
High Availability Design Patterns

Kanwardeep Singh Ahluwalia
81-A, Punjabi Bagh,

Patiala 147001
India

+91 98110 16337

kanwardeep@gmail.com

 Atul Jain
135, Rishabh Vihar

Delhi 110092
India

+91 98119 84678

jain.atul@wipro.com

ABSTRACT
As i nformation t echnology spreads i ts wings in to al l spheres of
human life, including areas which are mission-critical, l ike
telecom s ervices, medi cal s ciences, a ir t ransport systems, space
missions etc., High Availability (HA) has become ut most
important aspect in the development of these systems. This paper
presents a pat tern l anguage t hat can be us ed t o m ake a system
highly available.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance at tributes,
Reliability, availability, and serviceability.

General Terms
Algorithms, Performance, Design, Reliability.

Keywords
High Availability, Availability, Monitor, Reliability, Downtime,
Fault, Det ection, Re covery, To lerance, Re dundancy, Active-
Passive, Standby, Throughput, Replica, Failure, Notification.

1. INTRODUCTION
In information technology, high availability refers to a

system o r c omponent t hat i s c ontinuously o perational f or a
desirably long length o f ti me. A vailability c an be m easured
relative to "100% operational" or "never failing."

In a ctual pr actice, availability g oals ar e expr essed and
measured in the number of nines of availability ranging typically
from 99. 9% (3NINES) t o 99. 999% (5NINES) an d e ven up t o
99.9999% (6NINES) availability f or th e m ost dem anding
applications.

Mission c ritical appli cations like those f ound in
telecommunications ne ed t o meet a nd exceed 5NINES. Table 1
shows the annual downtime and typical availability for various
classes of system applications.

Table 1 High Availability Standards

Typical Application Availability (%) Down Time per
Year

Typical Desktop or Server
Enterprise

Server Carrier-Grade

Server Carrier Switch Goal

99.9 (3NINES)

99.99 (4NINES)

99.999 (5NINES)

~9 hours

~1 hour

~5 minutes

The patt erns in this paper address the architectural and
design c hoices t hat one must c onsider when designing a highly
available system. These patterns are not discussing the
programming techniques that c an be use d to imple ment the se
patterns. Th e i ntended audienc e i ncludes system arc hitects and
designers who are designing reliable systems.

The pattern “System monitor” presented in this paper
duplicates pattern form “Detection Patterns for Fault Tolerance”
by Ro bert S. Hanmer – PL oP 2004. This pat tern has been
presented here to take its place in the larger collection of patterns
presented here for High Availability.

The term ‘part of a system’ will be used here to denote an
element of a s ystem tha t c ould be a so ftware o r har dware
component used in the system.

The term ‘client to the part’ will be used here to denote any
entity that is communicating with a part of the system. It may not
necessarily mean the ‘end client’ of th e system. It can be so me
other p art o f t he system a s well who i s interacting with other
parts of the system.

The following definitions [1] of terms fault, error and failure
shall help to understand the patterns described in this paper.

• a system failure occurs when the delivered service deviates
from what the system is intended to do (e.g. as stated in its
specification).

• an error is that part of the sy stem sta te which is li able to
lead to subsequent failure.

• a fault is the (hypothesized) cause of an error.

2. LANGUAGE MAP
Figure 1 shows how various patterns work together to make

a system highly available.
The patterns analyzed i n thi s pape r f all in t wo g roups.

Patterns 1 t o 5 f all i n t he g roup “Fault t olerance” as t hese
patterns s uggest v arious o ptions b y whi ch a part of the system
can be made fault tolerant by making it redundant. Patterns 6 t o
9 fall in the group “Fault management” as these patterns suggest

Permission to m ake d igital or hard copies of all or part o f this work for
personal or classroom use i s granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLoP '06, October 21–23, 2006, Portland, OR, USA.
Copyright 2006 ACM 978-1-60558-372-3/06/10…$5.00.

how failures can be detected and notified so that recovery can be
done and system be notified about recovered parts so as to gain
redundancy in the system.

Figure 1 High Availability Pattern Language

3. PATTERNS DESCRIPTION
3.1 Pattern 1: Introduce Redundancy
3.1.1 Context

System that w ants t o c ontinue w orking no rmally und er
conditions when one of its parts fails.
3.1.2 Problem

What should a system do to continue working normally even
if one of its parts fails?
3.1.3 Forces
• The cost of keeping the system working even in case a part

of it fails should be low.

• The client’s requests should be processed transparently
even if there is failure in the system.

3.1.4 Solution
The key to a reliable design is to identify and address single

points of f ailure. Si ngle po ints of f ailure a re t hose par ts whose
failure causes the entire system to fail. A production server is a
complex system and many factors affect its availability, including
environment, c ommunication l inks, s oftware, a nd hardware.
Each of these factors can potentially be the source o f a si ngle
point of failure.

Redundancy is a means to address single points of failure. It
is a chieved by r eplicating a s ingle part o f t he system which is
critical f or sy stem f unctioning. The r eplication wil l m ake su re
that if the c ritical part fails, there would be an alternate part
available to t ake o n t he r esponsibility o f t he f ailed par t.
Redundancy is based on the assumption that multiple faults will
not occur in the system together.

Redundancy can be in the form of hardware redundancy or
software redundancy. Hardware r edundancy ai ms at hav ing
replicated s et o f har dware whi le s oftware r edundancy a ims at
having multiple i nstances of t he software, al l ai ming t o achieve
same results but with different ways of implementation.

The replicated part m ay be int roduced i n a st and-by fo rm
also known as active-passive redundancy, or it may be introduced
in active-active form where in all replicas are active at the same
time. If one replica "throws a fault", then other replicas can be
used i mmediately t o a llow t he s ystem t o c ontinue operating
normally.
3.1.5 Resulting Context

System would be able to function even if a critical part fails.
Introduction of redundancy shall make sure that there is no single
point of failure in the system. If a critical part fails, its
functionality shall be served by so meone el se. T his sha ll m ake
the s ystem al ways u p an d r unning and hen ce serve the client
requests without any failures.
3.1.6 Structure

Figure 2 shows that the single point of failure in the system
has been m ade r edundant by hav ing o ne o r m ore r eplicas as
demanded by the situation. This helps in making the s ystem
highly available since ‘single point of failure’ no more exists.

Figure 2 Redundancy Structure

3.1.7 Known Uses
Almost a ll t he t eam games (cricket, h ockey e tc.) have two

sets of players. One set of players are active which are playing in
the field while other set of team is used as ‘ext ras’ which
become active, when some of active members are not able to play
(due to injury or rules of the game).

The av ionics are designed to wit hstand multiple failures
through redundant hardware and so ftware. Example of hardware
redundancy can be found in an airplane which has multiple flight
computers to provide high availability. Similarly example of
software redundancy can be found in t he navigation sy stems,
where the back up system consists of a different implementation,
so that if the primary software implementation fails (let’s say due

Replica 1

Replica 2

Replica N

After Failure

2. Active-
Passive

redundancy

4. Active-
Active

redundancy

5. N+1
redundancy

1.
Introduce

Redundancy

6. System
monitor

9.
Recovery

notification

8. Failure
recovery

7. Failure
notification

3. Active-
Passive conflict

resolution

Fault Tolerance

Refinement relationship

Dependency relationship Fault Management

to an operand error), the probability of the failure of the back up
system for the same data is low.

Another c ommonly k nown e xample o f r edundancy i s
redundant arrays of in expensive di sks (RA ID), w hich empl oys
two or more drives in combination.
3.1.8 Related Patterns

Active-Passive redundancy [3]
Active-Active redundancy [4]
N+1 redundancy [5]

3.2 Pattern 2: Active-Passive redundancy
3.2.1 Context

You ha ve d etermined t hat y ou ne ed t o Introduce
Redundancy [2] i nto y our s ystem, that ha s neither de arth of
resources to provide redundancy nor can compromise on
performance.
3.2.2 Problem

What s hould the s ystem do t o func tion without any
compromise on its performance even if one of its parts fails?
3.2.3 Forces
• Performance should not be compromised.
• Failed part ’s c lient should be abl e t o g et i ts r equests

processed seamlessly.
• System should not lo ose it s s tate (in c ase o f st ateful

systems), due to failure of its part.

3.2.4 Solution
Introduce a ctive-passive redundancy f or t he c ritical par t o f

the system which may potentially act as a s ingle point of failure
in the system. This critical part of the system is provided with a
standby replica which shall be a ctivated in case of failure of the
former.

The client to the f ailed par t should be inf ormed abo ut the
passive part’s activation by fault management sub system (a
system implementing ‘Fault management’ related patterns shown
in the Figure 1), so that it can get its request served by the new
activated part and does not t ry to send the requests to the failed
part. The c lient sho uld pr ovide ha ndling f or f ailure no tification
from the fault management sub-system so t hat i t c an r e-direct
requests to the newly activated part.

In case the part has some state which system can not afford
to loose in case of its failure, the state also needs to be replicated
in t he st andby par t. Thus hel ps t he system t o m aintain i ts data
(state) i ntegrity i n case o f f ailures. All the st ate changes i n the
active part should be sent o ver to the pass ive part . T here is a
need for a good communication channel between active-standby,
so that state updates are sent over the communication channel in
real-time.
3.2.5 Resulting Context

The i ntroduction of a st andby par t m akes s ure t hat t he
performance and throughput of the system is not impacted in case
of failure of active part. Thus, each active part is replaced by its
replica upon i ts failure, keeping the system’s capability same as
before the occurrence of failure. Here, it is assumed that the
standby par t has t he s ame capabilities as of active part.
Otherwise, the performance of the system may vary depending up
on the capabilities of the passive part.

The ha ndling o f f ailure no tifications in t he c lient t o t he
failed part makes sure that ther e is a seamless sw itch over
happening to the newly activated part and no requests are failing
because of failure of previously activated part.

The c ontinuous upd ate o f st ate b y ac tive t o pa ssive p art
makes sure that the state possessed by the failed part is not lost.
3.2.6 Structure

 Figure 3 sho ws t hat the single point o f f ailure has been
removed by pr oviding a r eplica of t he sa me. Thi s r eplica i s n ot
participating in serving the client requests. The requests are only
processed by t he a ctive part. Ho wever, a s soon as active part
fails, the passive part takes over the control and starts processing
the requests. Hence, at any given moment, there is only one part
which is serving the requests.

Figure 3 Active Passive Redundancy Structure

3.2.7 Known Uses
Many mis sion c ritical e stablishments are provided with an

emergency power generator which becomes active as soon as the
primary power source fails.

Another k nown us e can b e found in MySQL database
cluster so lution [3]. A ll po tential si ngle po ints o f f ailure a re
made redundant in t his solution. Thi s includes data nodes,
network cards, switches and links.

The dat a no des are made r edundant w ith a s tandby no de
acting as m ated pai r. Ther e i s ac tive c ommunication g oing o n
between these two active and pass ive nodes, so that state is also
replicated between these pai rs. T hus, My SQL sug gests hav ing
efficient network c onnectivity bet ween these m ated pa irs o f
active-standby data n odes. A s so on a s ac tive d ata n ode g oes
down, SQL node is made aware of the failure and it connects to
the passive data node. Figure 4 depicts the clustered architecture
of MySQL.

Active

Passive

Client Active

Passive

Client

After
Failure Before Failure

Figure 4 MySQL cluster

The no de pai rs 152. 100.0.10 - 152.100. 0.11 and

152.100.0.12 - 152.100.0.13 are mated data nodes out of which
one acts as active (primary) and the other as passive (secondary).
3.2.8 Related Patterns

Introduce Redundancy [2]
Active-Passive conflict resolution [4]

3.3 Pattern 3: Active-Passive conflict
resolution
3.3.1 Context

System t hat ne eds t o implement Active-Passive
redundancy [3] for high availability.
3.3.2 Problem

What should the system do in case both the redundant parts
in Active-Passive redundancy claim to be active?
3.3.3 Forces
• There should not be deadlock between the redundant parts

to become active.

3.3.4 Solution
Introduce a mechanism so that there i s no conflict between

the redundant pa rts to be come active and a t a ny g iven point of
time there is only o ne active part. Ho wever, t here can be
situation which may lead to ra ce c onditions, w here i n bo th th e
redundant parts claim to be active. There are various
mechanisms to resolve this conflict.

To r esolve the c onflict i n redundant har dware, o ne o f t he
solutions can be that the hardware with smaller id shall become
active at start-up.

Alternatively, the redundant part s shal l generate a rando m
number and t he o ne who generates a num ber w ith l ower value
shall become active and the other becomes passive.

Another solution is that the redundant parts exchange their
startup time stamp and see which one of them came up (s tarted)
first. The one with o lder ti me st amp c an be c onsidered as t he
active and other one will play the role of passive part.
3.3.5 Resulting Context

The introduction of conflict resolution algorithm depending
up on the scenario shall reduce the possibility of conflicts while
deciding who shall become active out of the redundant parts.
3.3.6 Structure

Figure 5 shows that the replicas need to follow an algorithm
to have a handshake on who will become active.

Figure 5 Active Passive Conflict Resolution Structure

3.3.7 Known Uses
In a switching sy stem, w henever a r edundant pai r o f

controller cards c ome up af ter i nitialization dur ing system st art
up, each can claim to be a master due to race conditions. They
use hardware ids to resolve the conflict.
3.3.8 Related Patterns

Active Passive Redundancy [3]
3.4 Pattern 4: Active-Active redundancy
3.4.1 Context

You ha ve d etermined t hat y ou ne ed t o Introduce
Redundancy [2] into your system and want to keep the cost low
by not investing in passive redundant resources and homogenous
software configuration.
3.4.2 Problem

What sh ould t he sy stem d o if it has limited resources to
provide r edundancy but st ill w ants t o be func tional i n c ase o f
failure of a critical part?
3.4.3 Forces
• The system should maximize the usage of its resources.
• The client (to redundant) part should be talking to a single

entity and get its requests processed seamlessly.
• The st ate (in case of a s tateful pa rt) should not be lost in

case of failure of a part.

3.4.4 Solution
Introduce a ctive-active r edundancy f or t he c ritical pa rt. I n

this c ase, r edundancy i s i ntroduced by ha ving m ore t han o ne
active part. A ll the redundant part s ar e ac tive and hel ping in
processing at the sa me t ime. This so lution i s sometimes known
as cluster, which i s a collection of r esources t hat functions as a
single computing resource. A ny m ember o f t he c luster c an

Replica 1

Replica 2

Conflict resolving

Algorithm

service a c lient re quest w ithout t he c lient kno wing w hich
member p erformed the operation. Thi s is made possible by
introducing another entity between the client and the c luster
members, usually known as dispatcher [4]. The client talks to the
dispatcher w hich further get the requests pro cessed by cluster
members. Using dispatcher, the cluster can be configured so that
an application fails over from one c luster member to another.
This i s us ually o nly po ssible when c luster m embers ut ilize a
homogenous s oftware configuration. The dispatcher keeps the
information abo ut al l t he f ailed m embers a s wel l as w orking
members, which helps in f orwarding requests o nly to active
members.

The number of redundant part s re quired is c alculated
depending up on the peak lo ad requirements on the system. One
additional part is added to the number of redundant part s
required to hand le t he pe ak l oad s o as t o hav e s ame ef ficiency
even if a part fails.

In case cluster members are keeping some state which they
can not afford to loose in case of failure, the state al so needs to
be r eplicated i n al l o ther m embers. Thi s helps the system to
maintain its integrity in case of failures. However, as the size of
cluster g rows, t he c ost t o r eplicate t he s tate i ncreases, as state
updates are being sent across all the cluster members. There is a
need fo r a g ood communication channel between cluster
members, so that state updates are sent by active to passive over
that communication channel in real-time.
3.4.5 Resulting Context

By introducing a redundant part which is also active, overall
cost has be en sa ved, si nce t he r eplica i s al so hel ping i n
processing.

The introduction of dispatcher makes sure that the client i s
not bothered about the status of each of the cluster members.
3.4.6 Structure

Figure 6 show t hat bo th al l t he r eplicas are actively
processing the client requests.

Figure 6 Active Active Redundancy Structure

3.4.7 Known Uses
One of the known e xamples of active-active r edundancy is

Apache’s Tomcat cluster solution for web based applications. As
shown i n Figure 7, an A pache web (HTTP) s erver ac ts a s a
communication point for al l the web clients. Apache web server
would be further connected to various Tomcat instances through
mod_jk [2] module.

Figure 7 Apache Tomcat Cluster
In case any Tomcat sever fails, Apache web server stops

sending r equests t o t hat i nstance. The c lients who w ere bei ng
served by the failed instance shall now be served by some other
Tomcat instance.

Tomcats can also b e configured to r eplicate their state
among themselves, so that if any of the Tomcat server crashes, its
state is not lost.
3.4.8 Related Patterns

Introduce Redundancy [2]
3.5 Pattern 5: N+1 redundancy
3.5.1 Context

You ha ve d etermined t hat y ou ne ed t o Introduce
Redundancy [2] i nto y our s ystem t hat c onsists o f part s w ith
heterogeneous software configuration and does not want to waste
resources by providing one passive node for each potential single
point of failure.
3.5.2 Problem

What should the system do if it does not want to waste
resources by having a st andby par t for each active par t, but st ill
wants to behave normally in case of limited failure?
3.5.3 Forces
• The cost and res ources required for i ntroducing Active-

Passive Redundancy [3] should be reduced.
• The system should be able to handle failure in one out of N

parts without any compromise on performance.
• The client should be talking to a si ngle ent ity and get its

requests processed seamlessly.

3.5.4 Solution
Introduce 1 sl ave (passive) f or N po tential si ngle p oint o f

failures in the system. This slave would be working in a standby
mode and waiting for a f ailure to happen in any of the N active
parts. As soon as any of the N active parts fails, then the standby
part takes over the work of the failed one. This way the system
shall be able to handle one failure for every N critical active
parts at any given point of t ime. The number ‘N’ can motivated
by various factors, l ike the expected number of failures that can
happen at any given point of t ime in a group of active parts and
the cost and resources required while introducing the redundant
parts.

Apache
Web

Server

Tomcat 1

Tomcat 2

Tomcat 3

Tomcat n

Database

Active Replica 1

Active Replica 2

Client

The client should provide handl ing for failure no tification
from the fault management sub-system s o t hat i t c an re -direct
requests to the newly activated part. This shall make sure that
the requests are getting processed seamlessly.
3.5.5 Resulting Context

The i ntroduction of 1 s tandby part for e very N active parts
makes sure that the system is able to handle failure of one out of
N ac tive pa rts. Si nce, o nly N par ts a re be ing i ntroduced t o a
single standby part, the cost of introducing redundancy is reduced
as compared to 1:1 active-passive redundancy.
3.5.6 Structure

 Figure 8 shows that there is one passive part for N potential
single point of failures in the system. If any of these N parts fails,
then the passive part shall takeover the functionality of the failed
part.

Figure 8 N+1 Redundancy Structure

3.5.7 Known Uses
Modern communications systems w ith m ulti-port T1/E1/ J1

line cards employ re dundancy t o ac hieve t he hi gh-availability
that telecom networks require. Usually, these systems use r elays
to implement N+1 redundancy switching.
3.5.8 Related Patterns

Introduce Redundancy [2]
3.6 Pattern 6: System Monitor
3.6.1 Context

You ha ve d etermined t hat y ou ne ed t o Introduce
Redundancy [2] into your system that wants to monitor failures
of i ts parts to avoid potential single point of failures which may
lead to non-functioning of the system.
3.6.2 Problem

How to detect that the failure has occurred in the system?
3.6.3 Forces
• Failure must be detected at the earliest instance so that the

faulty part does not corrupt the behavior of the system.
• Failure must be det ected at the earl iest so that faulty part

can be r ecovered; bef ore a ny addi tional f ailures i n t he
system makes the system completely non functional.

3.6.4 Solution
Introduce a mechanism to monitor a ll potential s ingle point

of failures in the system, so that upon failure, the fault tolerance
mechanism can be ac tivated. This pat tern c an be r efined as
depicted in the Figure 9 which has been taken from the work of
Robert Hanmer [5].

Figure 9 Monitoring Failures

The SYSTE M M ONITOR [5] can e mploy a ny o f the
following solutions.

The system can rely on ACKNOWLEDGEMENT [5]
messages exchanged with monitored part, or it can rely on I AM
ALIVE [5] mess ages s ent b y t he monitored part. Alternatively,
the system can periodically check the state of the monitored part
by sending ARE YOU ALIVE [5] messages. The system can SET
A R EALISTIC T HRESHOLD [5] after expiry o f w hich i t m ay
consider the monitored part to be dead.

Each of the above solutions adds complexity to the system.
To mi nimize complexity, system m onitor c an j ust w atch an d
verify the tasks performed by the monitored part using WATCH
DOG [5] mechanism.

A brief description of each pattern is given below:
SYSTEM MONITOR: This pattern recommends creating a

task to monitor system behavior, or the behavior of specific other
tasks, i.e. make sure that they continue operating.

ACKNOWLEDGEMENT: Thi s pa ttern r ecommends
inclusion of a n acknowledgement r equirement o n all requests.
All requests should require a reply to acknowledge receipt and to
indicate that the monitored system is alive and able to adhere to
the protocol. If the acknowledgement reply is not received then
report a failure.

I AM ALIVE: Th is p attern recommends that the monitored
system should se nd a r eport t o t he SYS TEM MO NITOR a t
regular i ntervals. If t he monitoring system fails t o r eceive t hese
reports it should report that the monitored task has stopped.

ARE YOU A LIVE: Th is p attern recommends that the
SYSTEM MONITOR should send periodic requests for status to
the monitored task. If the monitored task doesn’t reply within the
required time then action to recover it should be taken.

SET A RE ALISTIC T HRESHOLD: T his pattern
recommends maximizing t he latencies s o t hat t he SYSTEM
MONITOR will be informed in a t imely enough manner to meet
the availability requirement.

Potential SPoF 1

Potential SPoF 2

Potential SPoF N

Passive

Replica
For

1,2,.., N

Client
Potential SPoF N+1

Potential SPoF N+2

Potential SPoF N+N

Passive

Replica For
N+1 To

N+N

WATCH DO G: Thi s pa ttern r ecommends ad ding in t he
capability for t he m onitor t o o bserve t he m onitored t asks
activities, much as a Watchdog tends the flock. This Watchdog
can be ei ther ha rdware o r a s oftware c omponent depending on
the system requirements, but in either case i t will watch visible
effects of the monitored task. The monitored ta sk will not be
modified.
3.6.5 Resulting Context

Implementation of ACKNOWLEDGEMENT, I AM ALIVE,
ARE YOU A LIVE, S ET A RE ALISTIC T HRESHOLD a nd
WATCHDOG he lps in de tecting t he failures at the earliest,
which helps the system to avoid a situation where it is no t
behaving as per the specifications and further leading to its non-
functioning.
3.6.6 Structure

 Figure 10 shows that a ll the repl icas (monitored par ts) are
being observed for any failures by System monitor.

Figure 10 System Monitor Structure

3.6.7 Known Uses
In case of To mcat c luster s olution, A pache HTTP server

keeps on checking the health of various Tomcat servers using its
mod_jk [2] module.

In c ase o f r eal t ime s ystems b ased o n n on-preemptive
priority process scheduling, each process is expected to utilize
the CPU for a definite amount of time and voluntarily relinquish
the CPU before the expiry of the definite amount of time. If due
to a fault, any process misbehaves and starts to hog the CPU, the
watch do g pr ocess t hat i s mo nitoring al l t he pr ocesses, det ects
the process failure on controller card and triggers the f ault
tolerance mechanism.
3.6.8 Related Patterns

Introduce Redundancy [2]
3.7 Pattern 7 Failure Notification
3.7.1 Context

You h ave implemented System Monitor [6] in the System
that now wants t o handl e failures of i ts par ts t o avoid potential
single point of failures which may lead to non-functioning of the
system.
3.7.2 Problem

What should system do when it detects a failure in a part?
3.7.3 Forces
• Failed part should not be given any requests for processing

to avoid mal-functioning of the system.
• System should initiate the handover o f r esponsibilities o f

the failed part to a redundant part.

• System should initiate recovery of failed part.

3.7.4 Solution
The SYSTEM MONITOR should no tify the fault recovery

sub-system so that the failed part can be immediately isolated by
marking i t out of service, thereby restricting the failed part from
impacting the behavior of the system.

Since the system is expected to finish the re quested tas k
despite failure, it must notify the fault tolerance sub-system so
that the redundant part takes over the functions of the failed part
immediately.

Systems o ften may no t a fford t o pr ovide r edundancy a t a ll
levels in the system hie rarchy. In suc h si tuations, if the f ailure
occurs at a l evel wher e redundancy i s not available, the failure
notification s hould b e propagated up to a le vel where c lient to
redundant s ub-system is av ailable. T his w ill enabl e c lient to
switch over to the redundant sub-system so as to get its requests
processed seamlessly.

There may be situations, where the failed part of the system
may no t be r ecovered b y t he f ault r ecovery s ub s ystem wi thout
manual intervention. In such situations, it is re commended to
notify the I /O [6] s ystem t o g enerate au dio o r v isual al arms
depending upon the criticality of the failure.
3.7.5 Resulting Context

The no tification of t he r ecovery su b-system i nitiates
isolation and recovery of t he faul ty part whi ch helps the system
to function flawlessly.

The notification to the fault tolerance sub-system triggers an
appropriate action to activate the redundant part.
3.7.6 Structure

 Figure 11 sho ws t hat t he c lient i s be ing no tified up o n
failure of a r eplica, so t hat client no more gives r equests t o t he
failed part. The steps have been explained below.

Step 1: Failed replica 1 notifies the client about its failure.
Step 2: The c lient st ops se nding reque sts t o the f ailed

replica 1 and uses repl ica 2 w hich hel ps i n pro cessing the
requests without failure.

Figure 11 Failure Notification Structure
Figure 12 s hows that t he client i s being no tified up on a

failure at a level where redundancy is not available. The steps in
the diagram have been explained below.

Step 1: Fai led c omponent 1’ no tifies abo ut i ts f ailure t o
replica 1.

Step 2: Since, there i s no redundancy re lated to component
1’, replica 1 ha s to further inform the client about the failure of

Failed Replica
1

Replica 2

Client

1. Failure
Notification

2. Requests

Monitored part
1

System
Monitor

Monitored part
2

Monitored part
3

its chain. So in this step, replica 1 notifies the failure of
component 1’ to the client.

Step 3: The c lient af ter re ceiving f ailure no tification fro m
replica 1 stops sending requests to repl ica 1 chain (even though
replica 1 is working) and starts sending requests to replica 2.

Figure 12 Failure Notification Structure for multi level

components

3.7.7 Known Uses
In a switching system, t he m oment o ne c opy o f t he

controller card fails or is m arked o ut o f ser vice, it to ggles th e
control signal on its control bus which sends the hardware signal
to the redundant copy to take over.
3.7.8 Related Patterns

System Monitor [6]
3.8 Pattern 8: Failure Recovery
3.8.1 Context

You ha ve i mplemented Failure Notification [7] in the
System that now wants to recover its failed part.
3.8.2 Problem

How to recover the failed part of the system?
3.8.3 Forces
• Recovery mec hanism sh ould b e capable of i solating the

fault.
• Recovery mechanism should be capable of handling faults

that require manual intervention.

3.8.4 Solution
The failed part tries to self recover by re-initializing itself. If

the re -initialization f ails, t he part i s sent f or m anual r ecovery
using v arious a larming t echniques l ike A udible A larms, A larm
Grid and Office Alarms [6] . Ma nual r ecovery i nvolves i solation
and resolution of the fault.
3.8.5 Resulting Context

The faulty part has bee n re covered by i solating t he f ault
using diagnostics and fixing the same using manual procedures.
3.8.6 Structure

The following diagram shows how the failed replica is being
recovered from the fault.

Figure 13 Failure Recovery Structure

The steps in Figure 13 have been described below.
Step 1: The failed replica tries to re-initialize itself in order

to overcome the failure due to transient fault.
Step 2 : I f t he r e-initialization i s no t suc cessful, al arm i s

raised to invite manual intervention for diagnosis of the fault and
its resolution.
3.8.7 Known Uses

In a switching system, whenever a controller card is sent for
recovery, the fault re covery sub system tries t o re -initialize the
data as wel l a s the b inary code on the card to recover from any
data or binary corruption faults. In case the problem still persists
after the re-initialization, the card is sent for diagnostics in order
to isolate the hardware faults. Based o n the diagnostics test
results, t he o perator t akes appr opriate ac tions t o f ix t he f ault,
e.g., replacing the controller card with a new card.

Whenever humans f all i ll (may be fev er), t hey f irst t ry t o
recover by taking c ommonly av ailable m edicines. H owever, i f
they still do not recover, then doctor’s help is sought, who would
suggest some diagnostic tests to be do ne to id entify th e r oot
cause of the problem and treat the same.
3.8.8 Related Patterns

Failure Notification [7]
3.9 Pattern 9: Recovery Notification
3.9.1 Context

You have implemented Failure Recovery [8] in the System.
3.9.2 Problem

What should system do after the faulty part has recovered?
3.9.3 Forces
• The system s hould reinstate the rec overed par t to have

redundancy in the system.
• The recovered part should be put in to use ‘ immediately’

to make the system resilient about future failures.

3.9.4 Solution
Fault tolerance subsystem should be no tified abo ut the

recovery o f t he f ailed pa rt as so on a s i t r ecovers, so t hat t he
recovered part can be reinstated to provide re dundancy in the
system.

In c ase o f s tateful s ystems, t he r ecovered pa rt s hould start
synchronization with its peer nodes, in order to prepare itself for
processing the requests.
3.9.5 Resulting Context

The notification to fault tolerance sub-system results in the
inclusion of recovered part in the system which provides
redundancy in the system.

Failed
Replica

Manual
recovery

Re-initialization

(Self recovery)

1

Recovered
Replica

2

3

Replica 2

Client

2. Failure
Notificatio

3.
Requests

Replica 1 Failed
Component 1’

Component 2’

1. Failure Notification

3.9.6 Structure
The following di agram shows t hat t he c lient st arts s ending

requests to the repaired part after it is informed about it s
recovery.

Figure 14 Recovery Notification Structure

The steps in Figure 14 have been explained below.
Step1: The client is notified about the recovery of the failed

replica 1.
Step2: The client starts sending requests to r replica1, hence

reinstates the recovered part . T his m akes the sy stem highly
available.
3.9.7 Known Uses

In case of MySQL cluster solution, whenever one of the
redundant da ta n odes c omes up after r ecovery, i t no tifies the

management server about its recovery and makes the data nodes
redundant.
3.9.8 Related Patterns

Failure Recovery [8]

4. ACKNOWLEDGMENTS
We would like to thank K yle Bro wn for his feedback and

encouragement during shepherding of these patterns.
Credit also goes to the par ticipants of writer’s workshop at

PLoP’06 who gave very useful comments.

5. REFERENCES
[1] Deepal Jayasinghe. Fault Tolerance with FAWS.

http://www.jaxmag.com/itr/online_artikel/psecom,id,733,no
deid,147.html

[2] Gal Shachor. Working with mod_jk. Available at
http://tomcat.apache.org/tomcat-3.3-doc/mod_jk-howto.html

[3] MySQL Cluster documentation available at
http://dev.mysql.com/doc/refman/5.1/en/ndbcluster.html

[4] P. Sommerlad and M. Stal. 1995. PLoP. The Client-
Dispatcher-Server Design Pattern.

[5] Robert S. Hanmer. 2004. PLoP. Detection Patterns for Fault
Tolerance.

[6] Robert S. Hanmer and Greg Stymfal. 1998. PLoP.
Telecommunications Input and Output Pattern Language.

Repaired
Replica 1

Replica 2

Client

Recovery
Notification

Requests

1

2

