
 1

The Learning Aspect Pattern

Alessandro Garcia Uirá Kulesza José Sardinha Carlos Lucena Ruy Milidiú

Software Engineering Laboratory – SoC+Agents Group
Pontifícal Catholic University of Rio de Janeiro - PUC-Rio - Brazil

{afgarcia, uira, sardinha, lucena, milidiu}@inf.puc-rio.br

Abstract
An intelligent agent has the ability to learn and adapt itself as a result of several events, including its
own actions, its mistakes, its successive interactions with the external world and collaborations with
other agents. As the agents’ complexity increases, object-oriented abstractions cannot modularize the
learning concern, which tends to spread across several system classes. This paper presents the
Learning Aspect pattern, which documents an aspect-oriented solution for the separation of the
learning concern, which in turn improves the system reusability and maintainability.

Intent
The Learning Aspect pattern modularizes the learning concern, totally decoupling the basic agent
structure from the learning protocol.

Context
Engineers of intelligent agents [2, 3, 4] must deal with the agents’ basic functionality, the agent
services that are made available to the clients, and a number of additional concerns, such as learning,
which greatly increase the system complexity. Agents need to learn based on internal and external
events, including their own actions, their mistakes, the successive interactions with the external
world and the collaborations with other agents [1, 2, 3]. The agent design is typically based on
learning machine techniques [2, 3].

In this context, many facets of the learning concern [2, 3, 4] need to be considered, including
the definition of events that trigger the agent learning, the information gathering to enable the
learning process, the specification of the learning knowledge, the implementation of the learning
algorithms to process the gathered information and refine the agent knowledge, and the adaptation of
the current agent knowledge. In this context, the separation of the learning concern is crucial to make
the agent components easier to maintain and reuse.

Example
This section introduces an open multi-agent system that supports the management of paper
submissions for conferences as well as the reviewing process. It is from herein referred to as Expert
Committee (EC). The EC system encompasses user agents that are software assistants to represent
system users in reviewing processes. The basic functionality of the user agents is to infer and keep
information about the corresponding users related to their research interests and their participation in
scientific events.

In addition to their basic functionality, user agents can collaborate with each other; the
collaboration concern comprises the roles [26, 27] played by the agents. Each role represents
collaborative activities in specific contexts. Each EC agent plays different roles, but the main ones
are chair and reviewer. User agents play these roles in order to cooperate with each other. Classes are
used to represent the basic functionalities of the agent types and the different roles.

 2

Collaboration

Agent

goals
plans
agents
addAgent()
removeAgent()
…

UserAgent

researchInterests
agenda
publications
reviews
addPCparticipation()
…

Plan

goal
agent
preConditions()
posConditions()
clone()
createObject()
executePlan()
…

DistributionPlan

executePlan()
distributePapers()
...

JudgementPlan Judgement
ReceptionPlan

executePlan()
judgeProposal()
...

executePlan()
evaluateResponse()
...

Basic Functionality

RevisionProposal

reviewer
Paper
deadlines
isAccepted()
getReviewer()
getPaper()
…

Chair

papers
submissionDeadline
reviewDeadline
getPapers()
getReviewers()
...

Reviewer

chairName
papersToReview
setChair()
...

Collaboration

Role

collaboratingAgents
collaborationProtocol
getName()
addAgent()
removeAgent()
…

Figure 1. Object-Oriented Design for the Agent Types and Roles (Without Learning)

Agent types and roles are associated with plans, which are also represented by separate classes.
Each role has a set of plans which are used to implement more sophisticated collaborative activities.
The chair role has plans for distributing review proposals; the reviewer role has plans for judging the
chair proposals. The chair and reviewers negotiate with each other for performing reviews. There are
other plans to address user workloads and invitations to new reviewers. Figure 1 shows classes
representing the basic functionalities of the agent types and some examples of roles and plans in the
EC system; it does not address the learning concern.

EC agents also incorporate the learning property, using two widely-applied learning techniques
to learn the user preferences: Temporal Difference Learning (TD-Learning) [2] and Least Mean
Squares (LMS) [2]. The reviewer role uses TD-Learning in order to learn the user preferences in the
subjects he/she likes to review. The chair role uses LMS to learn the reviewer preferences. In order
to gather information to the learning purpose, user agents supervise the executions of their own
actions (methods), the feedback from the system users, the interactions with multiple environment
components and the inter-agent collaborations. Figure 2 presents the learning-related components in
addition to the design introduced in Figure 1.

The combination of the Observer pattern [5] with the Strategy pattern [5] is a flexible approach
to the object-oriented design of the learning concern [6, 7, 8]. The Observer pattern implements the
mechanism for event monitoring and information gathering, while the Strategy pattern makes it
flexible with respect to the learning strategies. Consider a concrete example of this approach in the
context of the EC system, as shown in Figure 2. In such a system, the goal of the Observer pattern is
to notify the learning components of relevant events that trigger the learning process. Operations on
Plan, Agent, Role classes are monitored to provide the learning component with contextual
information and start the learning process. The Observable component is an interface and not an
abstract class because the observable classes already extend an abstract class (JADEAgent). Several
object-oriented programming languages do not support multiple inheritance. Java, the most used
language for implementing software agents [4, 15, 18], does not support this feature. The Agent and
Role classes do not directly implement the Observable interface because some agents and roles
have not the learning property. The LearningComponent class implements the Strategy pattern and
represents a family of different algorithms that implement the learning techniques. The TD-
Learning and LMS subclasses implement the specific learning algorithms.

 3

Agent RevisionProposal

reviewer
Paper
deadlines
currentPaperInterest
proposalEvaluation
isAccepted()
getReviewer()
getPaper()
getPaperInterest()
getEvaluation()
…

Observable

addLC()
removeLC()
notifyLC()

LMS
processInformation()
getLR()
…

Learning
Component

goals
plans
agents
addAgent()
removeAgent()
…

Role

collaboratingAgents
collaborationProtocol
getName()
addAgent()
removeAgent()
…

Chair

papers
learningComponents
submissionDeadline
reviewDeadline
addLC()
removeLC()
notifyLC()
getPapers()
getReviewers()
...

Reviewer

chairName
papersToReview
learningComponents
setChair()
addLC()
removeLC()
notifyLC()
…

JADEAgent

getName()
moveAgent()
beforeMove()

UserAgent

researchInterests
agenda
publications
reviews
learningComponents
addPCparticipation()
addLC()
removeLC()
notifyLC()
…

Plan

goal
agent
preConditions()
posConditions()
clone()
createObject()
execute ()
…

DistributionPlan

learningComponents
addLC()
removeLC()
notifyLC()
execute ()
distributePapers()
...

JudgementPlan Judgement
ReceptionPlan

learningRate
processInformation()
…

TD-Learning
processInformation()
getTD()
getReward()
setReward()
…

Strategy
pattern

learningComponents
addLC()
removeLC()
notifyLC()
execute ()
judgeProposal()
...

learningComponents
addLC()
removeLC()
notifyLC()
execute ()
evaluateResponse()
...

Legend:
– learning-specific members
– methods with some learning code
learning-specific classes

Collaboration

Learning

Collaboration
Basic

Functionality

public Result judgeProposal(...) {
...
lc.processInformation();
...

}

Figure 2. Learning: the Observer Pattern with the Strategy Pattern.

However, the object-oriented design of the learning concern has a huge impact on the agent

structure. As shown in the figure, although part of the learning concern is localized in the classes of
the Strategy pattern, learning-specific code replicates and spreads across several class hierarchies of
a software agent. Several participants (e.g. Chair, Reviewer, UserAgent, and Plan subclasses)
have to implement the observation mechanism and consequently have learning code in them. Some
classes (e.g. the RevisionProposal class) have learning-specific knowledge. Adding or removing
the learning code from classes requires invasive changes in those classes.

Note that even if we try to refactor the object-oriented solution presented in Figure 2, we cannot
find a more modular solution. One alternative solution is to try to move the learning-specific
methods and attributes from the agent classes to a new class. However, the following problems still
remain: (i) the agent classes need to keep an attribute with a reference to this new learning-related
class, and (ii) the code relative to information gathering remains scattered over the methods on other
agent classes (for example, the method judgeProposal() in Figure 2). As a result, the learning
concern still crosscuts multiple class hierarchies representing other agent concerns, such as
collaboration and the agent’s basic functionality. This problem happens because learning is a
crosscutting concern independently of the object-oriented decomposition used.

 4

Problem
Object-oriented abstractions do not support the separation of the learning concern and other agent
concerns. The design and implementation of the learning concern tend to affect or crosscut many
agent classes and methods. This makes it hard to distinguish between the learning protocol and other
agent concerns involved [9, 11, 20, 21]. Adding, removing or modifying the learning concern
to/from a system is often an invasive, difficult to reverse change. How do we separate the learning
concern from the other agency concerns? The following forces emerge from this problem:

• Reusability. The basic learning protocol should be easy to reuse to different agent types and
agent roles.

• Readability and Maintainability. Agent classes, which modularize the agent’s basic
functionality, should not be polluted with learning-specific knowledge. Moreover agent
classes should not be mixed with invocations of learning-specific methods in order to improve
the system readability and maintainability.

• Ease of Evolution. The design of the learning concern should be easy to evolve as new
learning-related requirements need to be satisfied. Changes on the definition of observed
events and on the learning strategies should not affect the basic agent functionality.

• Code Replication. The design solution should minimize code replication across different
classes and methods of the multi-agent system.

• Flexibility. The design should be flexible enough to support the association of different
learning strategies with distinct agent types and role classes.

• Transparency. The design solution should support the learning behavior into existing systems
in a way that is transparent to the rest of the system.

• Generality. The solution should be general enough to support the modularization of the
learning concern independent of the used machine learning techniques.

Solution
Use aspects to improve the separation of the learning concern. Learning aspects are used to
modularize the entire learning concern, including the learning-specific knowledge and the
information gathering. The Learning aspect separates the learning protocol from agent classes, such
as agent types, plans, and roles. By using Learning aspects, we define when and how the agent
learns. They specify how to extract information from diverse agent components which are necessary
to enable the agent learning. The Learning aspects connect the execution points (events) on different
agent classes with the corresponding learning components, making it transparent to the agent’s basic
functionality the particularities of the learning algorithms in use. These aspects are able to crosscut
some agent execution points in order to change their normal execution and invoke the learning
components. The execution points include the change of a knowledge element, execution of actions
on plans, roles, and agent types, or still some threw exception. Auxiliary classes are used to
implement different learning techniques.

Structure
Figure 3 illustrates the structure of the Learning Aspect pattern. The design notation is based on the
ASideML modeling language [16, 17], which is used throughout this paper. This language extends
UML with notations for representing aspects. The notations provide a detailed description of the
aspect elements. In this modeling language, an aspect is represented by a diamond; it is composed of
internal structure and crosscutting interfaces. The internal structure declares the internal attributes
and methods. A crosscutting interface specifies when and how the aspect affects one or more classes
[16, 17]. Each crosscutting interface is presented using the rectangle symbol with compartments

 5

(Figure 3). A crosscutting interface is composed of inter-type declarations, pointcuts (set of join
points) and advices. The first compartment of a crosscutting interface represents inter-type
declarations, and the second compartment represents pointcuts and their attached advices. The
notation uses a dashed arrow to represent the crosscutting relationship, which relates one aspect to
classes and/or aspects.

Information
Gathering

<< crosscutting
interface >>

events_() init()
learn()
...

init()
learn()
adaptKnowledge()
...

Agent

Role

Plan

events_()

Information
Gathering

Learning
Component

learningRate
processInformation()
...

knowledge1
...
setKnowledge1()
...

Learning
Knowledge

*

Specific
Learning

<< crosscutting
interface >>

<< crosscutting
interface >>

Learning

operation1()
...

knowledge
elements

Figure 3. The Static View of the Learning Pattern.

The Learning Aspect pattern has four participants:

• Learning Aspect
- defines the general learning protocol.

• Specific Learning Subaspect
- implements the part of the learning concern that is specific to an agent type or role.

• Learning Component
- implements a specific learning technique.

• Knowledge Element
- provides relevant events and contextual information for learning purposes – this element
can be a plan class, an agent class, a role class, or other classes that are part of the agent.
They do not have any learning-specific code.

In the structure of the Learning pattern (Figure 3), some parts are common to all instantiations of

the pattern, and other parts are specific to each instantiation. The common parts are:
1. The general learning protocol (Learning Aspect):
 a. learning components are initialized,
 b. events are sensed,

 6

 c. contextual information is gathered,
 d. learning components are called, and
 e. the agent knowledge is adapted.
2. The list of Learning Components in the Learning Aspect, i.e. the references to components

that implement more sophisticated learning strategies.
3. The learning-specific knowledge.
4. The general structure of the Learning Components.

The specific parts are:
5. The definition of the specific events associated with an agent type or role.
6. The specific information gathering.
7. The initialization of specific learning components used.
8. The adaptation of the agent knowledge.
9. The implementation of the specific Learning Components.

The purpose of the Learning aspect is to make the agents able to learn. The Learning aspect

extends the agent classes to introduce the learning protocol to them. The Learning aspect has three
main parts: the aspect itself and two crosscutting interfaces. The aspect holds the list of specialized
learning components, and the methods to update the agent knowledge since new conclusions are
obtained from the learning components. The crosscutting interfaces define how the Learning aspect
crosscut different classes of the software agents.

The InformationGathering interface defines the join points that describe the relevant events
and the information which must be gathered from the agent/role classes in order to enable the
learning process. This interface contains the advices which invoke either methods responsible for
implementing a learning behavior or a specific learning component. The advices usually run after
executions of methods on agent classes, role classes and plan classes, and other classes eventually
associated with the agent. The LearningKnowledge interface introduces different learning-specific
attributes and methods into different agent/role classes based on inter-type declarations.

Note that all the learning code is removed from the agent classes and is separately implemented
in associated learning aspects, as explained above. The learning code consists of learning aspects and
auxiliary classes devoted to implement specific learning strategies. When the learning aspects are
woven with the system code, they essentially affect several agent classes; the weaving process is
required to compose the learning concern with the other agent concerns, such as the agent’s basic
functionality and roles.

Dynamics
Figure 4 presents the basic pattern dynamics: (i) the Learning Aspect detects that a relevant operation
(join point) on an agent/role class was performed, (ii) the Learning Aspect intercepts this operation,
(iii) the Learning Aspect gathers event-related information through the advice parameters, (iv) the
Learning Aspect optionally updates some learning-specific knowledge, (v) the Learning Aspect
selects and calls the corresponding Learning Components, providing them with the event-related
information, (vi) the Learning Components process the new information, (vii) if they get a
conclusion, the Learning Aspect updates the attributes of the agent/role classes.

Several events can trigger the agent learning [1, 2, 3, 4], including the execution of internal
agent actions, throwing of exceptions, messages exchanged between agents, and events sensed in the
external environment. The pattern dynamics is illustrated in the next section in terms of the example.

 7

:Specific
Learning:Plan

learn()

execute()

events_(AgentClass)

:Learning
Component

operation()

setKnowledge()

processInformation()

conclusion

adaptKnowledge()

:Agent:Knowledge
Element

setLearningKowledge()

Figure 4. Dynamic View of the Learning Aspect Pattern

Solved Example
Figure 5 illustrates the pattern instantiation for the EC system. The Learning aspect and its
subaspects crosscut about 12 different classes in this system. However, the figure only presents a
partial set of the classes affected by the learning aspects; it shows the Reviewer class, the
RevisionProposal class, the UserAgent class, and the JudgementPlan class. The Learning
aspect has two subaspects: ChairLearning and ReviewerLearning; Figure 5 illustrates only the
ReviewerLearning subaspect.

paperInterest
evaluation
...
getInterest()
...

Learning
KnowledgeRevisionProposal

reviewer
paper
deadlines
isAccepted()
getReviewer()
getPaper()
…

<< crosscutting
interface >>

events_()

Information
Gathering

<< crosscutting
interface >>

Information
Gathering

<< crosscutting
interface >>

init()
learn()
adaptKnowledge()
...

Learning

init()
learn()
getResponse()
...

Reviewer
Learning TDLearning

processInformation()
getTD()
getReward()
setReward()
…

Reviewer

UserAgent

JudgementPlan

execute()
judgeProposal()
...

Learning
Component

learningRate
processInformation()
...

*

events_()

Figure 5. The Learning Pattern for the Reviewer Role.

 8

The ReviewerLearning aspect affects the action of judging a proposal in order to learn the
user preferences. The execution of the judgeProposal() method on the JudgementPlan class is
an important event for the learning purpose; once the judgment is concluded, the judgement-related
information is used by the learning aspect in order to learn about the user preferences. The
ReviewerLearning aspect catches the information associated with the proposal judgement and the
associated learning component is invoked (the TDLearning class in this case). The
ReviewerLearning aspect also intercepts methods on the Reviewer class, and on the
UserAgent class. Figure 5 also illustrates how the LearningKnowledge interface of the
Learning aspect modifies the structure of the RevisionProposal class. This interface introduces
the attributes paperInterest and evaluation and the associated “setters” and “getters” so that
the chair role can learn based on the reviewer evaluation.

Figure 6, presents the pattern behavior when the ReviewerLearning aspect detects that an
important action on an agent plan was performed and learning is required:

• The judgement plan is executed.
• Judgement actions are performed by calling the method judgeProposal().
• The ReviewerLearning aspect detects the judgement result by intercepting the end

of the method execution.
• This aspect gathers the information needed from the plan context, i.e. the

RevisionProposal object.
• The aspect updates the RevisionProposal object so that the chair can learn based on

the reviewer judgement – it updates this object state by invoking the methods
setPaperInterest() and setEvaluation(), both of them introduced by the
Learning aspect.

• The ReviewerLearning aspect selects and calls the corresponding learning
components, the TDLearning class in this case, and provides them with the contextual
information.

• The aspect executes its specific algorithms and alternatively gets a conclusion which
leads to the adaptation of the agent knowledge, in this example the update of the user’s
research interests in the UserAgent class.

:Reviewer
Learning

:Judgement
Plan

learnPreferences()

execute ()

events_(RevisionProposal)

:TDLearning

judgeProposal()

setResearchInterests()

processInformation(RevisionProposal)

getReward()

getTD()

conclusion

adaptKnowledge()

:UserAgent:Revision
Proposal

setPaperInterest()

setEvaluation()

Figure 6. Learning the Reviewer Preferences.

 9

Consequences
The Learning pattern has the following consequences:
• Improved Separation of Concerns. The learning protocol is entirely separated from the other

agent concerns, such as the agent’s basic concerns and interaction. The classes and aspects
associated with other agent concerns have no learning code.

• Reusability. The basic learning protocol is modularized in a generic learning aspect, which can
be reused and refined to different contexts.

• Readability and Maintainability. The agent kernel is not intermingled with invocations of
methods responsible for the learning implementation. As a consequence, the pattern solution
improves readability, which in turn improves maintainability.

• Ease of Evolution. As the multi-agent system evolves, new agent classes may have to be
monitored and trigger the learning process. Agent developers need only to add new pointcuts in
the learning aspects in order to implement the new required functionality.

• Reduced Code Replication. The pattern supports the isolation of the learning protocol in
learning aspects, minimizing the code replication.

• Flexibility. The pattern solution is flexible enough to support the association of different
learning strategies with distinct agent types and role classes.

• Transparency. Aspects are used to introduce the learning behavior into agent classes in a
transparent way. The description of which agent classes need to be affected is present in the
aspect and these monitored agent classes are not intrusively modified.

• Generality. The solution of the Learning Aspect pattern is general enough to support the
modularization of the learning concern independent of machine learning techniques in use. The
pattern solution presents the central components required in the learning techniques.

Although the learning concern is completely defined apart from other agent concerns, the use of
the pattern imposes some problems to the agent designer:
• Required Refactoring. In some circumstances, the realization of the Learning Aspect pattern

requires restructuring of the base code associated with other agent components in order to
expose suitable join points. In this way, capturing the learning concern as aspects sometimes
requires restructuring of the classes and methods to expose suitable join points. For instance,
we have extracted code from existing methods of a plan class into a new method to expose a
method-level join point so that the learning aspects can intercept it. Tools to help in the
refactoring would make it easier to introduce aspects into an existing system.

• Description of Learning Aspects Depends on Specific Core Classes. The names of agent
classes, role classes and plan classes appear in the definition of pointcuts in the learning
aspects. The description of a Learning Aspect cannot be directly applied to other agents.

• Introduction of More Design Elements. The Learning Aspect pattern introduces new design
elements (aspects) to promote the separation of the learning concern. This solution introduces
another level of indirection.

Variants
Reflective Learning. This variant is similar to the aspect-oriented solution presented here. However,
this variant rests on the use of the Reflection architectural pattern [29]. This reflective solution uses
learning meta-objects as an alternative to learning aspects. Each learning aspect is a meta-class and
learning subaspects are defined subclassing this meta-class. The LearningKnowledge crosscutting

 10

interface is defined as attributes internal to the learning meta-classes. The
InformationGathering crosscutting interface is defined using the meta-object protocol that
intercepts the methods calls (events) to objects and redirects the control flow to meta-objects. The
disadvantage of this reflective variant is that it requires a meta-object protocol which usually
introduces changes to the virtual machine. In addition, reflective solutions do not directly support the
composition of the learning meta-classes with other meta-classes modularizing other crosscutting
concerns. As the agents’ complexity increases, good composition mechanisms are essential to the
system reusability and maintainability.
Direct Learning. The Learning Aspect pattern’s basic solution considers indirect training for
knowledge acquisition [2, 3]; it does not explicitly address direct training [2, 3]. The Direct Learning
variant includes two additional classes TrainingExperience and PerformanceMeasure to
support the direct learning [19]. The basic solution of the pattern is reused; however, these additional
classes are associated with the learning component. The PerformanceMeasure class implements
an algorithm that manages rules for standard performance [19]. The Training Experience class
implements the algorithm that generates training examples for the learning algorithm [19].

Known Uses
Developers have been using a design solution similar to the Learning Aspect pattern to implement
the Brainstorm framework for multi-agent systems [20]. This framework implements the reflective
learning variant. The LearningAspect elements are implemented as meta-objects. We have also
implemented the Learning Aspect pattern both in the EC system [21] and in the Portalware system
[10, 11]. The Portalware system has learning aspects associated with information agents in order to
optimize user queries. The queries are intercepted by the aspects, which is the information used by
learning components to build the user profiles. The user profiles are used to optimized the next user
queries.

The EC system is used through this paper to illustrate the pattern application. The “Solved
Example” section presents the pattern instantiation for the ReviewerLearning aspect. There are
other learning aspects in the EC system, such as the ChairLearning aspect - the learning aspect
associated with the chair role. This aspect is connected to a LMS class that implements the LMS
learning technique. This class extends the LearningComponent abstract class. The agent playing
the chair role learns new research interests of a specific reviewer based on the reply of the paper
review proposal. Hence, the implementation of the ChairLearning aspect accesses the attributes
paperInterest and evaluation, which were updated by the ReviewerLearning aspect, so
that the chair role can learn new research interests of the reviewers. The ChairLearning aspect
detects that important actions on chair-specific classes were performed, gets information for the
learning purpose, and triggers the learning process. While the ReviewerLearning aspect “updates”
a specific object (:RevisionProposal) with learning-related information, while the
ChairLearning aspect “accesses” the same object to learn based on the information appended by
the reviewer side.

We know other software projects that implement learning in an object-oriented manner and
could use this pattern. Some of these systems are the following:

• A real system [7, 13] developed for the participation in the Trading Agent Competition (TAC)
[30]. TAC is an international forum designed to encourage high quality research on competitive
trading agents. The multi-agent system in TAC operates in a shopping scenario of goods for
traveling purposes. The artificial agents are travel agents that buy and sell airplane tickets, hotel
rooms, and entertainment tickets for clients. There are two types of intelligent agents in this
system which incorporates learning machine techniques: the Hotel Negotiator Agent and the

 11

Price Predictor Agent. The former uses: (i) a minimax decision tree [3] and an evaluation
function based on perceptrons [2] (neural networks) to model the agent knowledge, (ii) a
Learning aspect to modularize the auction history and the final results of the auctions (learning-
specific knowledge), and the specification of methods called to finalize the auctions (information
gathering) - the events that trigger the agent learning, and (iii) a Learning component that
implements the TD-Learning algorithm. The second agent uses: (i) an exponential smoothing
technique [34] to model the agent knowledge, (ii) a Learning aspect to separate the ask prices and
last predicted ask price (learning-specific knowledge), and the specification of auction-related
methods that are called in each minute of the game (information gathering), and (iii) a Learning
component which implements the Back Propagation [2, 4] and LMS algorithms.

• A system [14] that implements the Tic-Tac-Toe game. The agents here use a minimax decision
tree [3] and neural networks to implement the agent knowledge, and a Learning aspect to
encapsulate the player trajectories and the final result of the game (learning-specific knowledge),
and the specification of methods called to make new plays and to finalize the game (information
gathering). A Learning component was used to implement an algorithm for adaptive dynamic
propagation [3].

See Also
The Learning Aspect pattern is a variant of the Learning pattern [19]. The Learning Aspect pattern is
alternatively related to the Role Object pattern [20] when this pattern solution is used to structure the
agent roles; the learning aspects learn based on the execution of role methods. The Learning Aspect
pattern contains the aspect-oriented implementation of the Observer pattern [22]. The Strategy
pattern [5] can be used to implement different learning strategies. Finally, the implementation of the
Learning Aspect pattern (see below) uses some idioms [23] for the AspectJ language [24], like
Template Advice, Composite Pointcut, and Advice Method.

Implementation
We describe below some guidelines for implementing the Learning Aspect pattern. We give AspectJ
[24] code fragments to illustrate a possible implementation of the pattern, describing details of the
EC example.

Step 1: How to define a Learning Aspect?

A Learning Aspect must define the general learning protocol. This aspect must define the attributes
and methods common to all the learning aspects in the system. For example, it holds a reference to
the associated learning components, an abstract method to initialize these components, and an
abstract method to invoke the learning components.

 The EC system contains the implementation of a general Learning aspect to both chair and
reviewer agent roles. This aspect is declared as abstract. Note that the initialization method is called
by an after advice, which is in turn associated with an abstract pointcut. In AspectJ, pointcuts are
used to define which join points on the object execution the aspect is interested to observe. These
pointcuts must expose as parameters the information (object instances) necessary to be used in the
aspect context. Advices associated with these pointcuts invoke methods on aspects and classes, and if
it is necessary they pass the information gathered in the pointcuts as arguments. The
learningInstantiation pointcut describes when a specific learning aspect should be initialized; it
is abstract because it depends on the agent type or role class associated with the specific learning
aspect. This aspect also specifies the methods: (i) learnPreferences()– which is responsible for

 12

invoking the learning components; and (ii) updatePreferences()– which updates the user research
interests, after the execution of the learning algorithm.

public abstract aspect Learning {

...
protected Hashtable Role.learningComponents = new Hashtable();

protected void abstract init(Role role);

protected abstract pointcut learningInstantiation(Role role);

 after(Role role): learninInstantiation(role) {
 System.out.println("<* Learning *> initialization:" + ((Role)role).getName());
 init(role);
 }

 public Hashtable abstract learnPreferences(Hashtable currentInterests,
 Vector my_keywords, boolean newDecision, int currentPaperInterestDegree);

public void updatePreferences(Hashtable currentInterests, Hashtable newPreferences)
{ ...}

 ...
}

Step 2: Why the learning aspect must be singleton?

In general, each agent instance must have its own learning aspect. As a consequence, learning
aspects must be instantiated per Agent instance. The current version of AspectJ supports the
specification of per-object aspects. We could describe the instantiation of the Learning aspect using
perthis:

public abstract aspect Learning perthis(Agent) {…}

However, the use of perthis restricts the scope of the aspect. When one AspectJ aspect is declared
to be singleton or static, its scope is the whole system and the aspect can crosscut all system classes.
Per-object aspects can only crosscut the object with which it is associated. Since the learning
protocol crosscuts several classes, not only the Agent class or the Role class, the perthis clause
cannot be used in this context. As a result, you have to declare learning aspects as singletons and
introduce the methods and attributes to the Agent and Role classes. This was the strategy followed in
the definition of the learningComponents attribute described in Step1.

Note that although the structure of the Learning Aspect pattern does not describe these aspect
members as part of a crosscutting interface, they have to be introduced due to AspectJ restrictions.
They are declared as protected, which means that “they are protected to the aspects”: only code in the
aspect and subaspects can see these fields and methods. If the Agent or Role class has other protected
members named in the same way (declared in the Agent or in another class) there will not be a name
collision, since no reference to these members will be ambiguous. The use of inter-type declarations
complicates the design of the Learning aspect since it requires the agent or role instance to be
exposed as a parameter in each advice of the Learning aspect.

 The Learning aspect in the EC system is implemented in AspectJ as a singleton aspect since it
crosscuts many system classes. In this sense, the Role instance is passed as a parameter in the
advices of the Learning aspects so that the advice code can determine which system’s role is in
charge of being adapted.

 13

Step 3: How to define the general crosscutting interface for information gathering?

The Learning aspect must define the abstract pointcut events()responsible to declare join points in
the object execution where the learning algorithms must be invoked. This pointcut must be refined in
the concrete learning subaspects. You should use: (i) the Composite Pointcut idiom [23] when there
are several events to be monitored, and (ii) the Advice Method idiom [23] for deciding whether an
event is relevant or not for the learning process.

public abstract aspect Learning {

...

protected abstract pointcut events(RevisionProposal proposal, Plan plan);

 ...
}

Step 4: How to define the crosscutting interface for specifying the learning knowledge?

You must define each element of the learning knowledge as an inter-type declaration in AspectJ.
Sometimes, the learning knowledge affects several agent classes and role classes. In these cases, you
should use the Introduction Container idiom [23].

 In the EC system, the abstract Learning aspect introduces the attributes evaluation and
paperInterest in the RevisionProposal class, in order to become possible that the chair and
reviewer roles can learn based on the paper evaluation.

public abstract aspect Learning {
 ...
 private Hashtable RevisionProposal.evaluation = new Hashtable();

 private int RevisionProposal.paperInterest = 0;

 public Hashtable RevisionProposal.getEvaluation() {
 return evaluation;
 }

 public void RevisionProposal.setEvaluation(Hashtable evaluation){
 this.evaluation = evaluation;
 }

 public int RevisionProposal.getPaperInterest(){
 return paperInterest;
 }

 public void RevisionProposal.setPaperInterest(int interest) {
 this.paperInterest = interest;
 }
 ...
}

Step 5: How to define a specific Learning aspect?

You must create learning subaspects to define the learning behavior specific to an agent type or role
context by extending the abstract Learning aspect.

 In the EC system, we implemented the specific learning aspects to both chair and reviewer agent
roles. An agent playing the chair role learns new research interests of a specific reviewer based on
the reply of the paper review proposal. An agent playing the reviewer role learns new research

 14

interests of a user based on its feedback. Since the chair and reviewer learning have common aspects
and are inter-related, we implemented their behavior in an aspect hierarchy, composed by the
Learning aspect and ChairLearning and ReviewerLearning subaspects.

For example, the ChairLearning aspect implements the abstract pointcut events(), defined in
the abstract Learning aspect, by intercepting the method verifyReviewerResponse() of the
ProposalJudgementReceptionPlan class. This pointcut is associated with an after advice, which is
responsible for evaluating the paper revision proposal returned by the reviewers (invoking the
method learnPreferences()). This advice is also responsible for updating their research interests
(invoking the method updatePreferences()), using the information (evaluation and
paperInterest attributes) introduced in the RevisionProposal class.

public aspect ChairLearning extends Learning {
 ...
 // (reviewer name, table of research interests)
 public Hashtable Chair.reviewers = new Hashtable();

 protected pointcut events(RevisionProposal proposal, Plan plan): (
 this(plan) && args(proposal) &&
 execution(void JudgementReceptionPlan.evaluateResponse(RevisionProposal)));

 after (RevisionProposal proposal, Plan plan): events(proposal, plan) {
 boolean acceptedProposal = proposal.isAccepted();
 Paper paper = proposal.getPaper();
 ResearchArea area = paper.getResearchArea();
 Vector paperKeywords = area.getResearchKeywords();
 Hashtable reviewerEvaluation = proposal.getEvaluation();
 int reviewerInterest = proposal.getPaperInterest();
 Reviewer reviewer = proposal.getReviewer();
 String reviewerName = reviewer.getName();

 //getting the reviewer' current interests
 Hashtable reviewerPreferences = (Hashtable)reviewers.get(reviewerName);

 //learning the new user interests
 Hashtable newPreferences = learnPreferences(reviewerPreferences,
 paperKeywords, acceptedProposal, reviewerInterest);

 //update my preferences
 updatePreferences(reviewerPreferences,newPreferences);
 }

 public Hashtable learnPreferences(Hashtable currentInterests,Vector my_keywords,
 boolean newDecision, int currentPaperInterestDegree) {...}
}

 The ReviewerLearning subaspect defines the pointcut events() by intercepting the method
judgeProposal() of the JudgementPlan class. This pointcut is associated with an after advice,
which invokes the method learnPreferences() passing the information about the paper revision
proposal. This invocation results in the update of the reviewers’ research interests based on their
evaluation.

Step 6: How to define learning knowledge specific to an agent type or role?

In general, the learning knowledge is defined only at the Learning aspect (Step 4). However, there is
sometimes a need for defining learning knowledge specific to an agent type or role. In this case, you
only need to define this specific learning knowledge as inter-type declarations in the subaspects.

 The ChairLearning aspect specifies the reviewers attribute which maintains the learning
knowledge about the research interests of the reviewers. This attributed is introduced to the Chair

 15

class. The attribute reviewer is initialized through the poincut learningInitialization()and its
respective advice; this advice runs before the execution of the method sendPapersToReviewer() of
the PaperDistributionPlan class.

public aspect ChairLearning extends Learning {

...
// (reviewer name, table of research interests)
public Hashtable Chair.reviewers = new Hashtable();
...

}

Step 7: How to initialize a specific learning aspect?

A specific Learning Aspect needs to be initialized when a given event happens. The initialization
involves attributes of the specific Learning Aspect, and the associated Learning Components. Use a
pointcut to define when the aspect should be initialized. Use an advice to implement the
initializations, and associate this advice with the initialization pointcut.

 The ChairLearning aspect specifies an initialization pointcut. The triggering event is the
beginning of the paper distribution, i.e. the execution of the sendPapersToReview() method.

public aspect ChairLearning extends Learning {
 ...
 protected pointcut learningInitialization(Agent agent, Reviewer reviewer, List papers):

args (agent, reviewer, papers) &&
 call(public void PaperDistributionPlan.sendPapersToReviewer(Agent,Reviewer,List));

 before (Agent agent, Reviewer reviewer, List papers):
 learningInitialization(agent, reviewer, papers) {
 String reviewerName = reviewer.getName();
 Hashtable reviewer_interests =
 (Hashtable) reviewers.get(reviewerName);
 if (reviewer_interests == null) {
 reviewer_interests = new Hashtable();
 reviewers.put(reviewerName, reviewer_interests);
 }
 // Initialize the research interest of the reviewer
 ...
 }

}

Acknowledgments
We would like to give special thanks to James Noble, our shepherd, for his important comments,
helping us to improve our pattern. This work has been partially supported by CNPq under grant No.
141457/2000-7 for Alessandro Garcia, grant No. 140252/2003-7 for Uirá Kulesza, grant No.
140601/2001-5 for José Sardinha, and by FAPERJ under grant No. E-26/150.699/2002 for
Alessandro. The authors are also supported by the PRONEX Project under grant 7697102900, and by
ESSMA under grant 552068/2002-0 and by the art. 1st of Decree number 3.800, of 04.20.2001.

References
[1] Camacho, D. et al. MAPWEB: Cooperation between Planning Agents and Web Agents. Information &
Security: An International Journal, Vol 8, N 2, pp. 209-238, 2002.
[2] Mitchell, T. Machine Learning. McGraw Hill, New York, 1997.
[3] Russell, S., Norvig, P. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd ed., 2002.
[4] Bigus, J., Bigus, J. Constructing Intelligent Agents Using Java: Professional Developer's Guide Series. 2nd
Edition, John Wiley & Sons, 2001.

 16

[5] Gamma, E. et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.
[6] Kendall, E. et al. A Framework for Agent Systems. Implementing Application Frameworks – Object-
Oriented Frameworks at Work, M. Fayad et al. (eds.). John Wiley & Sons: 1999.
[7] Sardinha, J., Milidiú, R., Lucena, C. Engineering Machine Learning Techniques into Multi-Agent
Systems. Submitted to Intl. Journal of Software Eng. and Knowledge Eng., 2004.
[8] Sardinha, J., Ribeiro, P., Lucena, C., Milidiú, R. An Object-Oriented Framework for Building Software
Agents. Journal of Object Technology, Jan - Feb 2003, Vol. 2, No. 1.
[9] Pace, A., Campo, M., Soria, A. Architecting the Design of Multi-Agent Organizations with Proto-
Frameworks. In: Software Engineering for Multi-Agent Systems II, LNCS 2940, Berlin, Feb 2004, pp. 75-92.
[10] Garcia, A.,Cortés,M., Lucena,C. An Environment for the Development and Maintenance of E-Commerce
Portals based on a Groupware Approach. Proc. of the IRMA’01 Conference, Toronto, May 2001, pp. 722-724.
[11] Garcia, A., Lucena, C., Cowan, D. Agents in Object-Oriented Software Engineering. Software: Practice
& Experience, Elsevier, Volume 34, Issue 5, May 2004, pp. 489 - 521.
[12] Garcia, A., Sant'Anna, C., Chavez, C., Lucena, C., Staa, A. Separation of Concerns in Multi-Agent
Systems: An Empirical Study. In: Software Engineering for Multi-Agent Systems II, LNCS 2940, Jan 2004.
[13] Sardinha, A., Garcia, A., Lucena, C., Milidiú, R. On the Incorporation of Learning in Open Multi-Agent
Systems: A Systematic Approach. Proc. of the 6th AOIS Workshop at CAiSE’04, Riga, Latvia, June 2004.
[14] Sardinha, J., Milidiú, R., Lucena, C., Paranhos, P. An OO Framework for Building Intelligence and
Learning Properties in Software Agents. Proc. of the SELMAS’03 Workshop, Portland, USA, May 2003.
[15] Bellifemine, F., Poggi, A., Rimassi, G. JADE: A FIPA-Compliant Agent Framework. Proc. of the
Practical Applications of Intelligent Agents and Multi-Agents, April 1999; pp. 97-108.
[16] Chavez, C. A Model-Driven Approach to Aspect-Oriented Design. PhD Thesis, Computer Science
Department, PUC-Rio, April 2004, Rio de Janeiro, Brazil.
[17] Chavez, C., Lucena, C. Design-level Support for Aspect-oriented Software Development. Proc. of the
Workshop on Advanced Separation of Concerns at OOPSLA'2001, Tampa Bay, USA, October 14, 2001.
[18] Nwana, H. et al. ZEUS: An Advanced Toolkit for Engineering Distributed Multi-Agent Systems. Applied
Artificial Intelligence Journal, 1999, 13(1):129-186.
[19] Sardinha, J., Garcia, A., Milidiú, R., Lucena, C. The Learning Pattern. 4th Latin American Conference on
Pattern Languages of Programming, SugarLoafPLoP'04. August, 2004, Fortaleza, Brazil.
[20] Amandi, A., Price, A. Building Object-Agents from a Software Meta-Architecture. In: Advances in
Artificial Intelligence, LNAI, vol. 1515, Springer, 1998.
[21] Garcia, A. From Objects to Agents: An Aspect-Oriented Approach. Doctoral Thesis, Computer Science
Department, PUC-Rio, Rio de Janeiro, Brazil, April 2004.
[22] Hannemann, J., Kiczales, G. Design Pattern Implementation in Java and AspectJ. Proc. of OOPSLA’02,
November 2002, pp. 161-173.
[23] Hanenberg, S., Unland, R., Schmidmeier, A. AspectJ Idioms for Aspect-Oriented Software Construction.
Proc. of the EuroPlop’03, Irsee, Germany, June 2003.
[24] AspectJ Team. The AspectJ Programming Guide. March, 2003. http://eclipse.org/aspectj/
[25] Kiczales, G. et al. Aspect-Oriented Programming. Proceedings of the European Conference on Object-
Oriented Programming - ECOOP’97, LNCS (1241), Springer-Verlag, Finland., June 1997.
[26] Fowler, M. Dealing with Roles. Proceedings of the 4th Annual Conference on the Pattern Languages of
Programs, Monticello, Illinois, USA, September 2-5, 1997.
[27] Odell, J., Parunak, H., Fleischer, M. The Role of Roles in Designing Effective Agent Organizations.
Software Engineering for Large-Scale Multi-Agent Systems, LNCS 2603, Springer, April 2003, pp. 27-38.
[28] Bowerman, B., O'Connell, R. Forecasting and Time Series: An Applied Approach. Thomson Learning;
3rd edition, Massachusetts: Duxbury Press, March 1993.
[29] F. Buschmann et al. Pattern-Oriented Software Architecture: A System of Patterns. John Wiley Sons,
1996.
[30] TAC web site.: http://www.sics.se/tac.

