
 Behavioral Design Pattern

June 25, 2004 Page 1

Receiver

Receiver

John Liebenau
Copyright © 2004. All rights reserved

 Behavioral Design Pattern

June 25, 2004 Page 2

Receiver

Intent
Decouple sending objects from receiving objects by: dynamically establishing connections between senders and
receivers, encapsulating requests/data in content objects, and passing content from senders to receivers.

Motivation
Consider a generic logging facility that provides an API for applications to log messages pertaining to status and
operational state. Once a message has been passed to the API it is processed. For most applications messages
are processed by simply appending them to a log file that can be tailed or viewed at a later time (e.g. during a de-
bugging session). However this may not be adequate for all applications. Enterprise-level server applications may
send these log messages to a sophisticated logging/monitoring service to provide a feedback mechanism for pro-
duction administrators to monitor and control multiple systems. Some applications may need to process log mes-
sages in multiple ways such as both appending to a log file and sending to a logging/monitoring service.

In order to make the logging facility reusable across multiple applications its message processing functionality
has to be configurable. We can also make the logging facility API easy to use by separating the logging component
from the message appending component. This separation allows the message appending component to vary in-
dependently of the logging API so applications can change the message appending behavior without having to
change all the logging API calls.

The Receiver pattern illustrates how this separation is organized. Objects are categorized into three kinds: senders,
receivers, and content. Senders transmit content to one or more associated receivers which uses the content to
perform specific processing. From the above example, the message logger is a sender object that sends messages
(content objects) to one or more message appenders which are receiver objects thus enabling applications to use
a stable logging API defined by the MessageLogger class while varying the appenders. The appender API is spec-
ified by a MessageAppender interface which is implemented by several concrete classes (e.g. LogFileAppender,
LogServiceAppender, ...).

The Receiver pattern is a general design pattern that is usually part of more specialized design patterns such
as Observer, Mediator, Chain of Responsibility, and Typed Message[GHJV95][Vlissides98]. Receiver focuses on
decoupling senders from receivers which is one part of the more specific patterns. The mechanism for decoupling
the "sending" objects from the "receiving" objects is practically the same for all four patterns. The differences in
these patterns mostly occur in the behavior of the "receiving" objects once they have received something. For ex-
ample, in Observer the ConcreteObserver receives an update notification from the Subject. The notification follows
the Receiver pattern but once the ConcreteObserver receives the update, it obtains the data it is interested in from
the ConcreteSubject. It is this extra action that specializes the Receiver pattern into the Observer pattern. Media-
tor, Chain of Responsibility, and Typed Message all specialize the Receiver pattern in specific ways to accomplish
their intents. The specialized design patterns impose additional responsibilities and constraints on the Receiver
pattern’s participants, enabling them to solve more specific problems. The Related Patterns section provides more
details.

LogFileAppender

+ append(: MessageLogger, : Message)

LogServiceAppender

+ append(: MessageLogger, : Message)

MessageLogger

+ attach(: MessageAppender)
+ detach(: MessageAppender)
+ log(m : Message)

MessageAppender
+ append(: MessageLogger, : Message)

nnn n

-appenders

Message

+ getSeverity()
+ getText()

foreach a in appenders
 a.append(this,m);

 Behavioral Design Pattern

June 25, 2004 Page 3

Receiver

Applicability
Use the Receiver pattern when:

• a class of objects (senders) needs to signal an event or send content to one or more other objects (receivers)
without depending on the receivers specific types

• different clients need different sender-receiver connections

• the connections between senders and receivers change during the lifetime of these objects

• requests or data can be encapsulated (content) and used interchangeably by the receiver hierarchy

Structure (Many-to-Many Receiver variant)

Participants
• SENDER (MessageLogger)

- defines operations for attaching and detaching RECEIVER objects

- defines a send operation for sending CONTENT to RECEIVER objects

- defines one or more optional query operations for RECEIVERs to retreive information from the SENDER

• RECEIVER (MessageAppender)

- declares a receive operation for receiving CONTENT from SENDER objects

• CONCRETERECEIVER (LogFileAppender, LogServiceAppender, ...)

- implements the interface declared by RECEIVER

• CONTENT (Message)

- represents information that is transferred from SENDERs to RECEIVERs

• CLIENT

- establishes connections between SENDERs and RECEIVERs

- directs SENDERs to send CONTENT to RECEIVERs

Content

+ query()

foreach r in receivers
 r.receive(c);

ConcreteReceiverA

+ receive(s : Sender, c : Content)

Receiver
+ receive(s : Sender, c : Content)

Sender

+ attach(r : Receiver)
+ detach()
+ send(c : Content)
+ query()

**

-receivers

**

ConcreteReceiverB

+ receive(s : Sender, c : Content)

Client

 Behavioral Design Pattern

June 25, 2004 Page 4

Receiver

Collaborations
The Receiver pattern has the following collaborations:

• Configuration - CLIENT establishes the connections between SENDERs and RECEIVERs by attaching RECEIV-
ERs to the appropriate SENDERs.

• Notification - SENDER notifies its associated RECEIVERS of significant events by passing CONTENT to its RE-
CEIVERS when directed by CLIENT.

• Processing - Each CONCRETERECEIVER may query the CONTENT passed to it or may query the CONTENT’s
SENDER to obtain the appropriate data for use in executing the CONCRETERECEIVER’s functionality.

 : ConcreteReceiverAclient sender1 : Sender content : Content : ConcreteReceiverBsender2 : Sender

send(Content)
receive(Sender, Content)

query()

attach(Receiver)

attach(Receiver)
Configuration

Notification
Processing

Processing

query()

attach(Receiver)

attach(Receiver)

receive(Sender, Content)

query()

query()

send(Content)
receive(Sender, Content)

query()

query()

receive(Sender, Content)

query()

query()

Processing

Processing

 Behavioral Design Pattern

June 25, 2004 Page 5

Receiver

Variants
The Receiver pattern has several variants that impose key constraints on the pattern particpants, subtly altering
their structures, interfaces, and interactions. The variants explicitly named here focus on cardinality constraints ap-
plied to the association between SENDERs and RECEIVERs because these variations in cardinality have greater
prominence when dealing with implementation issues and when relating the Receiver pattern to other patterns than
other variants.

The major Receiver variants are:
• Many-to-Many Receiver - A synonym for the default Receiver pattern. All other variants can be derived by

adding constraints to the Many-to-Many Receiver.

• Many-to-One Receiver - This variant puts a constraint on the default pattern by restricting SENDERs to having
only one RECEIVER (i.e. many SENDERs are associated with one RECEIVER).

• One-to-Many Receiver - This variant puts a constraint on the default pattern by restricting RECEIVERs to hav-
ing only one SENDER (i.e. one SENDER is associated with many RECEIVERs). If a CONCRETERECEIVER needs
access to the SENDER, the CONCRETERECEIVER must maintain its own reference to the SENDER.

Content

+ query()

if receiver is not null
 receiver.receive(this,c);

ConcreteReceiverA

+ receive(s : Sender, c : Content)

Receiver
+ receive(s : Sender, c : Content)

Sender

+ attach(r : Receiver)
+ detach()
+ send(c : Content)
+ query()

1*

-receiver

1*

ConcreteReceiverB

+ receive(s : Sender, c : Content)

Client

Content

+ query()

foreach r in receivers
 r.receive(c);

Receiver
+ receive(s : Sender, c : Content)

Client

ConcreteReceiverA

+ receive(s : Sender, c : Content)

ConcreteReceiverB

+ receive(s : Sender, c : Content)

Sender

+ attach(r : Receiver)
+ detach()
+ send(c : Content)
+ query()

*1

-receivers

*1

1

*

1

*

1

*

1

*

 Behavioral Design Pattern

June 25, 2004 Page 6

Receiver

Consequences
The Receiver pattern has the following benefits:

• Decouples SENDERs from RECEIVERs. SENDERs are not tightly coupled to their RECEIVERs, simplifying the im-
plementation of the SENDERs and enabling the them to be configured with different functionality supplied by
their RECEIVERs.

• Dynamic configuration of SENDERs. CLIENTs can configure SENDERs with RECEIVERs multiple times during
program execution, effectively changing behavior to fit the needs of each specific scenario.

• RECEIVERs are open to extension. RECEIVERs form a class hierarchy that can be extended with specific func-
tionality that can vary with the needs of each application.

• Multicast communication to RECEIVERs. SENDERs can transmit CONTENT to many RECEIVERs enabling a va-
riety of processing combinations to be performed for each request.

Receiver has the following tradeoff:
• Increased number of objects. By separating the RECEIVERs from the SENDER, each class individually be-

comes easier to manage but this can make tracing and debugging more difficult because functionality is now
spread out over a (sometimes dynamically changing) set of objects

Implementation
The following implementation issues should be considered when using the Receiver pattern:

• Maintaining references to RECEIVERS. The *-to-Many Receiver variants typically use a container of RECEIVER
references while the Many-to-One Receiver variant has only a single RECEIVER reference.

• Maintaining a reference to SENDER. RECEIVERs commonly reference their corresponding SENDER in three
ways: the SENDER reference is passed as a parameter to the receive() operation, the CONCRETERECEIVER
contains the SENDER reference as a field, or the CONTENT contain the SENDER reference as a field. Usually
the Many-to-* Receiver variants will pass the SENDER reference as a parameter to receive() while the
One-to-Many Receiver variant often embeds the SENDER reference as a field in the CONCRETERECEIVER.

• Implementing the send() operation. The send() operation has to call the receive() on each of the
SENDER’s RECEIVERs. The Iterator pattern provides an excellent mechanism for accomplishing this task. In
Java, send() would look like:

class Sender...
 public void send(Content content)
 {
 List temp = receivers.clone();

 for (Iterator r = temp.iterator();r.hasNext();)
 ((Receiver)r.next()).receive(this,content);
 }

In C++, send() could be implemented using STL iterators:
class Sender
{
private:
 list<Receiver*> receivers;
public:
 void send(const Content& content);
};

void Sender::send(const Content& content)
{
 for(list<Receiver*>::iterator r = receivers.begin();r != receivers.end();++r)
 r->receive(*this,content);
}

 Behavioral Design Pattern

June 25, 2004 Page 7

Receiver

• Thread Safety. In multithreaded programming environments like Java, it is important to address synchroni-
zation issues to avoid race conditions and other concurrency related inconsistencies. At a minimum, CON-
CRETERECEIVERs should make their methods synchronized to avoid problems when receiving CONTENT from
SENDERs in different threads.

• Using Singleton for stateless ConcreteRECEIVERS. The Singleton pattern can be used to reduce the over-
head of creating separate CONCRETERECEIVER objects when the CONCRETERECEIVER class does not contain
any internal state. All SENDERs would share the CONCRETERECEIVER singleton instance.

• Sending and receiving multiple kinds of CONTENT. There are three scenarios involving transmission of mul-
tiple event types or data between SENDERs and RECEIVERs. The first case is when a RECEIVER can accept
CONTENT from different kinds of SENDERs. This kind of RECEIVER will provide a receive() operation for
each CONTENT type.

interface Receiver
{
 public void receive(ContentA a);
 public void receive(ContentB b);
}

The Typed Message pattern specializes Receiver by having the CONCRETERECIEVER implement multiple RE-
CIEVER interfaces, unifying all RECIEVERs into the CONCRETERECEIVER.

The second case is an expansion of the first: the RECEIVER remains the same but the SENDER is augment-
ed to send multiple kinds of CONTENT. This kind of SENDER must provide a send() operation for each CON-
TENT type.

class Sender
{
 public void send(ContentA a);
 public void send(ContentB b);
}

The third case involves a hierarchy Content classes. Depending on the Content interface RECEIVERS can
treat all Content the same or Receivers may need to cast to more specific Content types:

class Content...
class ContentA extends Content ...
class ContentB extends Content ...

class ConcreteReceiver ...
 public void receive(Content content)
 {
 if (content instanceOf ContentA)
 // ...
 else if (content instanceOf ContentB)
 // ...
 else
 // throw appropriate exception
 }

RECEIVERs may identify the specific CONTENT types by downcasting, by using some kind of type code, or by
using double dispatch.

• Omitting CONTENT for signalling simple events. Sometimes it is not necessary to pass Content from the
Sender to Receivers. The receive() method call may be sufficient to signal an event to a Sender’s Re-
ceivers. This is often the case when the Receiver pattern is specialized by the Observer pattern or the Me-
diator pattern. In the Observer pattern the receive() operation is renamed update() and in the Mediator
pattern it is renamed changed(Colleague). In these patterns the receive() operation is triggered when
the Sender changes state.

• Extending SENDER with CLIENT. It is useful to subclass the SENDER and make the subclass into a CLIENT
when Receivers need to be notified of state changes in the SENDER. The Observer pattern specializes the
Receiver pattern by introducing a subclass of SENDER, labeled CONCRETESUBJECT, that acts as the CLIENT
by directing the SENDER to notify its RECEIVERs when the CONCRETESUBJECT’s state changes.

 Behavioral Design Pattern

June 25, 2004 Page 8

Receiver

• Combining SENDER and RECEIVER. It is useful to combine the Sender and Receiver into the same class when
a chain of notifications is needed. The Chain of Responsibility pattern, which is a specialization of the Many-
to-One Receiver pattern variant, is often used for these cases.

• Using C++ templates. In C++ templates can be used to parameterize simple Senders that only send Content
to their Receivers and do nothing else. These simple Senders are good candidates for becoming mixin
classes. The Sample Code section shows a template implementation of the message logger example from
the Motivation.

Sample Code
The example described in the Motivation section can be illustrated with the following Java code:

interface MessageAppender // Receiver
{
 public void append(MessageLogger l,Message m);
}

class MessageLogger // Sender
{
 private List appenders;

 public void attach(MessageAppender a)
 {
 if (!appenders.contains(a)) appenders.add(a);
 }
 public void detach(MessageAppender a)
 {

appenders.remove(a);
 }
 public void log(Message m)
 {
 for(Iterator i = appenders.iterator();i.hasNext();)
 {
 MessageAppender a = (MessageAppender)i.next();
 a.append(this,m);
 }
 }
}

class LogFileAppender implements MessageAppender // ConcreteReceiver
{
 private PrintWriter logFile;
 private MessageFormat formatter;

 public LogFileAppender(String path)
 {
 logFile = new PrintWriter(new FileOutputStream(path,true));
 formatter = new MessageFormat("{0,date} <<{1}>>\n{2}\n");
 }
 public void append(Message m)
 {
 logFile.println(
 formatter.format({m.getTimestamp(),m.getSeverity(),m.getText()})
);
 }
}

LogServiceAppender and other CONCRETERECEIVERs would have similar implementations.

 Behavioral Design Pattern

June 25, 2004 Page 9

Receiver

The next code sample illustrates the Motivation’s example implemented using C++ templates.

template<typename R>
class ReceiverTraits
{
public:
 typedef R* ReceiverPtr;
 typedef typename R::Content Content;
 typedef vector<ReceiverPtr> ReceiverContainer;
 typedef typename ReceiverContainer::iterator ReceiverIterator;

 template<typename S>
 static void receive(S& sender,const Content& content,ReceiverPtr receiver)
 {
 if (receiver)
 receiver->receive(sender,content);
 }
};

template<typename R,typename T = ReceiverTraits<R> >
class Sender
{
public:
 typedef typename R::Content Content;
 typedef typename T::ReceiverPtr ReceiverPtr;
 typedef typename T::ReceiverContainer ReceiverContainer;
 typedef typename T::ReceiverIterator ReceiverIterator;
private:
 ReceiverContainer receivers;
public:
 Sender();

 void attach(ReceiverPtr r);
 void detach(ReceiverPtr r);
 void send(const Content& c)
 {
 for(ReceiverIterator r=receivers.begin();r != receivers.end();++r)
 T::receive(*this,c,*r);
 }
};

class MessageAppender // Receiver
{
public:
 typedef Message Content;

 virtual ~MessageAppender() {}
 virtual void append(MessageLogger& logger,const Message& message)=0;
};

template<>
template<>
void ReceiverTraits<MessageAppender>::receive(
 MessageLogger& logger,const Message& message,MessageAppender* appender)
{
 if (appender)
 appender->append(logger,message);
}

 Behavioral Design Pattern

June 25, 2004 Page 10

Receiver

class LogFileAppender:public MessageAppender // ConcreteReceiver
{
private:
 ofstream logFile;
public:
 LogFileAppender(const string& path): logFile(path.c_str(),true) {}
 void append(MessageLogger& logger,const Message& message)
 {
 logFile << message.getTimestamp() << " "
 << message.getSeverity() << endl
 << message.getText() << endl;
 }
};

class MessageLogger:private Sender<MessageAppender> // Sender
{
public:
 void log(const Message& message)
 {
 Sender<MessageAppender>::send(*this,message);
 }
};

Known Uses
There are several logging frameworks that incorporate the Receiver pattern into their design. These include log4j
[Gülcü03], log4cpp [Log4Cpp03], java.util.logging [Sun03], and the Foundation Package’s Message Framework
from which the Motivation example was derived. The Receiver pattern is also a low level pattern that provides the
basic elements of sender-receiver decoupling found in other patterns such as Observer, Mediator, Chain of Re-
sponsibility, and Typed Message.

Related Patterns
As stated earlier, Receiver is a general design pattern but what does this mean? One way to answer this question
is to organize design patterns in the canonical form of complex systems [Booch93]. Entities in complex systems
participate in two kinds of relationships: hierarchy (generalization/specialization) relationships and composition
(using/containment) relationships. Applying this form to pattern relationships we can identify many patterns that ex-
hibit the composition relationship. This is what most traditional pattern forms record in their "related patterns" sec-
tions [Alexander79][Zimmer95][Noble98]. More recently pattern researchers have shown that some patterns
participate in hierarchy relationships [Zimmer95][Noble98]. Some patterns form hierarchies in which general pat-
terns provide the basic elements from which specialized patterns extend, similar in the way an abstract base class
is extended by its subclasses.

Receiver is the base of a pattern hierarchy. It is specialized by the Observer, Mediator, Typed Message, and
Chain of Responsibility patterns [GHJV95][Vlissides98]. Receiver provides the basic elements of sender-receiver
decoupling which the other patterns specialize in the following ways:

• Observer

• renames Receiver participants:

Receiver Pattern Observer Pattern

SENDER SUBJECT

RECEIVER OBSERVER

CLIENT + SUBJECT CONCRETESUBJECT

CONCRETERECEIVER CONCRETEOBSERVER

 Behavioral Design Pattern

June 25, 2004 Page 11

Receiver

• usually omits CONTENT but some implementations may send CONTENT describing which aspect of the
Receiver.Sender/Observer.SUBJECT has changed.

• constraints Receiver.SENDER/Observer.SUBJECT by only sending when Receiver.SENDER/Observ-
er.SUBJECT state has changed.

• Receiver.CONCRETERECEIVER/Observer.CONCRETEOBSERVER updates itself by querying Observ-
er.CONCRETESUBJECT when it receives a change notification.

• Mediator

• renames Receiver participants:

• usually omits CONTENT because MEDIATORs only require change notification.

• constraints Receiver.SENDER/Mediator.COLLEAGUE by only sending when Receiver.SENDER/Media-
tor.COLLEAGUE state has changed.

• Receiver.CONCRETERECEIVER/Mediator.CONCRETEMEDIATOR determines which Mediator.COLLEAGUE
has changed and then performs the appropriate operations on the other Mediator.COLLEAGUEs corre-
sponding to the change.

• Typed Message

• renames Receiver participants:

• organizes the pattern around CONTENT/MESSAGE types: SENDERA sends MESSAGEA to ABSTRACTRE-
CEIVERA...

• Receiver.CONCRETERECEIVER/TypedMessage.RECEIVER provides the unifying implementation for all
Receiver.RECEIVERs/TypedMessage.ABSTRACTRECEIVERs

• Chain of Responsibility

• renames Receiver participants:

• combines SENDER and RECEIVER into the HANDLER enabling HANDLERs to both receive REQUESTs and
send them to successor HANDLERs if necessary.

Receiver Pattern Mediator Pattern

SENDER COLLEAGUE

RECEIVER MEDIATOR

CLIENT + SUBJECT CONCRETECOLLEAGUE

CONCRETERECEIVER CONCRETEMEDIATOR

Receiver Pattern Typed Message Pattern

SENDER SENDERA
SENDERB

RECEIVER ABSTRACTRECEIVERA
ABSTRACTRECEIVERB

CONTENT MESSAGEA
MESSAGEB

CONCRETERECEIVER RECEIVER

Receiver Pattern Chain Of Resp. Pattern

SENDER + RECEIVER HANDLER

CONCRETERECEIVER CONCRETEHANDLER

CONTENT REQUEST

 Behavioral Design Pattern

June 25, 2004 Page 12

Receiver

• may or may not include Receiver.CONTENT/ChainOfResp.REQUEST depending on how requests are rep-
resented.

Receiver also participates in composition relationships by using other patterns to implement aspects of itself.
The main pattern Receiver uses include:

• Singleton - the Receiver pattern can sometimes use the Singleton pattern to implement ConcreteReceivers
that have no intrinsic state.

• Iterator - the Receiver pattern often uses the Iterator pattern to iterate though the RECEIVERs attached to a
SENDER so that the SENDER can send them all the CONTENT.

The diagram below illustrates the pattern relationships in which the Receiver participates. The notation is
based on Noble’s pattern relationship notation [Noble98][NW01] with additional annotations to indicate variants.

Receiver

Chain of
Responsibility

Typed
MessageMediatorObserver

variant: One-to-Many

variant: Many-to-Many

variant: Many-to-One

variant: One-to-Many variant: Many-to-Many

Iterator Singleton

variant: Many-to-Many
variant: One-to-Many

A

A

B

B

Pattern A uses Pattern B

Pattern A specializes Pattern B

Notation Key

 Behavioral Design Pattern

June 25, 2004 Page 13

Receiver

References
Alexander79 Alexander, Christopher. The Timeless Way of Building. pp 311-324, Oxford Universi-

ty Press, 1979.

Booch93 Booch, Grady. Object-Oriented Analysis and Design with Applications, 2nd Edition.
pp 12-14, Addison-Wesley, 1993.

GHJV95 Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Gülcü03 Gülcü, Ceki. The Complete Log4j Manual. QOS.ch, 2003.

Log4Cpp03 http://log4cpp.sourceforge.net

Noble98 Noble, James. Classifying Relationships between Object-Oriented Design Patterns .
In Proceedings of the Australian Software Engineering Conference (ASWEC), Ade-
laide, IEEE Computer Society Press, 1998.

NW01 Noble, James and Charles Weir. Small Memory Software: Patterns for Systems with
Limited Memory . pp 16-17. Addison-Wesley, 2001.

Sun03 http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html

Vlissides98 Vlissides, John. Pattern Hatching: Design Patterns Applied. pp 123-144. Addison-
Wesley, 1998.

Zimmer95 Zimmer, Walter. Relationships between Design Patterns. Pattern Languages of Pro-
gram Design 1, pp 345-360. Addison-Wesley, 1995.

