either modify or reset, may be the
same state as before, in which case a call to changed should return false. The table_view class
can be modified to avoid unnecessary saves:

class table_view
{
public:
 table_view(table *to_view)
 : target(to_view)
 {
 }
 value_type query(key_type key) const
 {
 locker<const table> critical(*target);
 target->load();
 return target->query(key);
 }
 void modify(key_type key, value_type value)
 {
 locker<table> critical(*target);
 target->load();
 target->modify(key, value);
 if(target->changed())
 target->save();
 }
 void reset(key_type key)
 {
 locker<table> critical(*target);
 target->load();
 target->reset(key);
 if(target->changed())
 target->save();
 }

private:
 table *target;
};

The lock–load–change–save-if-changed–unlock code structure will be repeated for each non-const
function, and the lock–load–query–unlock structure for each const function. Such code repetition
suggests refactoring is necessary, but the only standard refactoring possible in table_view is to
collapse the save-if-changed code into a single function, reducing two lines of code to one. The basic
repetition survives.

Another issue that may arise is the coupling of the code in the PROXY class, table_view, to the target
class, table. With the exception of the forwarded functions the mechanical details are independent of
the specific target type. Whether or not this matters to the programmer depends on how commonly such a
loading/saving framework is used and reused. However, the question of genericity contains the seeds of a
solution to factoring out common code. A SMART POINTER is a specialized form of PROXY that presents a
familiar syntax to programmers and can be used to factor out common access code:

value_type reading(loading_ptr<const table> data, key_type key)
{
 return data->query(key);
}

void writing(loading_ptr<table> data, key_type key)
{
 data->reset(key);
}

The loading_ptr can overload operator-> to perform the locking and loading as necessary. Alas,
there is a problem with saving and unlocking: Who performs these actions? They must take place after the
target function, e.g. reset, has been called, which is after the result of operator-> has been returned
but before the end of the statement.

The lifetime of a temporary object is until the end of the full expression in which it is created, which
conventionally means it is destroyed at the end of the statement. If operator-> returns a temporary
object instead of a raw pointer the destruction of the temporary can perform the necessary clean-up
actions after the function call. The temporary can also provide its own operator-> to perform the
actions before hand. operator-> chains, meaning that the operator-> on the temporary will be
called automatically when the operator-> on the SMART POINTER is called:

template<typename type>
class loading_ptr
{
public:
 loading_ptr(type *to_load)
 : target(to_load)
 {
 }
 tmp_loader<type> operator->() const
 {
 return tmp_loader<type>(target);
 }

private:
 type *target;
};

The loading_ptr class delegates responsibility for executing-around to a temporary object whose
existence is transparent to the user:

template<typename type>
class tmp_loader
{
public:
 explicit tmp_loader(type *to_load)
 : target(to_load), is_locked(false)
 {
 }
 ~tmp_loader()
 {
 if(is_locked)
 {
 save_if_changed(target);

 target->unlock();
 }
 }
 type *operator->()
 {
 target->lock();
 is_locked = true;
 target->load();
 return target;
 }
private:
 type *target;
 bool is_locked;
};

Overloading can be used to differentiate between const target objects, which need not be saved, and
non-const target objects, which need to be checked before being saved:

template<typename type>
void save_if_changed(type *target)
{
 if(target->changed())
 target->save();
}
template<typename type>
void save_if_changed(const type *)
{
}

Problem

How do you define an EXECUTE-AROUND PROXY when the execute-around actions performed on a target
object are the same for all functions? An EXECUTE-AROUND PROXY simplifies the safe use of individual
member functions on an object that must have an EXECUTE-AROUND OBJECT applied to it for correct use.

If the pre- and post-call action code for each forwarding function is the same or similar (within the reach
of similarity defined for overloading), the only difference between functions is the forward function call
itself, which differs in name and arguments. Such code repetition is tedious and suspicious, easily falling
prey to the familiar problems of copy-and-paste coding.

Making the code generic in some way is attractive, but an EXECUTE-AROUND PROXY class is tied to the
target class or class hierarchy it is written for. It cannot be made generic with respect to the target class
because each function in the target must have a corresponding forwarding function in the PROXY.

The only PROXY realization that supports genericity is the SMART POINTER. SMART POINTERS provide a
natural working idiom for programmers, with familiar syntax and tradeoffs. Alas, one of the tradeoffs is
that the only common action that can be factored out in the execution of operator-> is one that
executes on dereferencing the target object for use. operator-> cannot execute actions after it returns.

Solution

Define a SMART POINTER whose operator-> returns a temporary SMART POINTER [Henney1996,
Stroustrup2000]. The temporary's operator-> performs the action before dereferencing for any
member function call, and its destructor performs the action after. The temporary lives until the end of the
full expression in which it is created. This encloses the member function call, but may wrap anything
executed in the same expression after it.

An EXECUTE-AROUND POINTER works in part because calls to operator-> are chained automatically
by the compiler until a raw pointer type is returned. One consequence of the language and this design is
that operator* cannot be supported with the same semantics as it does not chain, and there is no way
of overloading operator.. However, common mechanism is factored out for all calls, and this can be
made generic.

An EXECUTE-AROUND POINTER is a specialized form of EXECUTE-AROUND PROXY, and therefore shares
many of the same consequences. For instance, as a SMART POINTER other roles may be added to it, such as
reference counting for object lifetime management.

EXECUTE-AROUND FUNCTION

Define a function that executes actions before and after the execution of a sequence of statements passed
in as an object or function.

Example: Recoverable Objects

A transaction is a set of actions taken together that have either a successful outcome, changing the state of
the system in an atomic, durable, and predictable fashion, or an unsuccessful outcome, in which case the
system's state is as it was before the transaction. An object whose changes are either committed or rolled
back as a result of a transaction is said to be a recoverable object [COSS]. Interpreted in the context of
C++, with thrown exceptions indicating failure, a recoverable object offers the strong guarantee of
exception safety. A general interface for recoverable types could be captured as

class recoverable
{
public:
 virtual void begin() = 0;
 virtual void commit() = 0;
 virtual void rollback() = 0;

};

Classes for recoverable objects can implement this interface by inheritance along with the relevant
interface for using the object. Here is an example of an arbitrary resource class with these semantics:

class recoverable_resource
 : public resource, public recoverable
{
public:
 virtual void begin()
 {
 old_self = new body(*self);
 }
 virtual void commit()
 {
 delete old_self;
 old_self = 0;
 }
 virtual void rollback()
 {
 delete self;
 self = old_self;
 old_self = 0;
 }
 // functions for use between begin and commit/rollback
private:
 struct body
 {

 };
 body *self, *old_self;
};

The HANDLE–BODY representation is used to support the commit-or-rollback semantics. Code to check
constraints has been omitted for brevity, for instance whether or not the object is already within a
transaction, or to ensure that a transaction is not initiated when the stack is unwinding from an existing
exception. A std::stack could be used to support transaction nesting rather than the flat model
supported above with a single pointer, old_self. A thrown exception is taken to mean failure, and
hence a need to rollback:

void transaction(recoverable_resource *target)
{
 target->begin();

 try
 {
 // sequence of actions involving target
 }
 catch(...)
 {
 target->rollback();
 throw;
 }
 target->commit();
}

This code fully takes exceptions into account, branching on the outcome. The user is required to call the
pre- and post-sequence actions correctly otherwise the state of the object, and possibly the system, can
become corrupted.

An EXECUTE-AROUND OBJECT encapsulates the actions and decisions in the code above:

class recoverer
{
public:
 recoverer(recoverable *to_recover)
 : target(to_recover)
 {
 target->begin();
 }
 ~recoverer()
 {
 if(std::uncaught_exception())
 target->rollback();
 else
 target->commit();
 }
private:
 recoverable *const target;
};

The revised sample code for using a recoverable object safely becomes

void transaction(recoverable_resource *target)
{
 recoverer scoped(target);
 // sequence of actions involving target
}

This is a more memorable and safer model for the programmer. It still has the disadvantage that that there
is still nothing to stop the programmer forgetting to use an EXECUTE-AROUND OBJECT to keep their
resource safe, or to prevent the programmer misusing the begin, commit, and rollback functions in
the public interface.

The simplest way to prevent a public user accessing a feature is to make it private. This applies to both the
recoverable and resource interface classes:

class recoverable_resource
 : private resource, private recoverable
{
public:

private:
 // all functions previously public are now private
};

At first sight this perhaps seems a little drastic: All features of interest are now private. Being prevented
from any form of use at all prevents users from misusing features! The current object can use the private
functions, as can any function to which it passes the this pointer. Thus, when a hook for callbacks is
introduced the solution is more liberal than it appears initially:

class recoverable_resource
{
public:

 template<typename unary_function>
 void apply(unary_function callback)
 {
 recoverer scoped(this);
 callback(this);
 }

};

A function or FUNCTION OBJECT may be defined to execute against a resource object:

void transaction(resource *target)
{
 // sequence of actions involving target
}

Given a pointer to a recoverable_resource object, target, executing the transaction
function is simply a matter of setting up a callback:

target->apply(transaction);

Problem

How do you safely group and execute a given sequence of statements that must be enclosed by a pair of
actions, or followed by a single action? An EXECUTE-AROUND OBJECT can perform pre- and post-
sequence actions in the general case, but it cannot treat statements as a group in their own right, i.e. a
block of code to be manipulated and passed around.

Furthermore, there is little that can be checked at compile time to ensure a programmer has remembered
to set up an EXECUTE-AROUND OBJECT in order to run a particular sequence. It is easy to forget, until the
bugs start appearing at runtime.

EXECUTE-AROUND PROXY and EXECUTE-AROUND POINTER provide methods for wrapping member
function calls, which may themselves be groups of actions. However, these wrap only existing functions
on a target object. To extend the kinds of action that may be performed conveniently requires the
definition of several, incompatible, extended EXECUTE-AROUND PROXY classes.

Solution

Provide a function or object that holds the sequence of statements and pass it to another function for
execution. The called function executes the pre- and post-sequence actions as necessary around a callback,
ensuring the atomicity of grouped operations. Any context necessary for the sequence to execute must be
passed in as part of the callback.

As an object, the sequence of statements can be encapsulated in a COMMAND class. A more idiomatic
variation of the COMMAND pattern in this context is the FUNCTION OBJECT pattern, where an object
supports function call syntax by overloading operator(). Operator overloading makes the distinction
between FUNCTION OBJECTs and function pointers transparent. This transparency supports generic
programming and the use of templates, so that the EXECUTE-AROUND FUNCTION itself may be templated
with respect to whatever functional abstraction it is passed.

The EXECUTE-AROUND FUNCTION may be either a member or a global function, depending on whether or
not a target object is involved as the subject of the execute-around actions and the sequence in between.
EXECUTE AROUND METHOD [Beck1997] documented the idiom originally for Smalltalk in terms of a
distinguished target object and a block of code passed in as an object. A similar technique can be used in
Java taking advantage of its inner class feature.

EXECUTE-AROUND FUNCTION applies in many of the same circumstances as EXECUTE-AROUND OBJECT.
The responsibilities are similar, but the control-flow and object structures are effectively the inverse of
one another, and the tradeoffs are different. EXECUTE-AROUND FUNCTION relies on the naming and
encapsulating of usage sequences, often at the expense of class or function proliferation. EXECUTE-
AROUND OBJECT is more flexible and often lighter in use, but it does not encapsulate the sequence as fully
or succinctly. An EXECUTE-AROUND FUNCTION works well when other member functions on an object
already perform their own executing-around and a hook for more general functions is required. An
EXECUTE-AROUND OBJECT may be used in the implementation of an EXECUTE-AROUND FUNCTION.

The Patterns in Practice

Concurrency, in the form of multiple threads or multiple processes, introduces a design context unfamiliar
to many developers, and one fraught with subtleties. If the consequences of concurrency are not fully
appreciated (i.e. the developer must genuinely grok them rather than pay lip service to them), this subtle
design context becomes a subtle debugging context.

The worked example presented here explores the issues involved in creating a thread-safe queue class.
The purpose of the queue is to buffer tasks supplied by one or more producers to consumers that then
handle the tasks. All the producers and consumers are executing in different threads, requiring thread-safe
access of the queue. The control model is push–pull, i.e. the producer pushes tasks into the queue and the
consumer pulls them from the queue.

The queue is implemented as a concrete class, queue. This should not be confused with std::queue
in the standard library, which may be used as part of the underlying implementation. Here is the initial
thread-unsafe implementation:

class queue
{
public:
 void enqueue(task *new_task)
 {
 if(new_task)
 contained.push(new_task);
 }
 task *dequeue()
 {
 task *result = 0;
 if(!contained.empty())
 {
 result = contained.front();
 contained.pop();
 }
 return result;
 }
 size_t size() const
 {
 return contained.size();
 }

private:
 std::queue<task *> contained;
};

The worked example evolves to demonstrate how different context and usage affect the design decisions
taken, drawing the presented patterns together. It is not intended to demonstrate a linear sequence of
refinement, i.e. there is no uniquely correct solution.

Detached Locking

Associating each shared queue object with a mutex is the simplest approach to working with the class in
a threaded environment. Borrowing the mutex class defined in an earlier example:

queue tasks;
mutex tasks_guard;

For global queue objects the associated mutex object should also be visible. In a realistic application,
objects will be passed around discretely and purposefully as arguments, rather than permissively and
casually sitting in global or namespace scope:

void enqueue(queue *tasks, mutex *guard, task *new_task)
{
 guard->lock();
 tasks->enqueue(new_task);

 guard->unlock();
}

Introducing an EXECUTE-AROUND OBJECT simplifies and secures the example code:

void enqueue(queue *tasks, mutex *guard, task *new_task)
{
 locker<mutex> critical(*guard);
 tasks->enqueue(new_task);
}

Attached Locking

The detached model has the apparent benefit of not over-committing the implementation and the interface
of the queue class. The code is not tied to any multi-threading classes. However, the class is intended for
use in a multi-threaded environment, so this decoupling is not as beneficial as it first appears. To use a
queue object correctly and safely a mutex object must always be passed around with it. The
programmer must manage more objects – more objects to be created and destroyed, more objects to be
remembered, more objects to passed around, more scope for error. This association between queue and
synchronization is not coincidental and presents a good target for encapsulation:

class queue
{
public:
 void lock() const
 {
 guard.lock();
 }
 void unlock() const
 {
 guard.unlock();
 }
 // other functions as before
private:
 // other representation as before
 mutable mutex guard;
};

The resulting class is more cohesive, containing its own synchronization mechanism and offering a
lockable interface that may be used with the existing locker class:

void enqueue(queue *tasks, task *new_task)
{
 locker<queue> guarded(*tasks);
 tasks->enqueue(new_task);
}

The encapsulation of synchronization detail offers the queue client independence from representation
and affords its supplier freedom to change. Locking and unlocking do not affect the object's logical state,
hence the use of const member functions and mutable representation.

Proxied Locking

If calling a single operation at a time is how a queue object is commonly used, declaring named locking
objects for each call becomes tedious and error-prone. It is too easy to forget that the queue needs locking:

void enqueue(queue *tasks, task *new_task)
{
 tasks->enqueue(new_task); // unlocked and unsafe
}

The action of some functions may already be atomic, requiring no further synchronization. For instance,
let us assume that on the code generated on the target platforms for queue::size is not subject to race
conditions that would lead to thread contention. The class user must be aware of when such an assumption
is (or is not) valid so as to forego (or include) synchronization code:

size_t size(const queue *tasks)
{
 return tasks->size(); // unlocked and safe
}

An EXECUTE-AROUND PROXY can hide such details:

class queue_proxy
{
public:
 queue_proxy(queue *to_proxy)
 : target(to_proxy)
 {
 }
 void enqueue(task *new_task)
 {
 locker<queue> critical(*target);
 target->enqueue(new_task);
 }
 size_t size() const
 {
 return target->size();
 }

private:
 queue *target;
};

This class presents the user with a simpler, safer, more consistent view of queue usage:

void enqueue(queue_proxy *tasks, task *new_task)
{
 tasks->enqueue(new_task);
}

size_t size(const queue_proxy *tasks)
{
 return tasks->size();
}

An interface base class can be factored out between the proxy and actual queue class to make the
substitutability between them more transparent. Once a proxy has been introduced, it can acquire other
responsibilities, such as object lifetime management through reference counting.

Pointer Locking

An alternative approach to single-call locking is to wrap each use of a queue pointer in a temporary
object that handles the executing-around. The appearance is that of a function call and access to the now-
locked object is granted by having the locker act as a SMART POINTER:

void enqueue(queue *tasks, task *new_task)
{
 lock(tasks)->enqueue(new_task);
}

The benefit this has over an EXECUTE-AROUND PROXY is that it may be made generic. The type doing the
real work can be templated and a typedef provided for syntax sugaring:

typedef tmp_locker<queue> lock;

The underlying code will work for any other class supporting lock and unlock functions:

template<typename lockee>
class tmp_locker
{
public:
 explicit tmp_locker(lockee *to_lock)
 : target(to_lock), is_locked(false)
 {

 }
 ~tmp_locker()
 {
 if(is_locked)
 target->unlock();
 }
 lockee *operator->()
 {
 target->lock();
 is_locked = true;
 return target;
 }
private:
 lockee *target;
 bool is_locked;
};

Whilst this direct use has a certain charm and generality, it is not as transparent as an EXECUTE-AROUND
PROXY is. An EXECUTE-AROUND POINTER retains many benefits from each approach:

template<typename lockee>
class locking_ptr
{
public:
 tmp_locker<lockee> operator->() const
 {
 return tmp_locker<lockee>(target);
 }

private:
 lockee *target;
};

Programmers should be careful about attempting to access the same object twice in a statement using
locking_ptrs: This will cause deadlock if the synchronization mechanism does not allow recursive
locking, i.e. a thread reacquiring a lock it already owns. A potential efficiency issue is that there is no way
of selecting individual function calls for special treatment, e.g. omitting locks for certain queries.

Internal Locking

All the synchronization so far has been external to the queue object. An alternative approach is to make
the queue self-locking, i.e. make it behave like a monitor:

class queue
{
public:
 void enqueue(task *new_task)
 {
 locker<mutex> critical(guard);
 contained.push(new_task);
 }

private:
 std::queue<task *> contained;
 mutable mutex guard;
};

The class and its public member functions encapsulate the locking mechanics, in a similar way to
synchronized methods in Java. This radically simplifies the programmer's view of the class:

void enqueue(queue *tasks, task *new_task)
{
 tasks->enqueue(new_task);
}

The safety of a queue object's behavior is now entirely its own concern. The class author must be careful
not to call other synchronized member functions from within the object if the synchronization object is not
recursive. Similarly, the class author must respect the fact that C++ supports class-level rather than object-

level encapsulation; it is possible for an object to access the private members of another object of the same
class and accidentally bypass the synchronized interface ordinary class users would use.

Self-locking works transparently for single isolated calls, but how can multiple tasks be enqueued or
dequeued without interruption? A self-locking BATCH FUNCTION that operates on sequences rather than
just a single item provides a solution. In the style of the standard library, overloaded versions of
enqueue and dequeue work over iterator ranges rather than specific sequence classes:

class queue
{
public:
 template<typename task_iterator>
 void enqueue(task_iterator begin, task_iterator end);
 template<typename task_iterator>
 void dequeue(task_iterator begin, task_iterator end);

};

There is still an issue if task objects that are enqueued together must be dequeued and handled together:
A BATCH FUNCTION allows multiple enqueuing and dequeuing, but the number dequeued together need
not be the number enqueued together. A COMPOSITE has these properties and provides a suitable
alternative that does not require modification to the queue class interface:

class composite_task : public task
{

private:
 vector<task *> sequence;
};

Internal locking simplifies many common uses of a queue, e.g. single or multiple enqueuing and
dequeuing. However, it does not work well for arbitrary use. For instance, in the following example the
intent is to dequeue a task, use it, and then requeue it, all without interruption:

void requeue(queue *tasks)
{
 task *task_in_hand = tasks->dequeue();
 // handle task_in_hand
 tasks->enqueue(task_in_hand);
}

External locking accommodates this easily with the lifetime of an EXECUTE-AROUND OBJECT
corresponding to the scope of use. If internal locking is the preferred strategy, and synchronization is
recursive, an EXECUTE-AROUND FUNCTION provides a hook for achieving the same effect:

class queue
{
public:
 template<typename unary_function>
 void apply(unary_function callback)
 {
 locker<queue> critical(guard);
 callback(this);
 }

};

The arbitrary task may now be defined as either a function or a FUNCTION OBJECT class:

void requeue(queue *tasks)
{
 task *task_in_hand = tasks->dequeue();
 // handle task_in_hand
 tasks->enqueue(task_in_hand);
}

The function is now passed into the target object for application:

tasks->apply(requeue);

Other Patterns

Table 2 presents other key patterns that are used in this paper. The references given indicate where the
pattern has been formally documented as such or, alternatively, where it has been documented as a
proven, recognizable practice, possibly by a different name.

Name Problem Solution
BATCH FUNCTION
[COSS, Henney1999]

How can a sequence, that is
a repetition of an action, be
treated atomically?

Define a single function that
performs the action repeatedly. The
function is declared to take all the
arguments for each execution of the
action, e.g. an array or iterator, and to
return results by similar means.

COMBINED FUNCTION
[COSS, Henney2000]

How can a common
sequence of actions be
treated atomically?

Define a single function that
performs all the actions together,
managing any atomicity issues. The
function is declared to take all the
arguments and return the results
required by its component actions.

COMMAND
[Gamma+1995]

How can selection of
functionality be decoupled
from its execution?

Represent the function as an object,
providing it with the any necessary
context at construction.

COMPOSITE
[Gamma+1995]

How can a client treat
individual objects and
groups of objects uniformly?

Define a common interface for
individual objects and groups, such
that a group holds other objects via
the common interface, forwarding
requests as necessary.

FUNCTION OBJECT
[Coplien1992,
ISO1998]

How can an object that
essentially defines its
behavior through a single
function be used
transparently alongside
conventional functions in
generic algorithms?

Define the single function as
operator(), supporting
conventional function call notation.
Ensure that the object is accessed
directly rather than indirectly, i.e.
without an extra level of indirection,
otherwise provide a SMART POINTER
to it that also supports
operator().

HANDLE–BODY
[Coplien1992,
Gamma+1995]

How can the representation
of an object be decoupled
from its usage?

Place the abstraction and
representation into separate objects
and hierarchies, so that the
abstraction is accessed via a handle
object and its representation is a
separate, hidden, body object.

PROXY
[Buschmann+1996,
Gamma+1995]

How can a client
transparently communicate
with a target object when the
communication must be
managed?

Provide a proxy that stands in for the
actual target object, forwarding and
managing requests to the target as
necessary.

SMART POINTER
[Meyers1996,
Stroustrup1994,
Stroustrup1997]

How should a PROXY be
defined where control on the
target is the same for access
to any of its members and no
actions are required after the
request has been forwarded?

Define a class that supports
conventional pointer operations, e.g.
operator* and operator->, so
that access to the target object is
provided but is also managed.

Table 2. Thumbnails for patterns used but not documented in this paper, listed alphabetically.

Acknowledgments

My thanks to John Vlissides for his patient shepherding and feedback, Jon Jagger and Mark Radford for
their reviewing, and the Siemens/POSA retreat for its pre-EuroPLoP workshopping of the paper.

References

[Beck1997] Kent Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1997.

[Boost] Boost library website, http://www.boost.org.

[Buschmann+1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal, Pattern-Oriented Software Architecture: A System of Patterns, Wiley, 1996.

[Cargill1996] Tom Cargill, "Localized Ownership: Managing Dynamic Objects in C++", Pattern
Languages of Program Design 2, edited by John M Vlissides, James O Coplien, and Norman L Kerth,
Addison-Wesley, 1996.

[Coplien1992] James O Coplien, Advanced C++: Programming Styles and Idioms, Addison-Wesley,
1992.

[COSS] CORBAservices: The Common Object Services Specification, OMG, http://www.omg.org.

[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Glassborow2000] Francis Glassborow, "Tower of Babel", EXE 14(12), May 2000.

[Henney1996] Kevlin Henney, "C++ Advanced Design Issues: Asynchronous C++", presented at Visual
Tools Developers' Academy, Oxford, September 1996.

[Henney1998] Kevlin Henney, "Creating Stable Assignments", C++ Report 10(6), June 1998.

[Henney1999] Kevlin Henney, "Patterns Inside Out", presented at Application Development '99, July
1999.

[Henney2000] Kevlin Henney, "C++ Patterns: Principles, Idioms and Techniques", presented at OOP
2000, January 2000.

[ISO1998] International Standard: Programming Language - C++, ISO/IEC 14882:1998(E), 1998.

[Meyers1996] Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs,
Addison-Wesley, 1996.

[Murray1993] Robert B Murray, C++ Strategies and Tactics, Addison-Wesley, 1993.

[Stroustrup1994] Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesley, 1994.

[Stroustrup1997] Bjarne Stroustrup, C++ Programming Language, 3rd edition, Addison-Wesley, 1997.

[Stroustrup2000] Bjarne Stroustrup, "Wrapping C++ Member Function Calls", C++ Report 12(6), June
2000.

[Sutter2000] Herb Sutter, Exceptional C++, Addison-Wesley, 2000.

[Taligent1994] Taligent's Guide to Designing Programs: Well-Mannered Object-Oriented Design in
C++, Addison-Wesley, 1994.

