
 1

Pattern Language for 
Data Driven Presentation Layer for 

Dynamic and Configurable Web Systems 
 
 

Sharad Acharya 
s.acharya@computer.org 

July 26, 2004 
 

ABSTRACT 
 

 Data driven presentation layer is one of the alternatives for prevailing presentation layer 

architectures that can be adopted to creating dynamic Web systems for attaching to modern 

middleware in loosely coupled manner. Rendering and navigation aspects of a data driven 

presentation layer are driven by three sets of data. The first set is presentation layer metadata 

that defines a page structure such as field applicability, type, style, and so on. Other than 

exceptional situations, domain specific business rules of a Web application are enforced in 

the business layer. Applying such business rules and based on metadata, business layer 

provides second set of data to the presentation layer which has dedicated component to 

interpret such data and generate client specific pages at rendering time. Processing user 

submitted data; business layer returns third set of data that is used to decide where the control 

should be forwarded. In this paper, data driven presentation layer architecture is proposed and 

discussed in the form of Pattern Language that can be adopted in creating Web systems that 

are flexible, maintainable yet dynamically modifiable.  

 

 
 

PROLOGUE  

Today, Internet is undeniably the most widely used media for information presentation and retrieval. Because of 

its global scope, enterprises of all domain and all sizes want to make their computing assets (business process, 

enterprise data, etc) available over the Internet in most efficient way. Although need of making enterprise 

computing assets available over the Internet is alluring; it is challenging too. Heterogeneity of modern middleware 

systems; domain specific discrete business rules and several categories of enterprise users are some of the major 

factors that may make presentation layer architecture of enterprise Web applications fall short to meet 

expectations of extensibility, maintainability, and manageability requirements. In addition to fulfill existing 

requirements, presentation layer architecture of modern web applications should be resilient enough to evolve in 

meeting changing requirements throughout the application lifecycle. 

This paper is about Pattern Language that proposes an alternative architecture that can be adopted to create 

presentation layer, the pages of which show different contents based on several factors. The patterns discussed are 

mailto:s.acharya@computer.org


Title: Pattern Language Catalog  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 2

those that I was able to observe as part of teams that put reasonable amount of time and effort in multiple projects 

and in different platforms but with the same goal—attaching dynamic and configurable Web interfaces to modern 

middleware systems. Here are some of the recurring problems in broader context that these patterns try to address 

in general. 

•  In addition to managing domain specific workflow, how to leverage capability of modern middleware 

systems to drive presentation layer with ‘in context’ data?  

•  How to manage navigation aspect of a Web system in well-defined manner, which is independent of main 

application logic? 

•  Can a Web page whose contents change based on some rules be built without using server side scripting? 

•  Can a page structure be externalized so that modification of layout, style, applicability, and other structural 

attributes are independent of application logic? 

 
PATTERN LANGUAGE CATALOG 

Figure 1 is catalog of patterns discussed in this pattern language along with some related patterns that may be 

included in future (future candidates.)  

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Patterns discussed in this pattern language and their relationships   

To establish a relationship in figure 1, read the pattern name with originating arrow, text with the arrow and the 

pattern name with the arrowhead. Here is an example:  

Data Driven Presentation Layer assembles pages using Page Assembler. 

Architectural Patterns
(future candidates)

Implementation Patterns

Architectural Patterns

validates, processes &
persists data using

sends user entered data 
to business layer using

gets type and valid 
values for a view from 

 gets dynamic page 
structure from 

 builds client specific 
views using 

 at  rendering 
 time, constructs  

 assembles  
pages using  

 manages 
navigation of  

gets ‘in context’ 
data from

uses 
services form 

Dynamic Page 

Page Assembler View Builder Cache Manager 

Interface Object 

Navigation Controller

Data Driven Presentation Layer Middleware

Legacy Services 

caches page 
structure of  



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 3

The main objective of this pattern language is to make you able to select and implement presentation layer 

architecture for a Web application whose pages present dynamic contents. Hence, the patterns discussed in this 

paper are divided into two broad categories of Architectural and Implementation patterns. 

Architectural Pattern 

An Architectural Pattern provides solution that can be adopted for solving recurring problems in some broader 

context and how such solution fits in ‘the bigger picture’ of enterprise systems. Table 1 lists architectural patterns 

discussed in this pattern language. (Number in parenthesis next to pattern name indicates the page in which that 

particular pattern is discussed.)  

Table 1: Architectural patterns, name and their purpose 

Pattern Name Purpose 

Data Driven 

Presentation Layer(4) 

Allows create a framework for generating pages dynamically based on data from some 

external source.  

Navigation 

Controller(7) 

Provides standard and decent way to manage navigation aspect of a dynamic web 

application. 

Implementation Patterns 

An Implementation Pattern provides solution to some specific problem that is part of page generation framework 

in a dynamic Web application. Table 2 lists implementation patterns discussed in this pattern language. 

Table 2: Implementation patterns, name, and their purpose 

Pattern Name Purpose 

Dynamic Page(14) Provides a way to assemble client specific pages dynamically at rendering time 

Interface Object(19) Provides structure of a composite object used to send information between presentation 

and business layers. 

Page Assembler(22) Provides a way to assemble dynamic pages as an aggregation of client specific views.  

View Builder(25) Provides a way to create client specific views based on data available in some object. 

Cache Manager(29) Provides caching required by presentation layer so that data is available in the 

application level cache reducing database access, xml re-parsing or object reconstruction. 

 
Note to PLoP’ 04 Workshop: The patterns discussed follow order as they appear in this 
pattern language. Hence, Workshopping of this paper is expected in the sequential order. 



Pattern: Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 4

DATA DRIVEN PRESENTATION LAYER 

A Data Driven Presentation Layer pattern allows you to create a framework for generating pages dynamically 

based on data from some external source.  

Context 

You are creating presentation layer of a dynamic Web application that can be attached to the business layer in 

such a way that these two layers are loosely coupled, pages are completely unaware of domain specific business 

rules, and change management for the presentation layer is easy.  

Problem 

A dynamic page usually presents contents using server side scripting. Such a page displays different contents 

using one or more conditions that are usually part of business rules. This approach works for simpler pages in 

which the factors effecting dynamic behavior are none to very lesser in number. When such factors grow, a page 

may result in bulkier, more obscure, and lesser manageable scripts. How do you avoid using heavy scripting so 

that pages are manageable; presentation layer change management is easy; and it can take care of virtually 

unlimited number of current or future business rules? 

Forces 

A data driven presentation layer should balance some or all of the following forces. 

•  Domain specific business rules are usually applied in business layer. Presentation layer should minimize or 

avoid using intelligence of such rules to generate dynamic contents.  

•  Tight coupling between presentation and business layer components is undesirable.  

Solution 

Use presentation layer metadata to define page structure and data returned by business layer based on such 

metadata to construct a dynamic page.  

To implement data driven architecture, presentation layer should be supplied with three sets of data--presentation 

layer metadata, data returned from business based on such metadata and status supplied by business layer based 

on user submitting a page. Presentation layer metadata defines views applicable to a page and fields applicable to 

a view including page layout, field style, field applicability, etc. Presentation layer metadata is usually defined in 

one or more database tables, read and cached usually at application startup time. Based on metadata, business 

layer should apply domain specific business rules and return appropriate data to the presentation layer, which  

should construct a page based on such data to present the user. When user submits a page, business layer 

processes user-supplied data in current page and returns result to presentation layer based on which the control is 

transferred to appropriate page.  



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 5

Structure 

Figure 2 shows some architecturally significant elements of data driven presentation layer architecture. Although 

shown, Legacy System is out of scope of this version of the paper.  

 

 

 

 

 

 

Figure 2: Architecturally significant elements of an enterprise Web system  

Dynamics  

Page#1
Bus iness  

Layer
 : PL Metadata

 : User
CacheManager

Dynamic 
Renderer

Navigation 
Controller

Page#2

initialize()
//initial ize

//dis play request

buildPage(pageID)
getPage(pageId)

pageBean

getPageIO(pageBean)

interfaceObject

buildPageHTML(interfaceObject)

pageHTML

Page#1 
rendered

submit(interfaceObject)
s ubmit(interfaceObject)

status:success

forward

 
Figure 3: HTML page generation sequences for data driven presentation layer  

Container
 

 
Page#1 
 

Database
 
 

Page#2 

Business 
Layer 

(Middleware) 
 

Presentation Layer
 

Navigation Controller
 

Dynamic Renderer
 

Interface
Object 

PL metadata

Legacy 
System

Cache 
Manager



Pattern: Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 6

Participants and Responsibilities 

Page #1/ Page #2 
A page is used by user to send request to the system and by system to present its response back to the user. A page 

for dynamic web applications is implemented using Java Server Page on J2EE applications, Active Server Page 

on .NET applications and so on. In data driven approach, a page is dynamically constructed using data returned by 

business layer. 

Dynamic Renderer  
This is the main component of data driven architecture. The main task of this component is to supply client 

specific dynamic content to the requesting page. To achieve this, this component retrieves page structure from 

cache and calls appropriate business layer method. The business layer call returns an instance of InterfaceObject 

(19) based on which this component constructs client specific dynamic contents. For a Web client, it generates 

HTML text representing the page and writes to client’s browser window.  

Cache Manager 
Provides caching of frequently used information from appropriate sources such as database, XML files, and so on. 

Business Layer 
Business layer drives presentation layer by supplying data related to current page’s context.  

Navigation Controller (7) 
This component manages navigation aspects of the application.   

PL Metadata 
Holds page, view, and field specific data and their relationships usually in a database table.  

Consequences 
This approach has following benefits. 

•  Change management is easy. Page structure can be altered changing presentation layer metadata, no need 

to change application code.  

•  Since pages are constructed based on data that results by applying domain specific business rules, no 

scripting needed for achieving dynamic behavior. It results in better maintainable pages.   

•  Loose coupling between business and presentation layers. Replacement of presentation layer is easy.  

This approach has following liabilities. 
•  Relatively higher response time compared to scripting. Appropriate Cache Manager (29) should be 

provided for in order to cache repetitively used data to reduce response time. 

•  Complexity. Page Renderer component is added to the system.  

•  Difficult to decide the portion of a page to be generated dynamically or implement using scripting. The 

later can be better choice for some portion of a page.  



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 7

NAVIGATION CONTROLLER 

Navigation Controller pattern provides standard and descent way to manage navigation aspects of a dynamic Web 

application.  

Example 

Role based resources access needs to authenticate a user and authorize him according to his role. In a typical site 

navigation scenario, different page is presented to a user based on his role. Figure 4 shows an activity diagram for 

first few pages of such an authentication process. Initially, the user is presented with Login page allowing entering 

his user id and password before submitting the page. If system finds user id, then he is authenticated against the 

supplied password. In case of successful authentication, the user is presented with Catalog page if his role is 

customer, Catalog administration page if his role is site administrator. In case if user id does not exist, he is 

presented with Registration page that allows him to register before he can browse a Catalog page. For all other 

cases, the user is informed with appropriate message back in the Login page.  

Login page

user profile 
exists?

submit

user role?

Catalog administration page

Catalog page

Registration page

registration 
success

password 
matched?

no

yes

yes

no

submit

yes

no

site administrator

customer

 
Figure 4:Page navigation activity diagram for user authentication 

Context 

Your Web application has complex and variable navigation aspects, which you want to manage in standard and 

decent way.  



Pattern: Navigation Controller  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 8

Problem 

Configuration management is an important non-functional requirement of large-scale Web systems. It should 

allow alteration of navigation sequence between pages that arise because of several factors such as different user 

categories, different type of business processes, or some future business rules that are yet to be identified. 

Moreover, change in post-deployment navigation sequences should not require code rework. How do you manage 

navigation aspect of Web application that can handle such requirements?  

Forces 

Navigation controller pattern should balance some or all of the following forces.  

•  Although it is possible to keep navigation logic within the same page, more complex navigation aspects 

result in bulky and hard to mange pages. 

•  If navigation aspect of a Web application can be externalized, it results in flexibility to add, remove, and 

alter navigation sequences of the application at any point of application lifecycle, if required.  

•  In general, every legitimate user generated event should result in change of contents at the same or 

different page. In data driven approach, since rendering of a page is driven by business layer data, it is 

necessary to make some methods call in business layer. There should be some standard place at 

presentation layer that will act as ‘plug-point’.  

Solution 

Define an action for every form in a configuration element and attach input pages, forward pages, and other 

required elements to this action. 

Before a request is processed, allow ActionController read the configuration element, instantiate all required 

classes, and cache required objects for managing navigation of the application. When an HTTP request is 

submitted because of some user-generated event in a page, let the controller intercept, inspect, interpret the 

request; do current action specific processing and forward control to appropriate page based on the return value.  

Structure 

Figure 5 shows some required components of navigation controller architecture of a typical web application.  

 

 

 

 

 
Figure 5: A typical navigation controller structure 

Page#1 

Page#2 
Action 

Controller

Configuration element

Action Business 
Layer 



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 9

Navigation Controller Dynamics 

Configuration 
Element

Page#1 ActionController Action
 : Business Layer

Page#2

submit
parse()

new Action

newActionInstance

//instantiate al l actions

execute()
businessProcess()

status:success
status:success

forward

 
Page 6: Navigation controller dynamics 

Participants and Responsibilities 

The participants shown in navigation controller structure are described here.  

Page #1/ Page #2 

A page collects user input, submits HTTP request to the system, and presents system response to the user.  

Action Controller 

An Action Controller is the heart of this pattern. It should orchestrate request processing and response forwarding 

on behalf of the current request. Before serving any request, it parses the configuration element, instantiates action 

objects, and caches such objects for future reuse. It keeps reference to all user generated events that is meaningful 

to this application. In other words, for a given user generated event, it knows which method of which action class 

to execute and where to send a response based on return value of such call.  

Action 

An action is ‘unit of work’ consisting of several intermediate events to fulfill a request. It starts by user initiating 

some legitimate event such as pressing a button in a Web page. Presentation layer should process the request by 

populating required objects, communicating with appropriate business layer methods, and forwarding response 

based on return value of such business method call. For this reason, it can be considered as sub-layer within 

presentation layer that serves as ‘plug point’ to the business layer.  



Pattern: Navigation Controller  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 10

Configuration Element 

A Configuration Element is place for defining action mappings. It consists of mapping for every page’s user 

generated events that the application supposed to respond and process. It also specifies the forward pages where 

the control should be forwarded in case of success and some different page in case of error. Modern web 

applications usually define such configurations in XML file.  

Business Layer 

Business layer usually consists of application logic that implements domain specific business rules. Applying such 

rules, this layer gives presentation layer an indication in the form of return values where the response should be 

forwarded.  

Consequences 

Benefits 
•  Externalized configuration. This results in navigation aspects independent of application code. Altering 

navigation sequence and similar aspects at any point of application lifecycle can be done without touching 

the application code.  

•  Because it is a separate element, individuals who know domain specific business rules can write such 

configuration element, which has better accuracy.  

•  Separation of responsibilities among participating entities.  

•  Scalability.  

Liabilities 
•  Complexity. 

Implementing custom navigation controller as framework is difficult and time consuming. Instead of ‘re inventing 

the wheel’ by writing your own framework, one of the already available frameworks can be adopted to manage 

navigation aspect of a Web application. One relatively newer of such frameworks is Jakarta Struts [7]. It is one of 

the most popular and hence widely used web development frameworks. In following sections this framework is 

discussed in brief and how it can be adopted to manage navigation aspect of a Web application.  

Jakarta Struts framework 

Jakarta Struts framework follows Model View Controller (MVC) pattern architecture. In Struts, ActionForm or its 

sub class represents model element, the instance of which is used by framework to populate HTML form data on 

page submission. There is usually one-to-one correspondence of an action and a HTML form. A Java Server Page 

represents view element that uses HTML form to post a HTTP request on submission of such form. An 

ActionServlet represents a controller component, which can directly be used or sub-classed to add application 

specific behavior. The ActionController shown in Figure 5 is supposed to provide responsibility of the controller. 

In Struts, it reads the configuration element, instantiates view forms and attaches such forms to action, and calls 



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 11

specified method in the instance of action class every time the form is submitted. Following section outlines 4 

main steps to implement navigation controller using Struts framework for the example discussed in Example 

section of this pattern (Figure 4, page 7).  

Step By Step Implementation Example 

Step 1: Define form bean and action mapping in configuration element. It is standard practice to use framework 

provided name of such configuration file, which is named as struts-config.xml. Code example 1 shows portion of 

such configuration file.  
<form-beans>
<form-bean name="loginForm"

type="forms.LoginForm"/>
<!--… … other form-beans definition… … …-->
</form-beans>

<!--… … … other elements… … …-->

<action-mappings>
<action path="/login"

name="loginForm"
type="actions.LoginAction"
input="login.jsp">

<forward name="success_admin" path="catalogadmin.jsp"/>
<forward name="success_user" path="catalog.jsp"/>
<forward name="no_profile" path="registration.jsp"/>

</action>
<!--… … other action mappings … … …-->
</action-mappings>

Code example 1: Struts form bean and action definition 

This action mapping shows two important sections in configuration file. The ‘form-beans’ section defines a form-

bean name and fully qualified class that should be instantiated and assigned to that name. The ‘action-mappings’ 

section defines an action with a path, name, type, an input, and one or more forward names for this action. This 

instructs the action servlet attach loginForm to ‘login’ action that can be invoked by ‘/login.do’ as URL. When 

invoked, the servlet calls execute() method in LoginAction instance and based on the return value of which the 

control will be forwarded to one of the pages specified by forward name. A return value of success_admin will 

forward to catlogadmin.jsp and vice versa. The framework forwards control to the page specified by input 

attribute in case of error.  

Step 2: Define Action Form class.  

A specific action form is subclass of ActionForm provided by the framework. In most general case, it defines 

properties current form is supposed to handle. For framework to be able to populate from request parameters, the 

form should have matching properties that are exposed by getter and setter methods. When the HTML form 

attached with this action form is submitted, matching form attributes with the HTML input parameter name are 

automatically populated. 



Pattern: Navigation Controller  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 12

 
/**
* all import statements go here
*/

public class LoginForm extends ActionForm {
private String password;
private String userid;
public String getPassword() {return password;}
public String getUserid() {return userid; }
public void setPassword(String password) {this.password = password;}
public void setUserid(String userid) { this.userid = userid;}

}

Code example 2: Login action form 

Step 3: Define a Java Server Page that uses the form and action.   

Code example 3 shows a Java Server Page that shows two text fields for user to enter his userid and password. 

This uses struts provided html tag that allows define Struts form and display html elements. It is very interesting 

to see how much work the framework does behind the scene for attaching a form to this JSP. The <html:form

action="/login.do"> is usual syntax to define form. When such tag is processed, framework makes sure that 

the form is instantiated and attached to the action specified. This JSP also displays two text boxes fields-- userid 

and password. Since it uses ‘login.do’ as current action, which is attached with loginForm, any initialized attribute 

in action form is available in JSP. Any changes in JSP fields are also populated when the form is submitted.  
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<TITLE>login.jsp</TITLE>

</HEAD>
<BODY>

<html:form action="/login.do">
<TABLE border="1">

<TR>
<TD>User Id</TD>
<TD><html:text property="userid"/> </TD>

</TR>
<TR>

<TD>Password</TD>
<TD><html:password property="password" /> </TD>

</TR>
</TABLE>

</html:form>
</BODY>

</HTML>

Code example 3: Login JSP using login action. 

Step 4: Define LoginAction class that is invoked by the framework.  

LoginAction class is shown in code example 4. The execute (…) method of this class is called by the framework 

(by controller to be specific) when ‘login.do’ action is invoked. This is the most appropriate place to make 

business layer calls because the page to forward is decided by controller based on the return value of this method. 

This also is the last point where application related data may be manipulated before the framework takes control. 

In the example discussed, the return value of business layer call, authenticateUser (userid, password) is used by 

the controller, to forward one of the pages defined in forward section of configuration file. In this scenario, 



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 13

business layer will return appropriate forward string based on user role. Navigation control is not usually 

manipulated in action classes. In case if there is new forward name to be added because of some business rules, 

then it should be added in struts-config.xml file. There is no need to change presentation layer code because 

business layer provides the forward string.   
/**
* all import statements go here
*/

public class LoginAction extends Action {
public ActionForward execute( ActionMapping mapping,

ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

throws Exception
{

LoginForm loginForm = (LoginForm) form;
String userID = loginForm.getUserid();
String password = loginForm.getPassword();
//get business layer interface instance by remote
//lookup to business layer interface (lookup code not shown here)
String loginStatus = blInterface.authenticateUser(userID, password);
return mapping.findForward(loginStatus);

}
}

Code example 4: Login action 

See Also  

MVC [6,9] 

MVC is short for Model, View, and Controller. A Model component encapsulates application state, notifies views 

about changes, responds to state query and exposes application functionality. In general, it is the application data 

and business logic operating in those data. A View component renders model, sends user gesture to controller and 

allows controller to select views. A Controller component defines application behavior, maps user actions to 

model updates and selects view to response. Navigation Controller pattern is based on the MVC. Any page in this 

pattern corresponds to view component; ActionController corresponds to controller component and action form 

(LoginForm is one such form) correspond to model component.  

Command [1], Command Processor [9] 

Command pattern allows encapsulate service request into objects. Command Processor pattern builds upon the 

Command pattern and provides more details in handling command objects. Navigation controller builds upon this 

idea by encapsulating Action classes as command objects. An action class is a command whose execute() method 

is called by the controller based on mapping defined in configuration element. In previous example, 

ActionController invokes LoginAction.execute() method as part of login action making LoginAction object as 

command object.  



Pattern: Dynamic Page  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 14

DYNAMIC PAGE  

Dynamic page pattern provides a way to assemble client specific pages dynamically at rendering time.  

Example 

There are several scenarios, in which the same page should be able to present different contents or same contents 

differently. Let us consider how same contents in a page should be presented differently for different user roles.  

 

 

 

 

 

 

 
 
 

Figure 7a:’Type A’ user’s view of a page Figure 7b: ‘Type B’ user’s view of a page  

Let us assume that ‘Type A’ and ‘Type B’ are two user roles are. Also assume there is a hypothetical business 

rule-- user ‘Type A’ should be able to add or modify customer address whereas user ‘Type B’ can only view the 

existing data. This leads to the fact that for ‘Type A’ user role, the fields should be shown editable (Figure 7a) 

whereas for user ‘Type B’ the same fields should be shown read only (Figure 7b). 

Context 

You are designing presentation layer of a Web application in which same page may present different contents 

based on domain specific business rules.  

Problem 

Layout, style, applicability, and other structural information of Web pages may change because of domain specific 

business rules. Server side scripting with or without client side scripting can be used to present dynamic contents 

in such pages. In this approach, however, as the complexity grow, the amount of scripting may grow to such 

extend that may result in less maintainable pages. How to minimize or even avoid scripting so that pages that 

present dynamic contents become better maintainable?  

 

Page 

View 

Field

Account Details
 

Account Details 
 

 
 
Address: 
 
City: 
 
State:  
 
Zip: 

321 Main Street

Lansdale

Pennsylvania

Customer Address 
 
Address: 123 Main street 
 
City: Hatfield 
 
State: Pennsylvania 
 
Zip: 19440              

Customer Address

19446



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 15

Forces 

A dynamic page should balance some or all of the following forces.  

•  Server side scripting is one of the most widely used methods to achieve dynamic behavior of a page. As 

factors affecting dynamic behavior increase, scripting may soon result in code that is difficult to read and 

manage. 

•  Layout, style, applicability, and other structural information of a Web page may change because of domain 

specific business rules. Externalization of page structure makes it easy for change management.  

•  Client side scripts can also be used to make a page behave like dynamic by showing only those fields that 

are applicable to current context and hiding all other fields. This approach may result in pages that may 

produce different results based on client’s environment settings. An application, for example, may use 

JavaScript to open a popup as child to a main window to show some additional information. If a user has 

installed ‘popup blocker’ software in his browser to block unwanted pop-ups. It turns out that the 

application would not behave as expected since the popup cannot be opened. 

Solution 

Assemble pages dynamically at rendering time that contain only required fields with appropriate style and valid 

values applicable to current context.  

In dynamic rendering approach, a page may not rely on scripting for dynamic behavior that may be affected by 

multiple factors. When a rendering request is received from a page, presentation layer should send current page 

structure to the business layer using a common object (a PageBean instance). Business layer applies business rules 

and populates the page structure with data pertaining to the current page. The presentation layer receives an 

instance of Interface Object (19), which is used by Page Assembler (22) to generate client specific page. 

Further, in a Web page, fields tend to fall in groups. For scope of this pattern, we will use a term called  ‘view’ to 

represent logical unit that presents fields related to each other to form some meaningful entity. Example in Figure 

7 shows a ‘Customer Address’ view in ‘Account Details’ page. A dynamic page should be constructed as 

aggregation of views instead of aggregation of fields. This promotes the reusability in coarser level of granularity.   

Structure 

Figure 8 shows UML representation of classes for a typical dynamic page structure.  

PageBean ViewBean
1..*1..* 1..*1..*

ValidValueBeanFieldBean

1..*1.. * 1..*1.. * 0..*1 0..*1
 

Figure 8: Participating classes for a dynamic page structure 



Pattern: Dynamic Page  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 16

Participants and Responsibilities 

PageBean 
A PageBean is a class an instance of which should be able to completely describe structure of a dynamically 

generated area of a page. It holds a list of views applicable to the current page for current context. In Figure 7, the 

main content area corresponds to an instance of a PageBean. Although this example shows only one view, the 

actual number of views applicable to a page is defined in presentation layer metadata.  

ViewBean 
An instance of ViewBean should hold necessary and sufficient information to generate a view within the 

containing page. It holds a list of field beans applicable to the current view. A view structure is also defined at 

presentation layer metadata.  

FieleBean 
An instance of FieldBean holds information about a field that is to be displayed within a view. In general, this 

represents one row in a view as drawn in page. A FieldBean instance should hold complete information required 

to construct appropriate field type, style, valid values, and so on. An instance of ‘state’ field bean in figure 7a, 

holds three values--data for field label which is ‘State’; default selection which is ‘Pennsylvania’; and valid values 

to display in drop down which is list of applicable states. In figure 7b, however, field bean for state should contain 

two label values-- ‘State’ label and actual state value ‘Pennsylvania’. Business layer populates these values based 

on the business rule (user role in this case), presentation layer need not consider the user role to display the field 

properly.  

ValidValueBean 
An instance of this class represents a valid value in a field that shows it.  

Code Example 
A typical semi pseudo code for Java Server Page element that represents page in figure 7 may look like this. 
<table>

<tr><td span=2><include top.jsp></td></tr>
<tr>

<td><include teftnav.jsp></td>
<td><include main.jsp></td>

</tr>
<tr><td span=2><include bottom.jsp></td></tr>

</table>

Code example 5: Server side script for a page 

All server side scripting elements may be implemented as dynamic page but this may not always be required. The 

server pages representing top, bottom, and left in Code example 5 (not shown in example), will not have 

substantial amount of dynamic behavior because, the structure are usually same, except a few things. Hence, such 

elements are better candidates for implementing using scripting. The server page representing main content area is 

the one whose contents are expected to change substantially. Code snippet in example 6 is a scripting element 

(Java Server Page) that is used to render such a page dynamically.  



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 17

 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<!—taglib declarations -- >
<!—page level imports -- >
<TITLE>AccountDetails.jsp</TITLE>
</HEAD>
<BODY>
<! … … … Start table and row tags … … -- >
<!-- build this screen dynamically -->

<%
PageAssembler.getInstance().buildPageHTML(

request,
pageContext,
GlobalConstants.PAGE_ID_ACCOUNT_DETAILS);

%>
<! … … … End row/ end table tags … … -- >
</BODY>

</HTML>

Code example 6: Main.jsp building page contents dynamically 
 
One of the most important features of this JSP is that it neither has to declare any scripting element nor multiple 

scriplet to control display logic. The rendering is completely controlled by single call to Page Assembler (22) 

component. The return value of this method is the actual text representing current dynamic page. 

Consequences 

Benefits 
•  Reduced number of presentation elements. If chosen to do so, only one JSP is sufficient to present the 

contents for whole application.  

•  No scripting to generating dynamic contents. Pages not use any business rules for generating dynamic 

content.  

•  Maintainable pages. Writing maintainable dynamic pages has always been a daunting task for page authors 

because they tend mix markup language tags, server side scripting elements and scriplets. This leads to the 

fact that serve side elements becomes less maintainable. Code example 6 shows (JSP) which makes only a 

single call to Page Assembler component that creates necessary HTML text to display this page 

appropriately. This scripting element (JSP) implementation is ‘thin’, clean, and completely unaware of 

what contents it will receive to present because this is driven by business layer data. Instead, Code 

example 7 shows how scriplet and HTML tags can mix up that results in JSP code difficult to understand 

and manage.  



Pattern: Dynamic Page  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 18

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML> <HEAD>
<!—taglib declarations -- >
<!—page level imports -- >
<TITLE> AccountDetails.jsp</TITLE>
</HEAD>
<BODY>
<! … … … Start table and row tags … … -- >
<!-- build this screen using scriplet -->

<% if (account.getUser().getUserRole.equals(“TypeA”)){%>
< ! — display state as list -- >
<TD>State : </TD><TD><SELECT name=”states”>
<% //for loop for applicable states list go here %>
<OPTION value=”” >
</SELECT></TD>

<%} else{%>
< ! — display state as label-- >

<%}%>
<! … … … more field display logic … … -- >
<! … … … end row/ end table tags … … -- >
</BODY>

</HTML>

Code example 7: Building state list using scriplet to take account of user role 

When we compare code example 6 with 7, example 6 is, of course better in terms of maintainability.  

Liabilities 

•  Response time. Since string manipulation is considered relatively heavy operation, there can be 

reasonable amount of performance penalty unless suitable caching mechanism is implemented. Although 

this approach involves heavy string manipulation, some scenarios urge to refrain from adopting server 

side scripting and adopt this approach. If your application will be used by range of users to perform 

several business processes, dynamic rendering approach is definitely a better choice.  

See Also 

Two Step View [9] 

Two Step View [8] is one of such patterns that can be used to generate pages dynamically. This pattern proposes 

to generate HTML pages in two steps. At the first step, domain data is transferred into some kind of logical page, 

usually a XML document. At the next step, logical page from the first step is transferred to HTML by applying 

XSL transformation. Although Two Step View and Dynamic Page approaches have similar goal—present 

dynamic content based on some data, there are some fundamental differences. Two Step View mainly depends on 

transformation, creating intermediate views and transforming such views to target final view such as HTML or 

PDF. A Dynamic Page approach however depends only on the object returned from business layer to generate a 

client specific view. No intermediate transformation is necessary.  

 



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 19

INTERFACE OBJECT 

Instance of an interface object provides a common object structure to send information between presentation and 

business layers.  

Example 

Communication between presentation and business layers usually happens via remote method calls over the 

network. In data driven architecture, presentation layer assembles client specific pages at rendering time based on 

data provided by business layer. Presentation layer makes calls to business layer, which usually exposes the 

‘services’ via interface methods. Because of extend of data transfer between two layers, the network traffic should 

be minimized by providing a coarse grained object structure that should be able to hold necessary and sufficient 

information for presentation layer to construct a page. When user submits a page, the object should hold the newly 

entered data by the user for business layer for further processing. Figure 9 shows a schematic representation of 

communication between presentation and business layers.    

 
 
 
 

 
 
 

 

 

Figure 9: Interface Object usage scenario 

Context 

You have decided to adopt data driven architecture for your presentation layer to generate pages dynamically. You 

need to have a common object that can be interpreted by presentation layer to completely generate a page and by 

business layer for further processing.  

Problem 

It is necessary for presentation layer to completely understand data returned from business layer and vice versa. 

This leads to the fact that a generic object is required to share information by both presentation and business 

layers. Presentation layer uses this object to generate pages dynamically. Business layer uses this object to obtain 

data submitted from user for further processing. What kind of object is suitable to serve the both purpose? 

Forces 

An interface object should balance some or all of the following forces.  

 
 

Presentation 
Layer 

Interface 
Object 

Interface 
Object 

 
Business 

Layer

I n
 t 

e r
 f 

a c
 e 

s 



Pattern: Interface Object  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 20

•  Modern web applications are heterogeneous, composed of several components running across the network. 

In data driven approach, presentation layer depends on business layer for virtually every piece of 

information. Presentation and business layer components are usually part of network instead of same 

physical machine. A ‘coarser grained’ object is required to reduce network traffic that presentation and 

business layers can share so that sending and retrieving information can be completed in single call.  

•  Business layer can operate on HTML form values available, as part of HTTP request. This approach is not 

recommended because it is easy to compromise. If name of a field is changed in presentation layer, the 

business layer needs to be changed as well or it does not get appropriate value. Business layer should not 

depend on HTTP request object for further processing.  

Solution 

Define a common object and let business and presentation layers communicate using this object to send required 

information back and forth between these layers.  

An Interface Object is a coarse grained class composed of several other classes. The object of this class holds 

required data structure and value objects based on which pages are constructed dynamically. This object should 

also be updated to reflect data changed by a user so that business layer can take appropriate action.  

Structure 

InterfaceObject
<<Interface> >

ValidValueBean

FieldBean

1

1

1

1

InterfaceO bjectImpl PageBean11

ViewBean

1..*1..*1..*

1..*11

1..*

1..*

 
Figure 10: Interface Object classes  

 

Participants and Responsibilities 

InterfaceObject 

This interface defines InterfaceObject object type and exposes common operations in such object instances. 

InterfaceObjectImpl 

This class is actual implementation of the interface object. This object holds, in addition to others, an updated 

PageBean instance at any point of time.  



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 21

PageBean 

A PageBean holds list of ViewBeans applicable for this page for any given context.  

ViewBean 

A ViewBean holds information to completely render a view in a page that displays it. It holds one or more 

FieleBeans applicable to this view.  

FieldBean 

A FieldBean represents a particular field to be displayed within a view. It should define all required properties to 

render it properly, which includes type of (this) field, size, style, as well as list of valid values, if applicable.  

ValidValueBean 

A ValidValueBean represents a valid value that is applicable to the associated field. For example, a valid value 

bean for a state field of a US address may have a state’s display name and actual name that is used to submit as 

part of HTTP request parameter.   

Consequences 

Benefits 
•  Single, sharable object that can be used by both presentation and business layers 

•  With coarser grained object structure, information can be retrieve in single method invocation, hence 

reducing network traffic between presentation and business layers.  

Liabilities 
•  Complex structure of Interface Object makes relatively difficult to manage its lifecycle.  



Pattern: Page Assembler  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 22

 
PAGE ASSEMBLER  

Page Assembler pattern allows generating a dynamic page by assembling client specific views.  

Example 

In data driven approach, a page is constructed at rendering time. There will only be place holder construct, the 

contents for such page are supplied at the rendering time. A dedicated component is needed for delivering 

dynamic contents to a requesting page based on current context. Figure 11 shows a schematic representation of 

dynamic page assembling activity.  

 
 

 

 

 

 

Figure 11: Page assembling activity example 

Context 

You have decided to use Dynamic Page (14) approach to construct a page. You need a component that has 

dedicated job of assembling a client specific page based on Interface Object (14) returned by business layer.  

Problem 

In applications that use dynamic rendering approach, a page is constructed using Interface Object (19). 

Presentation layer of such application need a dedicated component that can generate client specific page contents. 

What kind of component should it be to serve purpose of assembling page efficiently?   

Forces 

A Page Assembler should balance some or all of the following force(s).  

•  Modularity is one of the important aspects for application manageability. Because of its role in dynamic 

page generation framework, it should be implemented as separate component.  

•  Presentation layer architecture should be extensible. Assembler as component makes it easy to replace the 

client type by extending the base page assembler for specific type of client.  

Page X Page Assembler 

Get page structure

Cached 
data 

Business 
Layer 

Get page data  
Assemble

Get Page 

Render 



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 23

Solution 

Implement a Page Assembler component and let this component assemble client specific pages. The page 

assembler component should provide appropriate services for building a page. The component should take a 

request from a page to build a client specific content. As assembling process, it finds a page structure from 

appropriate cache manager and based on this structure, this component makes business layer method calls and 

retrieves instance of Interface Object (19). It then operates on this object to construct current page. 

Structure 

PageX
<<JSP>> PageAssembler PageCacheManager

V iewBuilder NewClass2
Bus ines s  Layer
<<s ubsys tem >>

 
Figure 12: Classes and participating components for assembling dynamic page 

Dynamic Page Assembling Dynamics 

Figure 13 shows the sequence diagram of dynamic page assembling activity. The responsibilities of individual 

class or components are discussed in the following section.  

 : Business Layer

PageAs samblerPageX PageCacheManager ViewBuilder

buildPage(id)

//iterate over the lis t of view ids

pageHTML

getPageBean(id)

pageBean

buildView(viewBean)

viewHTML

populatePageBean

InterfaceObject

 
    Figure 13: dynamic page assembling sequence diagram  



Pattern: Page Assembler  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 24

Participants and Responsibilities 

PageX 
A page is used to send user request to the system and present system response to user.  

Page Assembler 
A Page Assembler is the heart of page assembling activity. Based on page id, it gets pageBean (structure) from 

appropriate cache manager, and requests business layer to provide page specific data. Business layer returns 

Interface Object (19) for this page. Page assembler uses custom View Builder (25) to assemble views. For HTML 

client, it creates HTML representing the dynamic page in the form of pageHTML, which is based the current 

instance of interface object.  

Page Cache Manager 

Page Cache Manager is a class that caches page level information for a given page, it holds information about all 

the views that can be shown in this page for all type of users and business processes. It reads and initializes itself 

using data in external data source so that database access frequency is minimized. 

View Builder (25) 
It constructs client specific view based on a ViewBean. For Web client, it constructs HTML text that represents 

current view.   

Business Layer 
Business Layer can be local or a reference layer. It provides Interface Object (19) instance that holds data for 

current page.  

Consequences 

Benefits 
•  Page assembling framework that can be extended to generate pages for different type of clients. Discussion 

was done generating HTML client. The same framework can be extended to different type of client, a 

WML for wireless client.  

•  Because it is implemented as separate component, page assembler promotes modularity, which in turn 

promotes reusability and maintainability.   

Liabilities 
•  Intensive string manipulation may result in performance degradation unless appropriate caching 

mechanism is in place.  



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 25

 
VIEW BUILDER 

A View Builder allows creating client specific views based on data available in some pre-defined object. 

Example 

In dynamic page assembling approach, a page can be constructed in ‘single shot’ or as aggregate of views. 

Considering efficiency of page construction, the later approach is better than the earlier one because of the reason 

of reusability. Such presentation layer should be extensible enough so that any type of client can be served by 

providing contents for that type of client. In example of figure 14, two different sub types of view builder 

components are serving HTML and WML clients.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: View Builder example 
 

Context 

You have selected to generate pages of your Web application dynamically and looking for an appropriate 

component that can build a client specific view.  

Problem 

How to efficiently generate client specific views of a Web application using dynamic page generation approach?  

Forces 

A view builder should balance some or all of the following forces.  

•  Construction of pages based on views promotes reuse since they can be used across the application.  

•  Presentation layer of a dynamic Web application should be extensible enough to generate contents for 

different types of clients. 

Presentation Layer 

View Builder

HTMLViewBuilde

WMLViewBuilder

???ViewBuilder

HTML Client 

WML Client 

Communication with 
Business layer  



Pattern: View Builder  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 26

Solution 

Define a view builder component and let this component build client specific views on demand.  

One of the most important factors of dynamic page construction architecture is the way they are constructed. In 

this approach, every field in a page is constructed at the time of rendering. Hence, there is reasonable amount of 

time spent while constructing such fields. Further, fields in a page tend to fall in some coarser grained entity 

called view. Because it is candidate of reuse, a client specific view once constructed, can be reused to improve 

system performance.  

A typical view builder should have intelligence of constructing views based on a ViewBean instance (Figure 10). 

A ViewBean in domain model will represent a ‘painted’ view in a page. Hence, a ViewBean should hold 

necessary and sufficient information to construct a view for applicable page.  

Structure 

Figure 14 shows a view of participating classes for a view builder component. ViewBuilderFactory is factory 

class that will instantiate and return appropriate view builder instance on request-- HTMLViewBuilder instance 

for Web client and vice versa. HTMLViewBuilder uses HTMLFieldBuilder to construct view specific fields. It 

uses HTMLCacheManager to get field specific string to construct the current field. Figure 15 shows class diagram 

for a view builder component.  

 

ViewBuilder ViewBuilderFactory

HTMLViewBuilder HTMLFieldBuilder HTMLCacheManager

 
Figure 15: View Builder class diagram 
 
 

Sequence diagram for a HTML view building process is shown in figure 16. 



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 27

Dynamics of View Building  

HTMLViewBuilder HTMLFileldBuilder HTMLCacheManager ViewBuilderFactoryViewBuilder

buildView(viewBean)

getViewBuilder(viewBean)

htmlViewBuilder

Iterate over fieldBeans

buildHTML(fieldBean)
getHTMLString(fieldType)

fieldHTMLString

populateValidValues

fieldHTML
viewHTML

 
 

Figure 16: Sequence diagram for generating view HTML  

Participants and Responsibilities 

ViewBuilder 

This is generic view builder class and it defines super type of all view builders.  

HTMLViewBuilder 

The instance of this class has an intelligence of building a view for HTML type clients. It iterates over the 

FieldsBeans and delegates calls to HTMLFieleBuilder to build individual fields.  

HTMLFieldBuilder 

The instance of this class knows how to build a field for HTML client. It builds equivalent HTML text that can be 

interpreted by Web browser to generate the type of field. 



Pattern: View Builder  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 28

HTMLCacheManager 

This cache implementation holds minimum text to paint HTML fields in client’s browser window. It holds, in 

appropriate data structure, minimum text required for creating HTML fields such as text, checkbox, drop-down 

etc.  

ViewBuilderFactory 

A factory class that returns appropriate builder instance for given type of view. For a HTML client, it returns 

HTMLViewBuilder and vice versa.  

Consequences 

Benefits 
•  A component that can interpret and generate client specific.  

•  Dynamic generation of views.  

Liabilities 
•  Extensive string manipulation. 

Code Example 

Here is code snippet that is used to generate a client specific field dynamically for which the data is available in 

interface object. The textHTML for a field can be retrieved from HTML cache manager by: 
CacheManager htmlCacheManager = CacheManager.getCacheManager(CacheManager.HTML);
String textHTML = htmlCacheManager.getHTML(CacheManager.FIELD_TYPE_TEXT);

The first line returns an appropriate instance of cache manager, which is htmlCacheManager and knows how to 

return string representation for HTML client. The second call to cache manager returns a string representation for 

a text field, which may look like this:  
<input type=”text” name=name$ value=value$>

This text represents ‘un-populated’ version of the text field. In order to populate, the view builder can call 

following method to get the actual string representation.  
String nameField = populateValidValue(textHTML, fieldBean);

In this example, the fieldBean instance holds the name-value pair to populate.  
username=John Doe

The call will result in the full html text that is shown below.  
<input type=”text” name=”username” value=”John Doe” >

This is a valid HTML text that a browser can read and produce HTML text field that is shown in figure 16. 

 

 
Figure 17: Dynamically generated text box field  



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 29

 
 
CACHE MANAGER 

Cache Manager provides caching required for presentation layer so that data is available in the application level 

cache reducing database access, xml parsing or object construction at rendering time.   

Example 

Lets consider a page that is being dynamically constructed. In this approach, individual view and hence field is 

constructed for given client type. In example figure 18 a page is shown that contains view 1 and view 2, view 2 

has a ‘Name’ field.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18: Example of cache manager to cache data from several sources 
 

The information needed to construct such page may be available in database, XML document or an instance of 

simple objects. Accessing such information every time when needed is be time consuming. For this reason, an 

application level cache can provide better way of accessing such information by caching with appropriate cache 

manager objects. A typical cache manager has an intelligence of updating contents based on the need, for 

example, a PagesCacheManager will read and initialize at application startup time.  

Context 

Instead of using server or client side scripting for generating dynamic content, your presentation layer uses pages 

constructed at rendering time. The information required to successfully construct a page may come from multiple 

sources. You are looking to have a unified place for accessing data from such multiple sources. 

Problem 

Dynamic page rendering uses information from several sources. Accessing information from every possible 

source at page assembling time is not desirable because of performance and other reasons. How do you provide a 

Page 1 

 
 
Name 

View 2

Cache Manager
 
PagesCacheManager

ViewsCacheManager

HTMLCacheManager
Objects 

Database 

XML document 

View 1 



Pattern: Cache Manager  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 30

mechanism for caching application data from multiple sources so that accessing such data can be achieved from 

single place?  

Forces  

A cache manager should balance some or all of the following forces.  

•  View Builder (25) component should be able to construct individual views in time efficient way.  

•  It is desirable that frequently used information should be available in single application component. 

Solution 

Implement a Cache Manager, which caches required data for successful construction of pages at rendering time. 

Let such cache manager also have intelligence of resetting itself in case of data update or object attribute changes 

so that it is always in-sync with application state.   

Several sources of data drive rendering of dynamic presentation layer. In order to improve the application 

performance; there is no question that application level data has to be cached. Because of the nature of data, a 

specific cache manager may be used to cache data from a specified source.  

Structure 

A CacheManager view of participating class is proposed in figure 16.  

HTMLCacheManager
htmlString : Map

<<Singleton>>
PagesCacheManager

pages : Map

<<Singleton>>
ViewsCacheManager

views : Map

<<Singleton>>

CacheManager
<<Interface>>

 
Figure 16: Cache Manager class hierarchy 

Participants and Responsibilities 

CacheManager 

This interface defines object type and exposes common operations.  

PagesCacheManager  

A class that holds, in addition to others, page related information.  



Title: Pattern Language for Data Driven Presentation Layer  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 31

ViewsCacheManager 

This class caches all views used across the application. Since views are reused, it makes necessary to keep 

repository of views instead of part of PageBean in PagesCacheManager.  

HTMLCacheManager 

This class holds appropriate data structure to cache possible ‘minimum’ string representation required to generate 

HTML elements.  

Consequences 

Benefits 
•  Repetitively used application data is cached that helps to increases application performance. 

•  Extensibility. Adding new type of cache manager is easy.  

•  Single point of data access. 

Liabilities 
•  Complexity. 

 



Pattern: Glossary  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 32

 
GLOSSARY 

Business Layer: AKA business tier, it is a logical layer of programming constructs grouped together for the 

purpose of handling domain specific workflow and legacy communication. Presentation layer gets context related 

data from this layer.  

Data Driven Architecture: In the context of Web application, a system, whose rendering and navigation aspects 

are driven by external data.  

Field: A field is an actual presentation element that is shown to the user. A name text box for an HTML page is an 

example of a field. 

Legacy Systems: For the context of this pattern language, a legacy system refers to a system that is not flexible 

enough to adapt new computing paradigms as they emerge, hence need to make them Web enabled.  

Middleware: Collection of components of a large-scale enterprise web applications responsible to deliver 

contents to the application client that usually implement domain specific workflow and communicates to the back 

end systems. Middleware consists of business objects and server side scripts related to presentation layer as well 

as controller component that orchestrate program flow. 

Page: Application element that is used to present the user with system response and let user enter and send request 

for further system processing. In the context of dynamic rendering architecture, a page consists aggregation of one 

or more views that are applicable to this page.  

Pattern: Solution to a common and reoccurring problem in a particular context.  

Pattern Language: Collection of related patterns grouped to solve a problem that occurs in some broader context.  

Presentation Layer: AKA, presentation tier, is logical layer that hosts system elements for interacting with 

middleware and presenting contents to the client. 

Quality of Services: The requirement of a system that it is supposed to provide when it is in service. There are 

several attributes to measure quality of services; some are more important that others for specific applications.  

View: The presentation layer element that is used as unit of a page. A view is collection of fields that are grouped 

together to form a logical entity within a page. An example of a view is the Address view in a page, which 

includes some common fields such as line1, line2, city, state, zip for US postal address.  

Web Enabling: Process that makes contents of a system accessible over the Internet. 



Title: References  Version: Conference draft 
Author: Sharad Acharya  Date: July 26, 2004 
 

 33

 
REFERENCES 

1. Gamma, Erich; Vlissides, John; Johnson, Ralph; Helm, Richard Design Patterns: Elements of Reusable 
Object-Oriented Software Addison-Wesley; 15 January, 1995. 

2. Britton, Chris, IT Architecture and Middleware, Strategies for Building Large, Integrated Systems, 
Addison Wesley, 2000. 

3. Conallen, Jim; Building Web Applications with UML, Addison Wesley,2000   

4. IBM Redbook on Legacy Modernization with WebSphere Studio Enterprise Developer 

5. Resource available in IBM web site for Web development Pattern 
http://www.ibm.com/developerworks/patterns/ 

6. Core J2EE Patterns: Patterns index page: http://java.sun.com/blueprints/corej2eepatterns/Patterns/  

7. Apache Struts resources page available at http://jakarta.apache.org/struts/  

8. Fowler, M, Patterns of Enterprise Application Architecture, Addison Wesley, Oct 2002 

9. Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerland Peter; Stal, Michael, Pattern Oriented 
Software Architecture: A System of Patterns 

 

ACKNOWLEDGMENTS 

Writing patterns is hard. Making them useful is even harder. I have given due attention to make these patterns as 

much useful and adaptable as I can, but as always, there may still be some room for improvement. The concepts 

expressed in this paper were observed as part of development teams in several projects that include mortgage, 

bank, and insurance domains. I want express my sincere thank to all who provided direct or indirect inputs 

towards this paper as part of team or otherwise. My special thanks to Peter Sommerland, who was shepherd for 

this paper for PLoP ’04 conference, whose insightful guidance and valuable feedbacks helped to improve this 

paper a great deal that it stands in today’s shape. I will also greatly appreciate your valuable comments during 

PLoP 04 and beyond in any patterns towards making them more useful and adaptable. Please direct your 

comments to s.acharya@computer.org.  

 

http://www.ibm.com/developerworks/patterns/
http://java.sun.com/blueprints/corej2eepatterns/Patterns/
http://jakarta.apache.org/struts/
mailto:s.acharya@computer.org

	July 26, 2004
	Abstract
	Prologue
	Pattern Language Catalog
	Architectural Pattern
	Implementation Patterns

	Data Driven Presentation Layer
	Context
	Problem
	Forces
	Solution
	Structure
	Dynamics
	Participants and Responsibilities
	Page #1/ Page #2
	Dynamic Renderer
	Cache Manager
	Business Layer
	Navigation Controller (7)
	PL Metadata

	Consequences

	Navigation Controller
	Example
	Context
	Problem
	Forces
	Solution
	Structure
	Navigation Controller Dynamics
	Participants and Responsibilities
	Page #1/ Page #2
	Action Controller
	Action
	Configuration Element
	Business Layer

	Consequences
	Benefits
	Liabilities

	Jakarta Struts framework
	Step By Step Implementation Example

	See Also
	MVC [6,9]
	Command [1], Command Processor [9]


	D
	Dynamic Page
	Example
	Context
	Problem
	Forces
	Solution
	Structure
	Participants and Responsibilities
	PageBean
	ViewBean
	FieleBean
	ValidValueBean

	Code Example
	Consequences
	Benefits
	Liabilities

	See Also
	Two Step View [9]


	Interface Object
	Example
	Context
	Problem
	Forces
	Solution
	Structure
	Participants and Responsibilities
	InterfaceObject
	InterfaceObjectImpl
	PageBean
	ViewBean
	FieldBean
	ValidValueBean

	Consequences
	Benefits
	Liabilities


	Page Assembler
	Example
	Context
	Problem
	Forces
	Solution
	Structure
	Dynamic Page Assembling Dynamics
	Participants and Responsibilities
	PageX
	Page Assembler
	Page Cache Manager
	View Builder (25)
	Business Layer

	Consequences
	Benefits
	Liabilities


	View Builder
	Example
	Context
	Problem
	Forces
	Solution
	Structure
	Dynamics of View Building
	Participants and Responsibilities
	ViewBuilder
	HTMLViewBuilder
	HTMLFieldBuilder
	HTMLCacheManager
	ViewBuilderFactory

	Consequences
	Benefits
	Liabilities

	Code Example

	Cache Manager
	Example
	Context
	Problem
	Forces
	Solution
	Structure
	Participants and Responsibilities
	CacheManager
	PagesCacheManager
	HTMLCacheManager

	Consequences
	Benefits
	Liabilities


	Glossary
	References
	Acknowledgments

