The Mutator Pattern

Mirko Raner
Parasoft Corporation
mirko@parasoft.com

ABSTRACT

The Mutator pattern is a simple behavioral pattern that ap-
plies a series of successive modifications to a mutable object.
The Mutator pattern is similar to the Iterator pattern but
operates only on a single object as opposed to a collection of
objects. Mutators have a significant performance benefit in
situations where a small modification to an existing object
is more efficient than creating a new object from scratch.

Introduction

The discovery of the Mutator pattern began with a bug that
was particularly hard to track down. The method in which
the bug occurred was supposed to execute a sequence of unit
tests that were all generated from a common test case tem-
plate (also known as a “parameterized test case” [7]) and
subsequently collected in a repository. The sequence of test
cases was passed to the execution method by means of an
Iterator pattern [4]. The method did execute the right num-
ber of test cases, but instead of using the different variations
of the test case only the last variation in the sequence was
executed over and over again.

After a long search, the cause of the problem was found: the
execution code assumed that the supplied iterator would re-
turn a sequence of distinct objects, but that was not the
case. In fact, the iterator returned the same test case object
for all iterations. A new test case object was instantiated
only once. Subsequent iterations only modified the original
test case’s parameter settings and then returned the same
object again. Though this “iterator” did implement Java’s
Iterator interface, it violated the expected semantics of the
underlying Iterator pattern in several aspects. As an iterator
is supposed to provide “a way to access the elements of an
aggregate object sequentially” [4] client code will commonly
assume that each iteration will return a distinct object (un-
less the original aggregate object indeed contained multiple
references to the same object). Also, the modification of the
iterated objects is not part of the usual responsibilities of an
iterator. Most client code will not be prepared to deal with

A preliminary version of this paper was workshopped at Pattern Languages
of Programming (PLoP) 06 October 21-23, 2006, Portland, OR, USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. Copyright is held by the author. ISBN: 978-1-50448-372-3

Revision : 1.7

“iterators” that modify the iterated objects (or any other
objects, for that matter).

However, a closer examination of this bug scenario showed
that some valuable lessons could be learned. The reason for
choosing such an unusual implementation for the iterator
was that, in this particular case, creating a new test case
object was a much more expensive operation than changing
the parameters of an existing test case object. Object cre-
ation is usually an expensive operation in an object-oriented
system. Especially the creation of complex object graphs
can be very time-consuming. However, there are many sit-
uations where a series of objects is processed in a strictly
sequential manner and where each object in the series is
very similar to its predecessor. In those cases, it may be
possible to use a single object that mutates its state so that
it effectively at some point assumes the state of each object
in the series. If the differences between successive objects
are relatively small it is more efficient to create only a single
object and then apply a succession of modifications to that
object.

Although the described optimization was an abuse of the
Iterator pattern (for the reasons outlined above), the opti-
mized reuse of the same object was a valuable and useful
new pattern by itself. As demonstrated by the bug scenario,
this pattern is, however, not an Iterator and must not be
confused with one. Instead of returning a sequence of pre-
created objects the pattern applies a series of modifications
— or mutations — to a single object. This new pattern is
therefore subsequently called the Mutator pattern.

In its basic form, a mutator requires only two methods: a
method hasMoreMutations that determines whether the mu-
tator can apply additional mutations to a given object, and
a method applyNextMutation that modifies the object so
that its new state reflects the next logical mutation in the
sequence.

The following sections contain a detailed description of the
Mutator pattern, loosely based on the format introduced
by the Gang of Four [4] with additional elements from the
format used by Alur et al. in “Core J2EE Design Patterns”
[1] (Problem, Solution, and Forces sections).

1. INTENT

The intent of the Mutator pattern is to apply a series of
successive modifications to a mutable object, specifically as
an alternative to successively creating new object instances.

2. PROBLEM

Certain algorithms produce a large number of objects, which
are then passed to some sort of client component that pro-
cesses these objects in a sequential manner. The algorithm
that originally produces the objects often stores the newly
created objects in a collection and then uses an iterator or a
similar pattern to pass the objects to the clients. When the
generated objects have large object graphs it can be very in-
efficient to generate new objects from scratch. Creating the
objects from scratch also does not take advantage of possible
similarities between successive objects in the sequence. Ob-
jects that are only processed once and then discarded also
impose a heavy strain on the garbage collector (if present).

Figure 1 shows a Java 5 [2] class that instantiates and ex-
ecutes a number of concrete test cases based on a test case
template. It uses an Iterator to iterate over the list of test
case parameter sets. The source shows a simplified example
scenario, it is not an excerpt from actual production code:

import java.util.*;

public class IterativeTestCaseExecutor extends BaseTestCaseExecutor

{
public void executeTestCases(TestCaseTemplate template,
List<TestCaseParameters> parameterSets)
{
Iterator<TestCaseParameters> parameterSetIterator;
parameterSetIterator = parameterSets.iterator();
while (parameterSetIterator.hasNext())

TestCaseParameters parameterSet;

parameterSet = parameterSetIterator.next();
ParameterizedTestCase testCase;

testCase = template.instantiate(parameterSet);
testCase.runParameterized();

Figure 1: Code example for test case execution
using an iterator

This example code works fine but has a serious performance
problem. To understand this issue better, it is important to
know some more details about the test case generation pro-
cess. The test case template consists of a possibly very large
tree structure that represents the test case’s execution se-
quence (similar to an Abstract Syntax Tree). A small num-
ber of tree nodes are “parameterized”, that is, their values
can be varied to create different test cases from the common
template. The instantiate(TestCaseParameters) method
creates a new tree in which the parameterized nodes are re-
placed with concrete values from the TestCaseParameters.
This operation is slow and creates a new concrete tree for
each parameter set. Also, it is important to realize that two
object trees that were created in direct succession will usu-
ally only differ in very few nodes (those nodes that contained
different parameters).

3. FORCES

The Mutator pattern typically appears in the context of al-
gorithms that sequentially process a number of objects. The
pattern resolves the following forces:

e You want to reduce the number of objects that are
being created in the context of a sequential processing
loop

e You want to take advantage of similarities between two
successive objects in the processing sequence

e You want to encapsulate an algorithm for successive
object modifications into a separate object

e You want to provide a uniform interface for various dif-
ferent algorithms that perform successive object mod-
ifications

import java.util.*;

public class MutativeTestCaseExecutor extends BaseTestCaseExecutor

{
public void executeTestCases(TestCaseTemplate template,
List<TestCaseParameters> parameterSets)
{
Iterator<TestCaseParameters> parameterSetIterator;
parameterSetIterator = parameterSets.iterator();

// Create a "blank" instantiation of the template:
//

ParameterizedTestCase testCase;

testCase = template.instantiate(null);

// Create the mutator and apply the mutations:

//

TestCaseMutator mutator;

mutator = new TestCaseMutator (parameterSetIterator);

while (mutator.hasMoreMutations(testCase))

{
mutator.applyNextMutation(testCase);
testCase.runParameterized();

}

class TestCaseMutator implements Mutator<ParameterizedTestCase>
{

private Iterator<TestCaseParameters> parameterSets;

public TestCaseMutator(Iterator<TestCaseParameters> parameters)
{
this.parameterSets = parameters;

}

public boolean hasMoreMutations(ParameterizedTestCase testCase)
{
return parameterSets.hasNext();

}

public void applyNextMutation(ParameterizedTestCase testCase)
{
testCase.applyParameters (parameterSets.next());

}

Figure 2: Code example for test case execution
using a mutator

4. SOLUTION

Instead of creating and maintaining a separate object for
each iteration a single object is reused and successively mod-
ified. Thus, the overhead of object creation occurs only
once, regardless of the number of elements. If the differ-
ences between two successive objects are sufficiently small
and changes can be applied efficiently then the overall se-
quence of objects can be traversed much more quickly. Also,
there is no need for repeated garbage collection or dealloca-
tion of already processed objects.

Using the Mutator pattern, the example from section 2 can
be resolved as shown in figure 2. The original algorithm is
replaced by a slightly different algorithm that only uses a
single test case object which is brought into the right state
and then executed. This new scenario is also further illus-
trated in figure 4.

S. APPLICABILITY

The Mutator pattern is applicable when:

e an algorithm operates on a sequence of complex ob-
jects whose individual creation is rather expensive

e the objects are created on-the-fly, they do not exist yet

e the objects in the sequence are all relatively similar to
each other

e the objects in the sequence are mutable, and applying
minor modifications to an object is a relatively inex-
pensive operation

e the objects allow reuse (for example, executable ob-
jects must allow to be executed more than once)

e the client algorithm processes the objects in a strictly
sequential manner, i.e., after an object was processed
by the algorithm that object is no longer needed or
referenced, i.e., the algorithm must never require ref-
erences to two or more objects from the series at the
same time

Potential scenarios where a Mutator pattern makes sense
can be quite hard to identify. Some sophisticated profiling
tools can pinpoint code that creates large numbers of new
objects. If it also becomes apparent that all these objects
are very similar then this may point to a possible candidate
for the Mutator pattern. As a starting point, it can also
be helpful to examine existing uses of the Iterator pattern
and the aggregate objects over which they iterate. If an ag-
gregate object is only accessed once via an iterator (and not
otherwise used) after it was originally created and populated
then it may be beneficial to replace the aggregate object and
its iterator by a mutator. To determine whether such a re-
placement is feasible, the client code has to be examined
with respect to all the above listed criteria.

6. STRUCTURE

The Mutator design pattern has the structure shown in fig-
ure 3 (rendered in UML 2.0 [3]).

- SomeMutableObject |
«interface» |
Mutator

hasMoreMutations(SomeMutableObject)
applyNextMutation(SomeMutableObject)

«bind»
<SomeMutableObject::ConcreteObject>

ConcreteMutator

Figure 3: Mutator class diagram (UML 2.0)

The client code that uses the mutator is not shown in the di-
agram. Concrete implementations of the Mutator interface
will modify a specific class of objects. SomeMutableObject
is just a type parameter which can be bound to any class
or interface whose objects are mutable. In programming
languages that do not support parameterized types (for ex-
ample, older versions of Java) the Mutator interface can be
defined using a general root class (for example, java.lang.
Object in Java) as parameter to its methods. The general-
ization of the interface as shown in figure 3 is analogous to
“pattern interfaces” like java.util.Iterator in Java. How-
ever, it is not necessary to have an abstract interface for the
Mutator pattern at all: the performance benefit will still
be there (but not the benefit of the common interface for
different types of object modifications).

The generic Mutator interface has only two methods:

e hasMoreMutations (SomeMutableObject)
Determines whether a given object can be mutated
by the mutator depending on the mutator’s and the
object’s current state. If the mutator is capable of ap-
plying further mutations this method will return true,
otherwise it will return false

e applyNextMutation(SomeMutableObject)
Performs the given object’s transition into its next mu-
tation state. This method must be called only if the
preceding invocation of hasMoreMutations returned
true, otherwise it will fail, for example, by throwing
an exception

7. PARTICIPANTS

In a typical Mutator pattern, the following participants are
collaborating:

e Mutator
defines the general interface for the mutator; this in-
terface can also be a parameterized interface that can
be bound to different types of mutable objects

e ConcreteMutator
a concrete implementation of the interface; this class
implements a specific series of mutations for a specific
type of objects

¢ SomeMutableObject
defines the objects on which the mutator operates; as a
fallback, a general type like, for example, java.lang.
Object can be used

Client Code (not shown in figure 3)

the code that defines the object to be mutated and
performs the further processing or transmission of the
various object states; this code is typically very similar
to the client code for using an iterator and may also
involve a separate “processor” component

8. COLLABORATIONS

A concrete mutator implementation directly modifies the
mutable object that was passed to it (usually by invoking
one of the object’s methods). The mutator may also carry
additional internal information that determines the next mu-
tation and keeps track of the sequence of mutations under-
gone so far. Figure 4 shows a typical scenario where a client
uses a mutator to process a sequence of objects (which is, in
fact, one and the same object traversing different states):

P mutator
‘ : Mutator
:

object
: SomeMutableObject
T

‘ Processor

loop) |

I
[mutator.h?sMoreMutations(object) 1

i i
| |

I I
1_applyNextMutation(object) ' l
i !
I i
i i

someMethod()

i
| process(object) |
i i

I

someOtherMethod()

—

Figure 4: Mutator sequence diagram (UML 2.0)

It is important to note that the mutable object is provided
by the client code and not created by the mutator. The
client code can either create the mutable object and its mu-
tator or can obtain those objects from somewhere else. The
Processor component shown in the diagram is technically
also part of the client code and could also be shown as part
of the Client component in the diagram. Similar to an it-
erator, the pattern repeats a loop until the mutator can no
longer apply any further mutations.

Another interesting aspect of the Mutator pattern is that
during a mutation the mutated object’s “ownership” is tem-
porarily transferred from the client code to the mutator.
The client code hands the object to the mutator and lets
the mutator do whatever it deems necessary to that object.
When control is transferred back from the mutator to the
client code the object’s state will be different.

9. CONSEQUENCES

The use of the Mutator pattern has the main beneficiary
consequence that it saves time by eliminating the repetitive

creation of similar objects. However, there are also some
drawbacks to the Mutator pattern:

e it requires mutable objects, which can be more prob-
lematic to handle than immutable ones

e it has a sizeable list of prerequisites that limit its ap-
plicability (see section 5)

e it may require extensive restructuring of the code if
one of its prerequisites suddenly no longer holds

The use of mutable objects often entails a number of prob-
lems. For example, mutable objects are inherently unsafe
as keys into hashed data structures and prone to issues of
concurrent modification. References to mutable objects that
participate in a Mutator pattern should be kept as local as
possible.

The Mutator is applicable only in those situations that fulfill
all of its prerequisites (see section 5). If one of the prerequi-
sites can no longer be maintained a fairly large restructuring
of the code may be necessary. In some cases such a restruc-
turing may effectively cancel out the benefits of the Mutator
pattern.

10. IMPLEMENTATION

Mutators can be implemented in a stateless or stateful fash-
ion.

A stateless mutator carries no state information in addi-
tion to the mutable object that is passed. Stateless muta-
tors either derive their termination condition solely from the
mutated object or may produce mutations ad infinitum, in
which case it is up to the client code how many mutations
are requested.

Stateful mutators carry additional information, for example
the number of mutations that was already applied. They can
also store a reference to the mutated object. This allows for
the creation of mutators that are specifically designed for
a particular mutable object instance and may only be used
on that particular object. For example, a stateful mutator
could compare the passed mutated object with the inter-
nally stored reference and throw an exception if they do not
match. If the mutated object is already passed to the muta-
tor’s constructor (and the mutator is only supposed to work
on that particular object) the methods hasMoreMutations
and applyNextMutation do not actually need the parameter
that specifies the mutated object.

The basic mutator interface may also be extended to include
methods for undoing the previous mutation, “rewinding” the
mutated object to its original state, or determining the num-
ber of mutations that are left and the number of mutations
that were already executed.

11. SAMPLE CODE

In Java 5 [2], a generic interface for the main participant of
the Mutator pattern can be defined as follows:

public interface Mutator<SomeMutableObject>
{
boolean hasMoreMutations(SomeMutableObject object);

void applyNextMutation(SomeMutableObject object);

A sample implementation that mutates a StringBuffer could
look like this:

public class StringBufferMutator implements Mutator<StringBuffer>
{

private int position;

private int mutation;

public boolean hasMoreMutations(StringBuffer buffer)
{
return (position < buffer.length()-1)
|| (position < buffer.length() && mutation < 2);
}

public void applyNextMutation(StringBuffer buffer)
{
switch (mutation)
{
case 1:
buffer.setCharAt (position,
(char) (buffer.charAt (position)-2));
mutation = 2;
break;
case 2:
buffer.setCharAt (position,
(char) (buffer.charAt (position)+1));
position++;
/* fallthru */
case 0:
buffer.setCharAt (position,
(char) (buffer.charAt (position)+1));
mutation = 1;
break;
default:
throw new RuntimeException();

For each character in the StringBuffer, the mutator will
first increase the character’s value by 1 and then decrease it
by 2 in the next mutation (effectively decreasing the original
value by 1). In a practical application, this could be used
for testing how a certain method reacts to slight variations
of the original input.

The client code that would mutate the string “MUTATOR”
would look like this:

public class Client

{
public static void main(String[] arg)
{
StringBuffer buffer = new StringBuffer ("MUTATOR");
StringBufferMutator mutator = new StringBufferMutator();
while (mutator.hasMoreMutations(buffer))
{
mutator.applyNextMutation(buffer) ;
System.err.println(buffer);
}
¥
}

For the example string “MUTATOR”, the above code will
produce these mutations: “NUTATOR”, “LUTATOR”,

“MVTATOR?”, “MTTATOR”, “MUUATOR”, “MUSATOR?,
“MUTBTOR”, “MUT@TOR”, “MUTAUOR?”, “MUTASOR?,
“MUTATPR”, “MUTATNR”, “MUTATOS”, and “MUTA-
TOQ".

The StringBufferMutator just provides a simple illustra-
tive example; in practice, there would probably be little dif-
ference in efficiency if new String or StringBuffer objects
were created from scratch. In typical real-world applica-
tions of the Mutator pattern, the creation of new objects
is usually by orders of magnitude more expensive than the
modification of an existing object.

12. KNOWN USES

Currently, the only “known” and verifiable use of the Muta-
tor pattern is in the execution system of Parasoft’s Jtest [5],
a commercial testing solution for Java.l

Possible applications of the Mutator pattern, however, in-
clude genetic algorithms, processing of large trees or graphs,
as well as general execution of parameterized unit tests [7]
or unit test generation by means of permutation or pertur-
bation (for an explanation of perturbation testing, see [6]).
For example, a genetic algorithm might have to examine a
large number of tree structures to determine which one has
the highest value according to a certain metric. The tree
structures are generated according to a fixed set of rules,
and whereas no two trees are exactly identical, the varia-
tions between two trees are typically very minor. In such a
scenario, a mutator is likely to have an advantage over an
iterator.

13. RELATED PATTERNS

The Mutator pattern is closely related to the Iterator pat-
tern, and the use of mutators is very similar to the use of
iterators. These are the main differences between mutators
and iterators:

Mutator Iterator

Number of
pre-existing objects

one

one for each iteration

Source of object(s)

supplied by client code

supplied by aggregate
that is being iterated

Method of iteration

implicit; by

explicit; as defined

successive modification by aggregate

Concurrency safety

only if separate
mutable objects are used

typically always

Applicable objects

only Value Objects Value Objects and

Reference Objects?

The Mutator pattern is also similar to the “Generator” pat-
tern. The Generator pattern is not recorded in any of the
major pattern catalogues, but the term is occasionally used
to refer to a pattern that creates objects on-the-fly rather
than returning pre-existing objects from a collection (which,
in turn, makes the Generator pattern similar to the Factory
pattern). The classic abstraction known as input stream or

Lalso, during the workshop session several participants men-
tioned that they had encountered the described pattern be-
fore

%see [3], pp. 73f. for an explanation of Value Objects versus
Reference Objects.

a random number generator are instances of the Generator
pattern. Again, the important difference between Mutator
and Generator is that a mutator does not generate or pro-
duce any objects but instead modifies an existing object.

The Strategy pattern described in [4] also shares a number
of common traits with the Mutator pattern. A mutator can
be seen as encapsulating a “mutation strategy” that is ap-
plied in an iterative fashion. The original Strategy pattern,
however, lacks this iterative aspect (though a strategy can
obviously also be executed more than once). By combin-
ing the Strategy pattern with an Iterator pattern benefits
similar to those of the Mutator can be achieved.

14. CONCLUSION

The Mutator pattern provides a good alternative to itera-
tors and similar patterns in scenarios where, by using the
Iterator pattern, a large number of similar objects are cre-
ated from scratch and processed in a sequential fashion. By
mutating a single object through a predefined series of states
the Mutator pattern requires only a single object instance
and replaces expensive object creation with less expensive
object modification.

Before choosing the Mutator pattern to solve a particular
problem, developers should make sure that all of the pat-
tern’s prerequisites are met and are not likely to be broken
by future development of the code. Typical applications
of the Mutator pattern include genetic algorithms and unit
testing by means of permutation or perturbation.

Acknowledgements

The Mutator pattern was originally inspired by my profes-
sional work as a member of Parasoft’s Jtest development
team. The discovery of this pattern could not have hap-
pened without my daily interaction with fellow team mem-
bers in San Diego (USA), Krakow (Poland), and Novosibirsk
(Russia). In particular, I wish to thank the participants
of the PLoP 2006 workshop session who reviewed and dis-
cussed the original paper about the Mutator pattern (listed
in no particular order): Kanwardeep Ahluwalia of Wipro
Technologies (India); Sachin Bammi of Schlumberger Lim-
ited (USA); Maurice Rabb, Danny Dig, and Brian Foote
of the University of Illinois at Urbana-Champaign (USA);
Andrew Black of Portland State University (USA); Daniel
Vainsencher of the Technion (Israel); Ademar Aguiar of the
University of Porto (Portugal), and Ricardo Lopez of Qual-
comm, Inc. (USA). Special thanks go to Philipp Bachmann
of the Institute for Medical Informatics and Biostatistics in
Basel (Switzerland) for shepherding my submission to PLoP
2006. Philipp’s insightful comments and detailed sugges-
tions greatly improved the quality and clarity of the descrip-
tion of this new pattern. Last but not least, I'd like to thank
Ward Cunningham for leading the workshop session about
the Mutator pattern. Ward made sure that the workshop
always stayed on track and steered the discussion into the
right direction.

15. REFERENCES

[1] D. Alur, J. Crupi, and D. Malks. Core J2EE Design
Patterns — Best Practices and Design Strategies.
Prentice Hall, 2nd edition, 2003.

[2] K. Arnold, J. Gosling, and D. Holmes. The Java
Programming Language. Addison-Wesley, 4th edition,
2005.

[3] M. Fowler. UML Distilled — A Brief Guide to the
Standard Object Modeling Language. Addison-Wesley,
3rd edition, 2003.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design Patterns — Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

Jtest. http://parasoft.com/jsp/products/home.jsp?

product=Jtest.

J. Offutt and W. Xu. Generating test cases for web

services using data perturbation. ACM SIGSOFT

Software Engineering Notes, 29(5):1-10, 2004.

[7] N. Tillmann and W. Schulte. Parameterized unit tests.
In Proceedings of the 10th European Software
Engineering Conference held jointly with the 13th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC-FSE’05), pages 253 — 262,
Lisbon, Portugal, 2005.

o

[6

