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Abstract. Programming languages are typically considered to be diffi-
cult to implement. However, a programming language tailored to an ap-
plication domain can be an extremely powerful productivity enhancer.
We present a pattern language for implementing languages that gath-
ers together many ideas that are known in the language implementation
community that should be more widely known. By applying this pat-
tern language, productivity can be increased by the blossoming of more
programming languages tailored to a specific purpose.
We begin by discussing some of the dichotomies that shape the language
design process. The pattern language itself consists of patterns describing
various language flavors, and patterns for doing syntactic recognition,
evaluation, and source production.

1 Introduction

Good specification and programming languages provide powerful means of ex-
pression within their domains. While there has been much discussion of when
producing a new language is appropriate, it has largely been provided by authors
as introductory material when describing a new language, and as such, has been
largely cursory.

A decision process for determining if it is appropriate to implement a new
language is difficult to supply. The reason for creating a new language is that
no existing language is satisfactory. One source of dissatisfaction is the lack of
ability of an existing language to capture the information present in a domain.
The other source is the lack of expressiveness regarding the common actions in
a domain. All things are possible in any given Turing-complete language, but
pragmatics dictate that there are advantages of using a language better suited
to given purpose. This is demonstrated by the presence of more than one general-
purpose programming language.

The following is a collection of common situations where a new language is
appropriate. These situations are not intended to be completely distinct.

Single Point of Truth[30] If a single application has more than one descrip-
tion of the same information, then keeping these different descriptions from
conflicting is difficult. The reason why such conflicts exist comes from the
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lack of ability to express the information in a single place. This may oc-
cur either because two or more implementation languages are used and are
not easily cross-callable or the one language is not powerful enough to state
the same truth only once. This is an example of the lack of a language (or
languages) ability to capture the information of a domain.

For example, in the Press Pot Java annotation system[23], a single file main-
tains information describing bytecodes. By generating code from this descrip-
tion language to both C and Java, Press Pot is able to keep the semantic
description always in sync in both the Java front-end and the C back-end.

As another example, in C programs, it is difficult to express a data file format
in a single declaration and from that description drive both serialization
and deserialization without using some sort of description language. From
a description language, serializers and deserializers can be generated and
consistency insured.

Also known as “Once and only Once”[5]. Formalized in [21].

Existing Conventions If there is an existing notation for expressing some for-
malism, a language representation can allow the manipulation and display
of the described information or processing. A domain specific language can
provide expressiveness, exemplified by the conciseness to express an idea as
compared to an equivalent expression in a general purpose language.

For example, regular expression[13], database queries (SQL)[10], tables, molec-
ular diagrams[6], graphs (grap)[27], parsers, equations[28], logic, all docu-
ment formatting all have existing conventions and corresponding computer
languages. The language pic[26], for specifying line drawings mimics the con-
ventions used in verbal description—box; arrow; box.

Configuration The exclusive use of graphical user interfaces to specify the
variants in the behavior of a program limits the abilities of the user and/or
administrator in various ways. Many applications are very general and spe-
cialization for a particular environment is almost always required. A graph-
ical user interface does not readily capture the information in the config-
uration domain. Useful capabilities that a textual configuration language
enables include: automation, version control, and automatic generation. An-
other advantage is that, in many cases, a text editor may be simpler than
any other user interface. Examples include almost every Unix service ever
written—init, cron, mount (fstab), apache, etc. Configuration languages for
interactive programs are also prevalent—elisp, TCL, lua, and gdb.

Glue Expressiveness of actions, as mentioned above, is a motivation for imple-
menting a new language. While there have been general purpose languages
designed for connecting together components in high-level way, none have
become popular. This lack of ability to connect together components in an
ad-hoc fashion has resulted in the use of scripting languages to fulfill that
role. Examples include: Perl, AWK, JSP, ASP, JavaScript, AppleScript, and
TCL.
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2 Design Dichotomies

Once it has been determined that a new language is appropriate, the form of
the language must be determined. Just as we did not give patterns for choosing
whether to implement a language, we do not give patterns for determining the
form of a language. Instead, we provide a characterization of languages based
upon a pair of design dichotomies which we feel greatly shapes language forms.

Psychology, psychiatry, and sociology deal frequently with long standing di-
chotomies of thought. Most famously discussed is the “Madonna-Whore Com-
plex”, a dichotomy in western culture’s view of women. The human mind appears
readily capable of handling complex domains by splitting them into pairs of op-
posing, but inter-related, paradigms. At any given time, the mind’s perspective
will be dominated by one side of a dichotomy, but will be informed by the
other. The eastern concepts of Yin and Yang are idealized expressions of this
tendency—within every extreme are elements of the opposing nature.

2.1 Flavor

The oral, newsgroup, and email tradition of programming talks about languages
in terms of their “flavor” or their “feel”. It is full of discussions of what a given
language “wants to be”, or of what a given language “really is”. Computer lan-
guages are processed by computers, but they are written, read, and debugged by
people. They are vehicles for expression, tools for understanding, and shackles
that must be worn for nearly 50 thousand hours over the life of a programmer.
Perhaps they should be comfortable? But what patterns need we use to achieve
a given flavor?

A good pattern should always be a name for a means of resolving design ten-
sions which the community already knew, but did not have a name for. For some
patterns, the community will need to identify previously unnamed tensions, so
that the pattern may be properly captured. We believe that we have identified
a pair of design dichotomies which exert tension on the flavor of computer lan-
guages. We make no claim that these dichotomies are the only, or even the most
important, conceptual dichotomies in language design.

2.2 The Definitional Dichotomy

We have identified the Definitional dichotomy, which covers a continuum of lan-
guage semantics, holding at one extreme languages which speak in terms of ac-
tions (“Algorithmic” languages), and at the other languages which speak in terms
of truths (“Constraint” languages). The primary semantic content of “Algorith-
mic” languages is instructional, specifying which actions to take, and how to take
them. C, Java, Scheme, Smalltalk, PostScript, and most other “programming”
languages are dominated by the algorithmic side of the definitional dichotomy.
The primary semantic content of “Constraint” languages is descriptive, specify-
ing truths, constraints, and the nature of acceptable processing results. VHDL,
HTML, CSS, Prolog, SVG, and most “configuration” or “data” languages are



4

dominated by the constraint side of the definitional dichotomy. Thus we have
the definitional dichotomy of Algorithmic versus Constraint languages.

2.3 The Structural Dichotomy

We have also identified the Structural dichotomy, which covers another contin-
uum of language semantics, holding at one extreme languages which speak in
terms of hierarchies (“Hierarchy” languages), and at the other languages which
speak in terms of Expressions (“Expression” languages). The primary semantic
content of “Hierarchy” languages is expressed by their containment relationships,
wherein elements derive their meaning relative to their containing parents and
their contained children. XML and Scheme are dominated by the hierarchy side
of the structural dichotomy. The primary semantic content of “Expression” lan-
guages is expressed through the interaction of operators and peer sequence, of-
ten evolving into very complex sequential Expressions. C, Java, SQL, and most
‘imperative’ languages are dominated by the expression side of the structural
dichotomy.

3 The Pattern Language

Having dispensed with whether and what, we come to how. Our pattern lan-
guage addresses how to implement languages that are outside of the domain
of traditional high-level language to machine code compilers. Table 1 is a table
dividing the pattern language into categories based upon the purpose of each
pattern. The listing of patterns from top to bottom is the typical order in which
the patterns are used during language processing. A category which is marked
as optional indicates that not all applications of this pattern language will use
that category of pattern. Cells in the table that contain pattern names indented
represent patterns that are subpatterns—specializations of the pattern at the
top of list. Patterns in the right-most column are patterns that tend to be used
together to implement simple data or constraint style languages.

Each group of patterns is summarized by their purpose:

Higher-order Syntax optional group of patterns that is used when a language
is being implemented by translation into a high-level language.

Base Syntax patterns describing the syntax of the language being implemented.
Parsing Technique patterns describing the parsing techniques used to recog-

nize the language being implemented.
Intermediate Representation patterns describing the representation and im-

plementation used for the input language within the translation system.
Transformation Techniques optional patterns describing very common tech-

niques for doing source to source translation.
Execution Techniques patterns describing techniques for executing languages

that are not implemented using translation to machine code.
Infrastructure patterns describing techniques used in implementing the other

patterns.
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Purpose Patterns

Higher-order Syntax High-order Features
(optional) Language Composition

Embedded Language
Language Extension

Strictly Contained Language Record Language
Base Syntax Parenthesis Language Key-value Pairs

XML Language Delimiter-separated Values
Stanza Formatted Record

Generated Parser Hand-written Parser
Parsing Technique Cascade Parser

Per-type Parser
Recursive-descent Parser

Abstract Syntax Tree (AST) Flat Intermediate
Intermediate Hand-written AST Representation
Representation Generated AST

Commodity AST

Transformation Techniques Lexical Transformation
(optional) Tree Transformation

Virtual Machine Record Consumer
Execution Techniques Interpreter Immediate Execution

Semantic Evaluator

Infrastructure Runtime
Language Output

Table 1. Guide to the Pattern Language



6

The Higher-order Syntax and Base Syntax pattern groups describe common
syntactic choices which occur well before implementation, when the semantics
of a language are still being laid out. While the forces which they resolve are
common to language design, many of them have yet to be named. In general,
Higher-order and Base Syntax patterns will be selected which provide the best
“fit” to the semantics desired for a language.

3.1 High Order Syntax

The first decision when implementing a new language is to decide if the lan-
guage is to be built on top of an existing language and if so, how. The following
patterns give different ways of using an existing language processing system, if
appropriate.

3.1.1 High-order Features Most articulated languages posses many features
which could be expressed as applications of simpler features of the same language.

A feature is some semantic or syntactic aspect of the language that is readily
visible to the programmer. For example, for loops in C are a feature.

When language features can be defined in terms of more primitive features
of the same language, how can this relationship be used to guide and reduce the
cost of implementation?

Many language features can easily be defined as relatively simple applications
of other features of the language. “Syntactic Sugar” are such features, but some
features go deeper. In most languages, for-loops can be defined in terms of
while-loops and if -statements. These features, defined in terms of other features,
are High-order Features, as they are produced through composition of lower
order features, down to and including zeroth order features, which are atomic.

Therefore:
Seek to identify those portions of your language which can be defined as

High-order Features, and keep these definitions available at later design
stages.

If you have enough High-order Features, implementing them using some
transformation pattern, such as Lexical Transformation, or Tree Trans-
formation may become cost effective.

3.1.2 Language Composition The semantics of many richly articulated lan-
guages are most properly seen as compositions of simpler languages.[37]

A single computation may be best described not with a language with a uni-
form flavor, but with multiple languages. The results of the individually described
computations can be performed relatively independently and then composed us-
ing a simple model such as string concatenation.

How should a language be structured when the computation to be described
has pieces that do not fall close together in the definitional or structural di-
chotomy spectrums?
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We are quite good, as people, in dealing with compositions of language struc-
tures and semantics, mixing and matching special purpose language, such as for
medicine or mathematics, with our general purpose language. There is no reason
why we cannot build our processing environments to do the same. The mixing of
both natural languages with each other and of formal languages with each other
are processed in a similar fashion, with lexical markers delimiting the transitions
between different languages.

Some languages have rich semantic features, and you may find yourself hav-
ing difficulty planning an architecture for processing them. This problem is fre-
quently solved by composing the semantics of several languages, and processing
each layer’s language into input for one of the later layers’ language.

Therefore:

Implement rich and subtle languages by transforming them into simpler
languages. Your processing environment should first resolve any High-order
Features in your input language, and should then apply some transformation
technique to produce the composed language for processing.

As noted by Spinellis[37] and others, the Unix troff document typesetting
pipeline is an archetype for this pattern. Languages exist for describing data
graphs in terms of a general purpose language for drawing, which is translated
into lower-level line drawing and text primitives.

3.1.3 Embedded Language You can not lick your elbow, but sometimes it
is the best solution.

Frequently, a given language is almost ideal, save for a small and critical
piece of missing functionality.

You may find that for the most part one particular pattern/paradigm for your
language’s syntax will work well, except for one or two specific and self-contained
cases. Writing in the “majority” language is a good fit for the task at hand, but
even if providing the missing functionality is possible, it is not desirable. The
majority language may be capable of providing the missing functionality, but
the effort to write code to do the task may be too high or too error-prone.
For example, the ProC language is a superset of C, which is resolved by a pre-
processor into C to provide database functionality to C programmers. The use
of another language in combination to C makes writing database code easier—
by reducing the verbosity—and less error prone—by permitting checks against
database schema at compile time, rather than at run time.

Therefore:

Rather than try and “fix” the language for which it is awkward to express
certain semantics, embed another language inside it. [37]

Write pre-processors which “resolve” the Embedded Language into ex-
pressions in the base language, before further language processing. In languages
eventually destined to be interpreted or converted to some “generic” program-
ming language such as C, embedding this higher-order language can be almost
trivial. At worst two parsers and language processing steps must be written, but
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this cost is often mitigated by the fact that the base language is often a popular
language for which many processing tools exist.

ProC; Lex and Yacc’s input languages; and Emacs’ use of Scheme are good
examples of the use of Embedded Language. The embedded language code will
typically be translated to calls into a Runtime.

3.1.4 Language Extension You may be able to lick your elbow, but only
with help.

You have a language that is almost what you need, but is missing some
functionality. Further, the language provides extension mechanisms. What is the
best way to implement additional semantics using those mechanisms?

The forces which drive Language Composition and Embedded Lan-
guages are common; and so, certain types of language enhancements can be
anticipated by a language implementor. As a result, some languages have been
designed to permit extension directly in their existing semantics.[37]

For example, ML provides very robust mechanisms for type and operator
extension; Scheme provides powerful macros; C++ provides mechanisms for op-
erator overloading; and even C provides a reasonably flexible lexical macro sys-
tem. However, it is very easy to overuse these features to produce code that is
incomprehensible to others.

Therefore:

When you need features which represent a superset of the semantics of an
existing language (which you are comfortable with), and the language provides
mechanisms for extending its semantics, produce those features directly in the
language’s extension mechanisms, but maintain understandability.

The problem domain should drive whether or not a particular extension fea-
ture is appropriate. For example, If the problem domain forms an algebra, then it
is appropriate to use operator overloading, if there is a natural mapping from the
semantics of the pre-defined operators to the operators of the problem domain.
In C++, operator overloading is properly used when it is used to implement
numeric classes for doing matrix multiplication by overloading *, etc. It would
not be a good choice of operator overloading to have + defined to create new
database tables as the composition of preexisting tables, as scheme definition
is not really viewed as a algebraic or compositional operation in the problem
domain of relational databases.

3.2 Syntax

The choice of the syntax for a programming language contributes greatly to its
resulting feel. We present two categories of language syntax patterns—Strictly
Contained Languages, which require more sophisticated parsers; and Record
Languages, which are typically used as data input to another program, usually
for configuration purposes.
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3.2.1 Strictly Contained Language One valuable thing to recognize re-
garding the dichotomies is the fact that languages that fall to an extreme are
often very easy to process. One can consciously take advantage of this fact when
designing a language. A good example are domains that lend themselves towards
being described in a very hierarchic manner.

For languages or domains that are essentially hierarchical, processing models
centered around this fact would be ideal. What sort of models would be useful?

Containment languages feature containment syntax (such as parenthesis in
Scheme, or tags in XML). Many domains can be readily described by Hierarchy
Languages, and it is simple to map hierarchic structures to containment syntax.
If we restrict things even further, calling for all expressions to be contained and
all containers to be contained, with the exception of the root; then we have a
language that is very easy to parse, because it can only be a tree, not a complex
graph.

Therefore:
Structure your language as a Strictly Contained Language. A Strictly

Contained Language consists of one or more container types. With the exception
of the “root” container, all content and containers are themselves contained.

Strict containment permits the use of some of the simpler parsing techniques.
Lisp has always been one of the easiest languages to parse.

Strictly contained languages can be characterized by the kinds and number
of containers they feature. At their simplest, such languages only have a single
type of container. At their most complex, as seen in languages like SGML, they
may have an arbitrary number of containers of different types.

Strictly Contained Languages are usually dominated by the hierarchi-
cal side of the structural dichotomy; though even Expression Languages such
as C often possess several forms of containment. Function, structure, and loop
definitions are examples of containment forms in C. The use of the Strictly
Contained Language pattern places no constraints on the definitional di-
chotomy, and these languages may easily be constraint or algorithm based.

Two popular forms of Strictly Contained Languages are Parenthesis
Languages and XML Languages.

3.2.1.1 Parenthesis Language Even though a Strictly Contained Lan-
guage is a rather restricted context, there are still a number of syntactic choices
that can be made based on the nature of the domain the language is attempting
to cover. Once a containment based language has been chosen as appropriate,
the remainder of decisions tend to concern the level of complexity of that con-
tainment.

Strictly Contained Languages intended for domains which have very
simple containment or hierarchal models need to be able to take advantage of this
fact so as to ease processing and allow the language to map easily to the domain.

For simple hierarchy structures a unilateral containment model is appropriate
and only one “type” of container is needed. There need not be any distinction
between the root and all its children save that the root is first. Parenthesis are
a logical and popular container.



10

Use a Parenthesis Language. A Parenthesis Language is a Strictly
Contained Language where there is only one kind of container, the parenthe-
sis.

While few utilities and libraries exist for explicitly handling parenthesis lan-
guages, the process is quite straight-forward. The usual approach is to recursively
“resolve” each container’s content. This can be done with handwritten or gener-
ated code quite easily. Large subsets of LISP can be handled in this way.

3.2.1.2 XML Language Sometimes, instead of a straight forward containment
model, a more complex hierarchy is appropriate. Some hierarchical domains are
inherently typed, and for these domains the ability to distinguish between con-
tainers by type becomes crucial. In cases where the structure is likely to be
extremely complex it may be best not to “reinvent the wheel” but instead use a
preexisting meta-language.

Use an XML Language, that is, a markup language that is valid XML.
There are several advantages to using an XML Language. Foremost amongst

these is the fact the widespread availability of XML libraries, such as Xerxes[34]
for Java and libxml[15] for C. These libraries mean that even lower level imple-
mentation languages, such as C, will not require programmers to write their own
parsers or ASTs.

XML is by far the most popular data interchange language and as a result
is the meta-language most likely to be familiar to users. Tools for its use are
available in almost any system environment. XML is particularly well suited for
constraint languages, but it has been successfully used in more algorithmic ways
as well.

Since XML content is so easy to transform: Tree Transformations and
Lexical Transformations are definitely options for processing when an XML
Language is used.

3.2.2 Record Language Many times you need a description language for
little more than being a form of non-interactive input, a way of shoving data
into a machine processable environment. This comes up a lot in contexts like
program configuration or in certain kinds of data driven programs.

Some languages are needed only for simple data entry or configuration pur-
poses. For these, a large amount of processing is overkill and undesirable. A
simpler language paradigm is needed.

Record Languages are based on the idea that your needed input is mostly
constraint based and can be processed on a per-record basis. Record Lan-
guages are usually syntactically very simple and used for such tasks as setting
a series of values. Typically, Record Languages’ records are single line, but
many forms have more complex record structures.

Structure your language’s semantics and syntax into a Record Language.
A record language has little to no hierarchic structure, and is processed one record
at a time.

A few common forms of Record Languages include: Key-value Pairs,
Delimiter-separated Values and Stanza Formatted Records.
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3.2.2.1 Key-value Pairs You would think that the decision to use a Record
Language would simplify data processing enough, but there are domain specific
syntaxes that can save time and effort, even within such a restricted environment.

Some Record Languages are meant to set attributes or properties. Such a
language should take advantage of this fact so that it maps easily to this domain
for its human users.

A Key-value Pairs syntax may be just what is needed in this situation.
Key-value Pairs typically consist of a key, the actual attribute or property
name, a delimiter (popular is the colon or equals) and a value for that property
or attribute.

There are a number of advantages to such a syntax in certain situations.
Order no longer need be important, a great boon to human editors. Further,
defaults can be assumed for unlisted Key-value Pairs, again a boon to those
using the language. Configuration files are frequently structured as key-value
pairs, and most applications use some form of configuration file. Thus, key-value
record languages are some of the most common computer languages.

When a language exists for the specification of constraints on a collection of
properties, use a key-value syntactic structure. Each Key-value Pair consists
of a descriptive key that identifies which attribute’s value is being set, some
separator, and the value the attribute is being set to.

It is worth noting that some standardized versions of Key-value Pair lan-
guages exist, and that editors called property editors may be present on some
systems allowing for a great amount of power in editing these types of files.

3.2.2.2 Delimiter-separated Values A main characteristic of a Record Lan-
guage is its simplicity. Sometimes however, a degree of flexibility is required.
A common situation is one where a Record Language seems appropriate be-
cause a property or attribute is being set but this attribute/property may be
more like a list, or a collection of properties.

You have a Record Language and each record has a fixed number of at-
tributes. However, each attribute may have a varying amount of data associated
with it.

This kind of problem can often be solved with creative use of delimiters.
Server type programs often need lists of users to allow or deny. Such chores can
be handled by having each list appear as a “record” on a separate line with the
usernames separated by commas.

Use a Delimiter-separated Values syntax. Each record is placed on a
single line by itself and the attributes of each record are separated by some de-
limiter, typically a single character.

A language such as this can be processed largely by a tokenizer working on
individual records. Some minor complications may arise depending on whether
there are a variable number of records or if record order might need to change.
Many of these problems can be addressed by embedding Delimiter-separated
Values languages inside Stanza Formatted Records. Stanza Formatted
Record is also worth looking into in that they can solve similar problems.
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Though it is not a good idea to take it further than two levels, it should be
noted that this pattern can be applied somewhat recursively by using multiple
delimiters.

3.2.2.3 Stanza Formatted Record Just as much as by its simplicity, a Record
Language is marked by its atomic nature. For some problems a solution that
is atomic but further along in complexity is necessary. Records that may have
too much information to fit on a single line or data that may need to be grouped
together.

Use a Stanza Formatted Record. Stanza records are multi-line records
separated by some delimiter. Usually this delimiter also features a label for the
record.

Most Unix configuration files use some form of Stanza format. Usually this
is of the labeled variety. Very common as a delimiter is percent signs enclosing
the record label. One of the easiest ways to implement a stanza record reader
is to have a two state state machine recognizing delimiters and processing the
records themselves respectively.

Stanza formatting can be combined with other forms of Record Languages
to allow for a variable number of Key-value Pairs or Delimiter Separated
list for example.

Stanza Formatted Record has been around a long time[36] and probably
represent as far as Record Languages should be taken before more serious
processing should be considered.

3.3 Parsers

In processing most languages, sooner or later you will need a Parser. There is
no One True Way in parser design, and so there are many parallel patterns
for Parsers. The largest split lies between the Generated Parsers, and the
Hand-written Parsers, though there are many distinctions at lower levels.

3.3.1 Generated Parser Many languages have a structure which is easily
describable in grammars For example, the LALR subset of context-free grammars
is capable of some fairly complex and articulated structures.

When a stable grammar exists for a language, and when error recovery is
of minimal importance, a class of generated solutions becomes a good choice for
constructing the Parser.

A parser generator takes a specification of the grammar of a language and
generates a parser for this language. Typically one also uses a lexer generator in
conjunction with the use of a parser generator.

The first generation of parser generator tools provide support for generating
the tables and engine for a table driven parser and allow the firing off of action
code when a production in the source language was recognized. Also, most of
these tools can utilize an associated lexer generator and generate a set of token
type definitions from the grammar for the source language. This class of tools
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includes yacc and lex [31], Bison and flex [31], java cup [19] and jlex[7], javacc
[8], yacc++ [9].

The second generation of parser generator tools adds to the first generation
by supporting other aspects of the translation process. Sly [42] and LPT [12]
generate code for doing source-to-source translation and the implicit generation
of AST definitions. TXL[20] and eli[16] also provide tools for generating such
additional pieces.

Therefore:
When working with context-free languages, and when error recovery is of

minimal importance, use a Generated Parser if tools for doing so are avail-
able in the implementation environment.

3.3.2 Hand-written Parser It is not always possible or desirable to use
a Generated Parser. Sometimes the complexity of a language’s grammar
is so low that the development cost of using a parser generator is greater than
writing the parser by hand; and sometimes the semantics of the language demand
extensibility mechanisms which are not achievable with a Generated Parser.

When a language’s parser cannot be readily handled by parser generation
tools, a substantially different class of parsers are needed.

Extensible grammars and sophisticated error reporting and recovery are diffi-
cult to achieve with Generated Parsers; and the grammars for some languages
are so simple as to not require the use of such tools.

Therefore:
When a language’s costs or processing semantics demand, use a parser writ-

ten directly in the implementation language. There are many ways to implement
such a parser. The choice is driven by the implementation language and the
complexity of the language.

You may be able to implement Hand-written Parser using Cascade
Parser, Per-type Parser, or Recursive-descent Parser.

3.3.3 Cascade Parser In many environments, such as parsing command
lines, tokenization is unnecessary or already provided.

When lexing and first level structure are provided by a language’s environ-
ment, and when a language need not be extendable, the semantic actions of the
parser dominate the cost dynamics.

The high cost of development of most parsers lies in the need to structure
a input stream. In some situations though (such as command lines), the input
is already structured into tokenized records of some form. In this situation, all
that the parser need do is detect the different configurations a record may be in,
and effect the semantics of the language. This can be accomplished by a simple
cascade of if-else statements, or a switch.

Therefore:
When an environment provides token statements, and a language does not

require extensibility; use a Cascade Parser. Construct a cascade of if-else
statements or switch statements to handle the language’s semantics.
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The dominant feature of a Cascade Parser is the cascade, which detects
and handles the various record configurations of the input. If the language re-
quires extensibility, consider a Per-type Parser instead. Many scripting lan-
guages, notably AWK, have a Cascade Parser as their primary execution
paradigm.

3.3.4 Per-type Parser In many environments, such as parsing command
lines, tokenization is unnecessary, or rather, already provided. Some languages
for these environments require extensibility, often during execution; a common
way to achieve this is by defining the semantics of records which begin with some
identifying keyword.

When lexing and first level structure are provided by a language’s environ-
ment, and when a language is statement based, and structured in the form KEY-
WORD ARGS*, but the language requires extensibility, handler dispatch domi-
nates the cost dynamics.

The high cost of development of most parsers lies in the need to structure a
input stream. In some situations, such as the command line, the input is already
structured into tokenized records of some form. In this situation, all that the
parser need do is detect the different configurations a record may be in, and
effect the semantics of the language. If the language requires extensibility, a
dispatcher will be necessary, to associate keywords with the appropriate handler
for that type.

Therefore:
When an environment provides token statements, and a language is keyword

based, and requires extensibility; use a Per-type Parser.
The dominant feature of a Per-type Parser is the dispatcher, which looks

up the appropriate Per-type handler for a given statement based upon its key-
word, and then dispatches the statement to the handler. If the language does
not requires extensibility, consider a Cascade Parser instead. In an Object-
oriented implementation language, the dispatch is to a Factory Method[14] or
constructor.

3.3.5 Recursive-descent Parser In some situations, error reporting and
recovery is a very important factor. With the Generated Parsers, it is often
difficult to know where an error happened in the parse tree.

When error reporting and recovery is important, a parser must provide means
of passing through known states.

LL(1) grammars can be parsed by Recursive-descent Parsers, and it is
always possible to know “where you are” deterministically in the parse tree of
a Recursive-descent Parser, so it is always possible to provide good error
semantics.

Therefore:
When a language must provide high quality error reporting and recovery, and

the grammar for the language is LL(1) and does not require extensibility, use a
Recursive-descent Parser.
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Build the parser by manually translating the grammar rules into recursive
code in the implementation language which recognizes the language by identify-
ing tokens and recursively identifying productions of the grammar[41].

3.4 Intermediate Representations

All but the simplest Immediate Execution languages need some representa-
tion form other than the form used by the parser. In this section, we present
patterns for presenting programs in an “intermediate form.” This term comes
from the compiler community, but our use here reflects a spectrum of represen-
tation choices that overlaps on the simpler end of the representation spectrum
with that of traditional compilers.

3.4.1 Flat Intermediate Representation Only in the simplest cases can
a program be executed directly as it is parsed. These simple languages can be
likened to a four-function calculator, doing calculations one step at a time. How
should more complex languages be represented internally? Most languages are
complex and need a way to build an intermediate structure which is subsequently
used to produce another source program or executed. Such a form is called an
intermediate representation (IR).

Therefore, use an Flat Intermediate Representation (Flat IR) that is
tailored to the kind of Record Language that is being recognized and use the
appropriate method for building it.

These Flat IR techniques are commonly used with scripting languages such
as AWK or Perl. These languages are interpreted and loosely typed, traits which
are well suited to text-to-text translators. In addition to regular expression
matching and string manipulation, both AWK and Perl have associate arrays—
Dictionaries to the Smalltalk and Java programmer—which map keys to values.
Our examples will be in AWK. AWK in its simplest mode of operation reads
standard input one line at a time, tokenizes the current line, and places the
values of each column into the variables $1, $2, etc. Then, the user supplied
sequence of pattern/action pairs is evaluated, with the action fired when the
pattern matches the current input line. A pattern/action pair with no pattern
is fired for every input line.

For Key-value Pairs, build a dictionary of string to string mappings.
This separates the parsing from use, but has the disadvantage of moving error-
checking away from immediate notification.

The following AWK code:

{ keyValueMap[$1] = $2; cnt++ } /* match every line */

END {

for (i in keyValueMap) { print "char *" i ";" }

for (i in keyValueMap) {

print i "=" "\"" keyValueMap[i] "\";"

}

}
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When given the input:

a b

c d

Produces the output:

char *a;

char *c;

a="b";

c="d";

For Delimiter-separated Values, each record is stored as an object with
an array of Strings. The client does the conversion to the needed structure. In
an object-oriented implementation language, typically a constructor will take an
argument of either an array of strings or a record structure holding the delimiter
separated values. In a language like AWK or FORTRAN, parallel arrays for each
column are used.

The following AWK code:

BEGIN { cnt = 0 }

{ firstName[cnt] = $1; lastName[cnt] = $2; cnt ++ }

END { for (i = 0; i < cnt; i++) {

print lastName[i] ", " firstName[i]

}

}

When given the input:

Joel Jones

Trevor Jay

Crutcher Dunnavant

Produces the output:

Jones, Joel

Jay, Trevor

Dunnavant, Crutcher

For Stanza Formatted Records, processing can be done in one of two
ways. 1

The first approach is to process each record one at a time. This has to be done
piece-meal, as more than one line must be read for each record. Except for the
first record, the detection of the start of a new record triggers the generation of
a client record from gathered information. The following AWK code illustrates.

1 Neither of the following examples are idiomatic AWK usage, as line separators can
be set to be field separators q.v. [30]
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$1 == "lastName:" { lastName = substr($0, index($0, $2)) }

$1 == "firstName:" { firstName = substr($0, index($0, $2)) }

/^$/ { emitRecord() } # empty line

function emitRecord() {

if (lastName != "") {

printf("%s", lastName)

if (firstName != "") printf(", ");

}

printf("%s\n", firstName)

lastName = ""; firstName = "";

}

END { emitRecord() }

The other approach is to collect all of the information and create the records
after the entire file has been processed. In a scripting language, use a counter to
generate a record identifier and collection of associative arrays, one per attribute,
and use the record identifier as a key and the attribute value as the indexed value.
This technique is useful if duplicates need to be removed or if records are filtered
based upon aggregate information. The following AWK code illustrates.

BEGIN { id = 0 }

$1 == "lastName:" { lastName[id] = substr($0, index($0, $2)) }

$1 == "firstName:" { firstName[id] = substr($0, index($0, $2)) }

/^$/ { id++ } # empty line

END { for (i = 0; i <= id; i++) {

if (lastName[i] != "") {

printf("%s", lastName[i])

if (firstName[i] != "") printf(", ");

}

printf("%s\n", firstName[i])

}

}

3.4.2 AST You are implementing a language, and the language is sufficiently
complex that Immediate Execution or Flat Intermediate Representa-
tion is not desirable. How do you represent the essential characteristics of the
structure of the input and avoid making errors in constructing this representa-
tion?

Parsing a non-trivial language usually involves the implicit or explicit creation
and traversal of a tree structure. This tree is a consequence of the context-free
language that is being parsed. However, the tree induced by parsing contains
extraneous information and may have a structure that is not convenient to deal
with.

Therefore, implement an Abstract Syntax Tree (AST) using implemen-
tation language specific idioms. An Abstract Syntax Tree (AST) captures
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the essential structure of the input in a tree form, while omitting unnecessary
syntactic details. ASTs can be distinguished from concrete syntax trees by their
omission of tree nodes to represent punctuation marks such as semi-colons to ter-
minate statements or commas to separate function arguments. ASTs also omit
tree nodes that represent unary productions in the grammar. Such information
is directly represented in ASTs by the structure of the tree. An AST is a tree
that is specific to the language being represented, rather than a generic tree
structure consisting of information about the node represented as a reference to
“Object” and a collection of “Tree” nodes to represent the children. The use of a
specialized representation allows the implementation system to detect errors at
translator build time, through the use of type-checking on the elements of the
AST.

When designing the nodes of the tree, a common design choice is determining
the granularity of the representation of the AST. That is, whether all constructs
of the source language are represented as a different type of AST node or whether
some constructs of the source language are represented with a common type
of AST node and differentiated using a value. One example of choosing the
granularity of representation is determining how to represent binary arithmetic
operations. One choice is to have a single binary operation tree node, which has
as one of its attributes the operation, e.g. “+”. The other choice is to have a
tree node for every binary operation. In an object-oriented language, this would
results in classes like: AddBinary, SubtractBinary, MultiplyBinary, etc. with an
abstract super class of Binary. The second form is preferred if there will be
behavior associated with the tree nodes. More information on how to implement
ASTs can be found in [22].

ASTs can be implemented in one of the following ways—Hand-written
AST, Generated AST, or Commodity AST.

3.4.2.1 Hand-written AST You have decided that you need to implement an
Abstract Syntax Tree (AST) because the translation or execution process
was too complex to perform directly from the input source.

How do you implement an AST? There are several factors to consider. First,
if the parser implementation is Generated Parser, then the parser generator
may have mechanisms for generating an AST. In that case, consider Generated
AST. Second, if your implementation language is supported by an AST generator
tool, then the code for the AST can be generated. Again, consider Generated
AST. Third, if you intend to do fairly commonplace transformations on the
tree, then a existing tree rewrite system like XSLT may be useful. In that case,
consider Commodity AST. If none of these apply, then another approach to
implementing the AST must be taken.

Therefore, produce the AST implementation directly by writing the code that
implements the desired structure and function. Use appropriate idioms for your
implementation language in implementing the AST. For imperative languages,
such as Pascal or C, use a variant record structure with a variant for each AST
node type. In ML or Haskell, use a datatype declaration. In an object-oriented
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language, use a class hierarchy with a class for each AST node type and an
abstract base class for representing the general AST node.

To produce the AST during parsing, the AST is built by having nodes added
to the tree when a complete production is recognized.

As an illustration of how to implement a Hand-written AST in an imper-
ative language like C, we use the example from the discussion of Interpreter
from [14]. Figure 1 is the .h file and figure 2 is the .c file.

typedef struct booleanExp *booleanExp_ty;

typedef char* identifier;

typedef int boolean;

enum booleanExp_type {

VARIABLE, CONSTANT, OREXP, ANDEXP, NOTEXP

} ;

struct booleanExp {

enum booleanExp_type kind;

union {

struct { identifier id; } variable;

struct { boolean b; } constant;

struct {

booleanExp_ty left;

booleanExp_ty right;

} orExp;

struct {

booleanExp_ty left;

booleanExp_ty right;

} andExp;

struct { booleanExp_ty exp; } notExp;

} u;

};

Fig. 1. Hand-written AST Example.h File

3.4.2.2 Generated AST You have decided that you need to implement an Ab-
stract Syntax Tree (AST) because the translation or execution process was
too complex to perform directly from the input source. Also, either your parser
generator supports the generation of ASTs or your implementation language has
tools for generating ASTs.

How do you implement an AST? As in any project, you want to reduce the
implementation effort for your AST. The implementation of an AST is mostly
rote—once the structure of the desired AST is determined, the implementation
code is straightforward. Most node types of the AST have an invariant number of
children, with the AST nodes represented as record structures and the children
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#include "booleanExp.h"

booleanExp_ty

mkVariable(identifier id) {

booleanExp_ty p;

p = (booleanExp_ty) malloc(sizeof(*p));

p->kind = VARIABLE;

p->u.variable.id = id;

return p;

}

booleanExp_ty

mkConstant(boolean b) { /* ... */ }

/* ... */

Fig. 2. Hand-written AST Example.c File

are represented as references to the appropriate node type. Some nodes will
have a variant number of children, e.g. argument lists to method calls. These are
represented using collections of references. Given the rote nature of this process,
you want to proceed through its implementation as quickly as possible.

Therefore, use a Generated AST. There are two kinds of Generated
ASTs. The first takes a specification of the AST and generates the necessary
code for implementing the AST. The second generates an AST from its implicit
specification in a grammar specification.

The input language for the first kind of AST generator will typically contain
the name of the generic node’s type, the name of all specific node’s types, and
member names and types for the specific nodes. One such tool is Zephyr, the
generator for Abstract Definition Language (ASDL) [40] which includes C as one
of its output languages. It is also not hard to build a simple version of such a tool
using a scripting language such as AWK or Perl. In addition to generating the
data type declarations, an AST code generator should also create “constructor”
functions which take as arguments the children of the node and return initialized
instances of the specific nodes of the AST.

As an example of what the specification for an AST is like, we take the
example from the discussion of Interpreter from [14]. We use the Zephyr
ASDL format, an example of which is seen in Figure 3.

3.4.2.3 Commodity AST You have decided that you need to implement an
Abstract Syntax Tree (AST) because the translation or execution process
was too complex to perform directly from the input source. If the source language
is in XML or easily lexically transformed into XML, how do you implement an
AST?

If the source language is XML or in another format for which there is a pre-
existing tree format, then the desired AST structure is likely very similar to the
input structure. There are many network protocols, such as SOAP, which are
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booleanexp = Variable(identifer id)

| Constant(boolean b)

| OrExp(booleanexp left, booleanexp right)

| AndExp(booleanexp left, booleanexp right)

| NotExp(booleanexp exp)

Fig. 3. Generated AST Example

based upon XML. Writing an AST implementation in such a situation is a waste
of effort, as there are already parsers for XML for various environments.

Therefore, use a Commodity AST implementation, most commonly one
supporting XML. Use a library for implementing tree structures. Such a library
will support node creation, iteration over children, and access to a dictionary like
structure to store node attributes with name-value access patterns. The library
may provide memory management, validation, pickling, pretty-printing, etc.

3.5 Transformation Techniques

Language implementation always involves some form of transformation tech-
nique. However, for many DSLs, the transformation techniques are somewhat ad
hoc and tightly related to the semantics of the input language. Many language
implementations make the use of similar techniques that should be examined for
their applicability. In this section we present two of the most common categories
of transformation styles.

3.5.1 Lexical Transformation Some transforms on a language, even useful
ones, do not require deep or even shallow semantic understanding. Macro ex-
pansion, many forms of syntactic sugar and sometimes even rewriting of High-
order Features can often be accomplished with simpler non-AST based trans-
forms.

Many languages require some degree of transformation or rewrite. In cases
where deeper understanding such as that represented by AST’s is not needed
another method is desirable to avoid unneeded work and complexity.

Commonly Lexical Transformation is handled by some sort of regular
expression engine. This might be in the form of some mechanism such as a PERL
script run before other stages of language processing.

Lexical Transformation is not necessarily a means to an end itself.
Many transforms simply make matters easier for other portions of the process-
ing toolchain. While it performs other functions the C pre-processor is a good
example of such a situation.

Use a Lexical Transformation based purely on less than shallow seman-
tic understanding such as string manipulation through regular expressions.

While the technique should only be stretched so far, it should be kept in
mind that if a Lexical Transformation is being applied in a somewhat ad-
hoc manner, as for example through a PERL script; then slightly more advanced
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features requiring mild understanding, such as brace counting, may be easy to
implement.

If more advanced transformation is required a full AST as in a Tree Trans-
formation may be required.

3.5.2 Tree Transformation Quite often the best way to view language pro-
cessing, or just a portion of processing, is as a transformation. This transfor-
mation may be simple, requiring little semantic knowledge as is the case with a
Lexical Transformation or it may be more complex.

Some language processing is best achieved as a transformation and some kinds
of transformation require a reconfiguration of the structure of the language itself.

In order to restructure a language the structure itself must first be captured,
this is often done using an AST. Once some semantic statements are in AST
form then transformations on that AST become an option.

Use Tree Transformation. Read your input language into an AST and
then restructure it using some form of transformation engine.

While Tree Transformation may become a rather complicated enterprise
as when it is used for tasks such as optimization, it has simpler more approach-
able forms as well. There are generic tree transformation engines available such
as the XSLT language available for transforming XML data structures. This level
of power alone makes it possible to perform a great number of transformation
task such as expansion, collapsing, reordering, and a great deal of restructuring.
Tree Transformation forms the core of traditional non-optimizing compilers.

By itself or when used in combination with Lexical Transformation,
Tree Transformation can be used as a step in a more complex processing
scheme or may be all that is necessary to perform Source Output or Embed-
ded Language. Tree Transformation is real language processing and can
accomplish most of what needs to be done with an input language.

3.6 Execution Techniques

In the continuum of execution techniques, measured on the extent of semantic
analysis, we will find that Interpreters lie roughly in the middle, Virtual
Machines lie towards the side of low semantic analysis, and Semantic Eval-
uators lie towards the side of high semantic analysis. These evaluators are
the portion of a language processing system which understands the meaning of
a language, and provide its interpretation. The other execution techniques are
independent of a particular level of semantic analysis.

3.6.1 Record Consumer For many kinds of input, especially that which
might be found in a Record Language, even the most simple of “processing”
methods is overkill. You are simply looking for a way to shovel data into an
environment. An AST would clearly be overkill in this case, and in fact so would
most primitive forms of parsing.
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A Record Language has a unique need for simplicity in processing in order
to preserve the labor savings its use is intended to win.

Imagine a bash script that removes batches of users from a system. It’s input
might be a file containing a list of said users, separated by newlines. All the
script really does is consume a line at a time taking the string, the username,
and rewriting it into a command that it then runs.

Such a script is a good example of a Record Consumer. Its input file is
clearly a Record Language based on a Delimiter-separated Values list,
it consumes one record at a time and it does so with very little processing.

Therefore, use Record Consumer when using a Record Lanugage and
actions are performed immediately, one record at a time.

Many Record Consumers take an immediate action as they consume a
record. They use it as a argument in a system command or a function call, they
initialize a variable to that value, or they might create a data object based on
the record. If anything but the most primitive of validity checking need be done
perhaps you should not use a Record Consumer.

Record Consumers often serve to perform tasks such as reading in config-
uration records, but they may also be used as part of a more complex processing
environment. Flat Intermediate Representation may be used if a minimal
amount of aggregate processing is needed.

3.6.2 Immediate Execution You need a processing paradigm underneath a
Record Consumer or similar mechanism. Your language is mostly atomic and
directive in nature. No further complex processing of the language is required
save to carry out a series of desired commands. The language is not forward
referenced. Advanced semantic features such as side effects are either not present
or constrained such that they permit serial evaluation. A source program in this
simplest case can be recognized and executed directly.

Therefore, evaluate the source program directly, without translation to an
intermediate form. Immediate Execution is often used in situations such as
when records have a direct mapping to function calls within an API or some
other mechanism that needs to be “driven”. Input is parsed, and as soon as an
executable portion is recognized, it is executed. BASIC and dc are prototypical
examples of this pattern.

The action code will mostly consist of calls into a Runtime.

3.6.3 Virtual Machine You have an algorithmic language and need to eval-
uate it. Your desired language has features which are not easily realized by your
implementation language. Your desired language has a well defined, fairly invari-
ant processing model. This model is more well defined than that common in an
Interpreter. Portability is also an important concern.

Therefore, use a Virtual Machine. A Virtual Machine is a simulated
architecture realized within an implementation environment. It is much like an
emulator except that the architecture it “emulates” may not exist, or even be
possible.
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By virtue of providing its own memory and processing environment, the Vir-
tual Machine may be able to provide features not native to the implementation
language. The Java VM is able to offer garbage collection to the Java language
even though C does not implement this paradigm. Further, as a result of the
virtual nature of the VM, environment code inside it is well insulated from the
rest of the system. This may be a cognitive interface advantage, or a security
and performance advantage as in sandboxes.

Virtual machines have a substantial cost. You should have a great deal of
resources to commit to development. Platform portability should be important.
VM’s are good when complex features are required yet speed of language pro-
grams is still important. A Virtual Machine almost by definition is tied to
some form of Runtime and may require a Semantic Evaluator, usually in
the form of a compiler because VM’s are often based on bytecode or some other
form of atomic instruction set.

3.6.4 Interpreter The intermediate representation, typically a tree structure,
is often sufficient for driving program execution. The most common case is when
execution is dominated by time spent in the Runtime, rather than in the direct
execution of the input language. For example, database query execution time is
dominated by I/O, not language processing.

Therefore, use an Interpreter to evaluate the language. An interpreter
treats the intermediate representation (IR) as the instructions for an execution
engine, rather than translating the IR into another language. These instructions
are not necessarily linear, but can take other forms. Interpreters are useful
when portability is important, the developers do not have knowledge of the
processor, or the problem domain of the language is straightforward and does
not require a Semantic Evaluator.

This pattern was first described in [14] and elaborated on in [3]. However,
in both cases, the definition of Interpreter is narrower than is usually meant
in the language implementation community. The emphasis on ASTs in the pat-
tern version slights other techniques, such as linear forms [29] for evaluating a
language.

3.6.5 Semantic Evaluator Constraint languages are composed of elements
that are not directly mapped to a Von-Neuman architecture. For example, Pro-
log programs do not explicitly specify an execution order. How do you provide
impetus to constraint languages?

Processing of Constraint Languages requires a Semantic Evaluator,
as there are few instructions to drive either an Interpreter, or a Virtual
Machine.

Therefore, construct a Semantic Evaluator for your language, and place
the code which must understand your language there. As a result of parsing
the input, a Semantic Evaluator builds data structures that represent the
program in a form that is closer to a semantics of variable assignment, function
calls, and explicit ordering. The function calls will include calls into a Runtime
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that contains significant encoding of the semantics of the input language, i.e.
translated towards the algorithmic language side of the definitional dichotomy.
For example, in Prolog, a function call might be a call to a routine to unify
variable assignments in a single term. In SQL, a function call might be made
to find all rows of a table with a column matching a given value. These data
structures may be evaluated using Interpreter or a translation into a more
sequential form and evaluated by a Virtual Machine. SQL evaluators use the
Interpreter approach using a query plan, a tree structure that is evaluated
bottom up. The Virtual Machine approach is the most common execution
technique for Prolog. The Warren Abstract Machine is the most used virtual
machine model used by Prolog implementors[2].

3.7 Infrastructure

At the lowest level of a language implementation is a support system. For lan-
guages that are executed directly, a Runtime provides services to the running
program. For languages that are translated to another source form, Language
Output provides a means of producing human-readable output.

3.7.1 Runtime If a language is to be executed and there is not a one-to-
one relationship from the elements of the input language to the elements of the
implementation language, how should the source language elements be executed?
Sometimes, the missing elements form a low-level infrastructure, such as memory
allocation handling or stack treatment. Another need is for providing encapsu-
lation of higher-order abstractions such as file I/O or database access.

Therefore, use a Runtime environment to support execution. If possible,
compose the Runtime from already available components such as garbage col-
lectors and database toolkits. Implementing a Runtime can require a great deal
of programmer expertise and time but they are one of the only methods for pro-
viding certain categories of language features such as very specialized memory
management or unusual execution methods.

3.7.2 Language Output Rather than executing an input language, a lan-
guage processor can produce a translation into another language. In such a situa-
tion, use Language Output, producing human-readable text from the language
processor.

Language Output is frequently used in combination with Lexical Trans-
formation in order to realize Embedded Language. Many multi-stage com-
pilers use Language Output several times, some C compilers sometimes go
from C (with macros) to C (without macros) to Assembly. In addition, the nat-
ural results of some systems, such as those which produce PostScript or PDF
documents, are Language based.

If the output language supports some form of comment feature, add a note
that the code was generated, and if possible, by what processing system, and
from what input files. Also, try to produce language output that is readable by
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public class Table {

private String tableName;

private String[] columnNames;

private int[][] rows;

private static Hashtable tables = new Hashtable();

public static Table byName(String tableName) {

public Table project(String[] colNames) throws Exception {

public Table select(String colName, Op op, int value) throws Exception {

public Table join(String selfColName, Table otherTable, String otherColName)

throws Exception {

}

Fig. 4. Runtime Example: Table.java

generating properly formatted code and preserving useful information from the
input, such as identifiers.

4 Extended Example

To gain a better understanding of this pattern language, we present here an
extended example. This example gives the highlights of the implementation of a
small subset of SQL, the relational database query language. This example cov-
ers the patterns Runtime, Hand-written AST, Generated Parser. Gen-
erated AST, Semantic Evaluator, and Interpreter. Although we have
presented this pattern language in processing order, i.e. from the initial input
language to the description of the execution mechanisms, we present our example
in the fashion in which most domain-specific languages are developed. We begin
with the execution environment and work towards the language specification.

In Figure 4 we see the declarations of a Java class for representing a table
in a relational database. In addition to storing the data (rows) and metadata
(tables, tableName and columnNames), we also support the basic relational
operators on a table, project, select, and join. The goal of our effort is to
ease the use of these operators by providing a constraint language for accessing
these operations. The project relational operator selects all the rows of the input
table and returns only those columns specified. The select operator chooses rows
from a table based on satisfying some expression based on the values in a single
table, taken a row at a time. The join operator merges two tables together when
a column from one table matches the value of a column in another table. In our
example, we implement only limited forms of these operators. Our select operator
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public abstract class QueryPlan {

protected QueryPlan qPlan;

protected Table table = null;

public abstract Table execute() throws Exception;

Fig. 5. Hand-written AST Example: QueryPlan.java

public class Project extends QueryPlan {

private String[] columnNames;

public Table execute() throws Exception {

Table result = table == null ? qPlan.execute() : table;

return result.project(columnNames);

}

Fig. 6. Hand-written AST Example: Project.java

allows only a single selection comparing a column against a integer constant
using the usual set of comparison operators. The select operator we implement
supports only “natural joins”, matching only when the two values are equal, not
less-than, etc. Nothing in the instantiation of Runtime had dependencies on
the language implementation, like parsers, etc. This is frequently the case, as a
library will frequently exist before the notion of calling it from a language does.

The next step is to choose a means of representing the combination of op-
erations to be performed as the result of a query. We use a simplified version
of a query plan, which represents the operations as a tree. The tree is evaluated
bottom up. We use the pattern Hand-written AST, as there is no directly cor-
responding input language, and there are only three concrete classes. In Figure
5, we see the definition of the abstract superclass, QueryPlan. Every operation
in the subclasses operates either on a table contained in the database (the table
member) or on the result of calling execute() on the qPlan member.

For all of the concrete subclasses of QueryPlan, the constructor captures the
data members displayed in Figures 6, 7, and 8. To execute a query such as
SELECT colOne FROM tableOne WHERE colOne > 1, the corresponding query
plan would consist of a tree with an instance of Project as the root and an
instance of Select as its child. Calling execute() on the root to get the result
makes this an instance of Interpreter.

Having worked backwards, we now go to the beginning of the processing
pipeline to consider the specification of the input language. To keep the example
simple, the input language will consist of only enough of SQL to allow for the
specification of query that involves either a select on a single column against a
constant or a natural join between two tables, and a general project. In Figure
9 we see the specification of a lexer, parser, and AST using the language for
the tool SLY. [42] SLY takes the specification in file SQL.sly and generates the
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public class Select extends QueryPlan {

private String columnName;

private Op op;

private int value;

public Table execute() throws Exception {

Table result = table == null ? qPlan.execute() : table;

return result.select(columnName, op, value);

}

Fig. 7. Hand-written AST Example: Select.java

public class Join extends QueryPlan {

private String selfColName;

private Table otherTable;

private String otherColName;

public Table execute() throws Exception {

Table result = table == null ? qPlan.execute() : table;

return result.join(selfColName, otherTable, otherColName);

}

Fig. 8. Hand-written AST Example: Join.java

lexer source for the tool JLex, the parser source for the tool Java Cup, and
generates the Java source code for representing an AST. This is an instance
of the application of Generated Parser and Generated AST. In addition
to combining the specification of the lexer and parser into a single file, SLY
also has other features to note. The specification of the lexer is simplified to
support the specific case of being used in conjunction with a parser generator
and building ASTs. This is accomplished by providing support for alphabetic
keywords, non-varying symbols, and varying value tokens, keyword, symbolic,
and lexer and ignore, respectively. Parser rules are specified using ::=, with
the right-hand side consisting of sequences of terminals and non-terminals. The
left-hand side serves two purposes—to define the “name” of the production and
to optionally specify a superclass, e.g. IntFilterExpression specifies the name
and super WhereExpression specifies the superclass of the AST node used to
represent IntFilterExpression. The parser supports the direct specification of
optional elements on the right-hand side of a production, e.g., ColumnRecur in
the definition of ColumnList.

The most novel aspect of SLY is its support for automatic construction of
abstract syntax trees, an instantiation of Generated AST. The method used is
simple—a class is generated for every grammar production with a data member
defined for every symbol on the right-hand side of the production. The names
of the data members are the all lower-case letter version of the symbol name.
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keyword ::= WHERE SELECT FROM ;

symbolic ::=

GE ">=" EQ "=" LE "<=" GT ">" NE "!=" LT "<" Comma "," ;

lexer INT ::= {:-?[0-9]:};

lexer ID ::= {:[a-zA-Z]+:};

ignore ::= {:[ \t\n]:};

lexer error ::= {:.:};

/* extremely simplified SQL grammar */

SelectStatement super SQLAST ::= T_Keyword_SELECT Columns

T_Keyword_FROM Tables

T_Keyword_WHERE WhereExpression ;

{: public void accept(SQLASTvisitor visitor) { visitor.visit(this); } :}

abstract Columns super SQLAST

ColumnList super Columns ::= [ ColumnRecur ] Column ;

{: public void accept(SQLASTvisitor visitor) {

visitor.visit(this); } :}

ColumnRecur super Columns ::= ColumnList T_Symbolic_Comma ;

{: public void accept(SQLASTvisitor visitor) {

visitor.visit(this); } :}

;

Column ::= T_ID ;

abstract Tables super SQLAST

TableList super Tables ::= [ TableRecur ] Table;

{: public void accept(SQLASTvisitor visitor) {

visitor.visit(this); } :}

TableRecur super Tables ::= TableList T_Symbolic_Comma ;

{: public void accept(SQLASTvisitor visitor) {

visitor.visit(this); } :}

;

Table ::= T_ID ;

abstract WhereExpression super SQLAST

IntFilterExpression super WhereExpression ::= T_INT Binop Column ;

{: public void accept(SQLASTvisitor visitor) {

visitor.visit(this); } :}

ColumnFilterExpression super WhereExpression ::= Column Binop T_INT ;

{: public void accept(SQLASTvisitor visitor) {

visitor.visit(this); } :}

JoinExpression super WhereExpression ::= Column T_Symbolic_EQ RightColumn ;

{: public void accept(SQLASTvisitor visitor) {

visitor.visit(this); } :}

;

Fig. 9. Generated Parser and Generated AST Example: SQL.sly
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abstract public class SQLAST {

public abstract void accept(SQLASTvisitor visitor);

}

Fig. 10. Generated AST Example: SQLAST.java

Productions are grouped together for the purposes of grammar definition using
the abstract keyword. Typically, productions grouped together also form the
concrete subclasses of the class created for the containing abstract production,
e.g. ColumnFilterExpression is subclass of WhereExpression. To support the
next phase of the implementation, an additional source file, SQLAST.java (q.v.
Figure 10) is used to define the base of the class hierarchy of most of the classes
in the generated AST, e.g. WhereExpression. Classes used as terminal nodes are
not part of this hierarchy, as it simplifies the implementation in the next phase.
This is slightly unusual, as all of the nodes of the AST typically form a single
hierarchy in an AST implementation.

The next phase of implementation uses Semantic Evaluation and Visi-
tor[14] to generate the query plan. In Figures 11, and 12, we see the imple-
mentation of those patterns. The query plan is built by visiting the nodes of the
SQLAST, and generating instances of the appropriate subclasses of QueryPlan. Of
note is the transformation of the tree structures, which mirror the parsing pro-
cess, into list structures needed by the Table runtime, e.g. visit(ColumnList)
and visit(ColumnRecur) generate into Vector colVec, which is converted into
an array by Vector.toArray() in visit(SelectStatement).

In Figure 13, we close the remaining gap of an end-to-end processor by instan-
tiating Interpreter. The steps followed are typical of end-to-end interpreters—
initialize the runtime (buildDatabase), parse the input (planFor), execute the
IR (qPlan.execute()), and produce the output (Table.toString(), which is
implicit in the method call System.out.println()).

5 Related Work

This pattern language barely touches upon the vast literature related to imple-
menting languages. There are several areas that this pattern language covers
only in passing, if it all. This list of suggested readings should aid the beginning
language implementor in solving design problems not covered by this pattern
language.

Lexing and Parsing: Aho et al[1] cover the basic theory of lexing and parsing
and give algorithms for building lexer and parser generators. Grune and
Jacobs[17] give an extensive coverage of grammars. Watt and Brown [41]
give a good exposition of hand-written parsers and object-oriented idioms
for lexing, parsing, and AST representation.

Optimization: Aho et al[1] cover the rudiments of optimization for translation
to machine code. Muchnick[33] gives a more advanced coverage. The spe-
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cial issue of SIGPLAN Notices[32] is a selection of most influential papers
from 1979 to 1999 presented at the “Programming Language Design and
Implementation” (PLDI) conference.

Logic and Functional Languages Kamin[25] gives several educational im-
plementations of functional languages and Prolog. Hassan Äıt-Kaci[2] has
a book length introduction to the Warren Abstract Machine (WAM) im-
plementation of Prolog. Queinnec’s book[35] is a step-wise implementation
of LISP. Simon Peyton Jones’[24] book is still a major contribution to the
implementation of lazy functional languages. Appel[4] discusses the use of
continuations as a way of structuring the runtime of functional languages.

Object-oriented Languages The primary implementation concern for object-
oriented languages is how to implement method lookup. The implementation
choice is driven by whether or not the the language is statically typed. For
coverage of implementation of dynamically typed object-oriented languages,
see Deutsch and Schiffman[11] and Ungar[39] for Smalltalk and Holze[18] for
Self. For statically typed OO languages, see Sun’s HotSpot[38].
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public class QueryPlanVisitor extends SQLASTvisitor {

private Hashtable tableDictionary;

private Hashtable col2Table;

public QueryPlan qPlan;

private Vector colVec = null;

public void visit(SelectStatement selectStatement ) {

tableDictionary = new Hashtable ();

selectStatement.tables.accept(this);

makeCol2Table ();

selectStatement.whereexpression.accept(this);

colVec = new Vector ();

selectStatement.columns.accept(this);

String [] colNames = ( String []) colVec.toArray(( Object []) new String [0]);

qPlan = new Project(colNames , qPlan);

}

public void visit(ColumnList columnList ) {

visit(columnList.columnrecur );

colVec.add(columnList.column.toString ());

}

public void visit(ColumnRecur columnRecur ) {

if ( columnRecur.isNullObject)

return;

visit(columnRecur.columnlist );

}

public void visit(TableList tableList ) {

visit(tableList.tablerecur );

String tableName = tableList.table.toString ();

tableDictionary.put(tableName , sql.Table.byName(tableName ));

}

public void visit(TableRecur tableRecur ) {

if ( tableRecur.isNullObject)

return;

visit(tableRecur.tablelist);

}

Fig. 11. Semantic Evaluation Example: QueryPlanVisitor.java
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private void makeCol2Table () {

col2Table = new Hashtable ();

Enumeration e = tableDictionary.elements ();

while (e.hasMoreElements ()) {

Table table = ( Table) e.nextElement ();

String [] colNames = table.getColumnNames ();

for (int i = 0; i < colNames.length; i++) {

col2Table.put(colNames[i], table);

}

}

}

public void visit(ColumnFilterExpression exp) {

Binop binOp = exp.binop;

Table table = ( Table) col2Table.get(exp.column.toString ());

String colName = exp.column.toString ();

String valAsString = exp.t_int.toString ();

Op op = Op.opFor(binOp.toString ());

int value = Integer.parseInt(valAsString );

qPlan = new Select(colName , op , value , table);

}

public void visit(IntFilterExpression exp) {

Binop binOp = exp.binop;

Table table = ( Table) col2Table.get(exp.column.toString ());

String colName = exp.column.toString ();

String valAsString = exp.t_int.toString ();

Op op = Op.opFor(binOp.toString ());

int value = Integer.parseInt(valAsString );

qPlan = new Select(colName , op.invert(), value , table);

}

public void visit(JoinExpression joinExpression ) {

String selfColName = joinExpression.column.toString ();

String otherColName = joinExpression.rightcolumn.toString ();

Table otherTable = ( Table) col2Table.get(otherColName);

Table selfTable = ( Table) col2Table.get(selfColName );

qPlan = new Join(selfTable , selfColName , otherTable , otherColName);

}

}

Fig. 12. Semantic Evaluation Example (cont.): QueryPlanVisitor.java
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public class SQLInterpreter {

public static SelectStatement selectStatement;

public static void main(String [] args ) {

String query = parseArgs(args);

buildDatabase ();

QueryPlan qPlan = planFor(query);

Table result = null;

try {

result = qPlan.execute ();

} catch ( Exception e) {

System.err.println(" Problem with query : " + query);

e.printStackTrace ();

System.exit (1);

}

System.out.println(result);

}

private static QueryPlan planFor(String query ) {

StringReader sbf = new StringReader(query);

Yylex lexer = new Yylex(sbf);

parser myParser = new parser(lexer);

try {

myParser.parse ();

} catch ( Exception ex) {

System.err.println(" syntax error : " + query);

ex.printStackTrace ();

}

QueryPlanVisitor visitor = new QueryPlanVisitor ();

selectStatement.accept(visitor);

return visitor.qPlan;

}

}

Fig. 13. Interpreter Example: SQLInterpreter.java


