
Functional Testing: A Pattern to Follow and the Smells
to Avoid

Amr Elssamadisy
Gemba Systems

Amherst, MA

++1-435-207-1225

amr@elssamadisy.com

Jean Whitmore

1860 Sherman
Evanston, IL

++1-312-782-7156

jeanimal@gmail.com

ABSTRACT
Functional tests are automated, business process tests co-owned
by customers and developers. They are particularly useful for
rescuing projects from high bug counts, delayed releases, and
dissatisfied customers. Functional tests help projects by
elucidating requirements, making project progress visible, and
preventing bugs. We present functional testing in pattern format
because it is especially expressive in conveying expert advice
and enables the reader to make an informed decision regarding
the applicability of the solution. The pattern presented
aggregates multiple experiences with functional testing over
several agile development projects. However, we have seen
functional testing become more costly than its benefits, so we
describe the symptoms—“smells”—of potentially costly
problems. These are not problems with functional testing per
se, but with the misinterpretation and mis-implementation of
this practice. We draw on our experience to suggest ways of
addressing these smells. Done right, functional testing
successfully increases software’s quality and business value.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications] D.2.5 [Testing and
Debugging]

General Terms
Testing, Patterns, Agile Development Practices

Keywords
Functional Testing, Acceptance Testing, Patterns, Agile
Development Practices

1. COST-EFFECTIVE FUNCTIONAL
TESTING
Many of us are familiar with projects that began as a joy to
work on, but as they grew, increasingly suffered from high bug
counts, delayed releases, and dissatisfied customers. Functional
testing—the practice of customers and developers co-writing
business process tests that execute automatically—can help
solve these problems. Functional tests speed releases by
preventing bugs and shortening the testing cycle. They can
automatically determine whether an application is doing what

customers expect. They can also help customers communicate
requirements in a precise, consistent way to developers as a
form of “executable requirements.” A project with functional
tests can continue to be a source of pride and joy even as it
grows in size and complexity.

So why has functional testing not been embraced as commonly
as unit testing in the agile community? Why do many of our
colleagues complain that the costs of functional testing exceed
the benefits? We believe that people who have given up on
functional testing have lacked the right tools and techniques.
After all, how many unit tests would you write without xUnit
and a continuous build? How much refactoring would you do if
you were coding in a text editor? The right tools and techniques
can make functional testing easy and cheap.

In particular, we recommend techniques for making functional
testing fast enough to be in the continuous build (and at least as
fast as the typical check-in cycle in a non-agile development
environment). We also explore techniques that make diagnosis
of test failures relatively easy.

However, sometimes even the right tools aren’t enough. If
setting up a functional test is onerous, the root problem may be
the architecture of the system under test. This phenomenon is
similar to the idea that if setting up an object in a unit test
harness is especially hard, then the object probably has too
many dependencies. We will suggest architectural changes such
as improved modularization of subsystems and moving business
logic out of the Graphical User Interface (GUI) and into a
service layer [1]. These changes make functional testing easier
while making the architecture better.

In this paper, we assume functional testing is done within an
agile development [2] environment, although we offer a few
variations for a traditional development environment. Our focus
is also on functional tests that exercise all layers except the GUI,
but most of our patterns and smells apply to other types of
functional test. We will point out when they do not.

We begin by describing functional testing in a pattern format so
that readers can determine whether the practice is appropriate
for their projects. Then we identify functional testing smells—
signs of costly problems—and the technical and architectural
solutions that address them. We hope people will recognize the

need for better techniques rather than giving up on functional
testing. The benefits are just too good to pass up.

2. Functional Testing: An Agile Practice
Pattern
Patterns allow us to propose development practices as potential
solutions to a common set of problems. By describing
functional testing in a pattern format, we empower readers to
make their own evaluation of this development practice. Using
functional testing is then not a stark black or white decision; it
depends on how much a development team has experienced the
problems and whether this pattern as a proposed solution is
within reasonable costs. We include several stories and
narratives to bring home the points based on specific
experiences we have had.

 Automated, Business Process Tests
In this paper, we define functional tests as

• business process tests that are

• co-owned by customers and developers and that

• can be automatically executed.
Functional tests can be better understood by comparing them
with what they are not.
First, functional tests are not owned by a testing department
(which may or may not be part of a Quality Assurance
department). Instead, they are owned by—i.e. created and
maintained by—customers. In order for customers to be owners,
the functional testing tool must provide a way for customers to
read, write, and execute test specifications, although developers
may implement tests and the testing department may help
develop more effective tests.
Second, functional tests are not manually run. No one needs to
click on screens or set up data in order to execute them. Instead,
functional tests, like unit tests, are completely automated.
However, unlike unit tests, functional tests are not focused on
isolated units of code, whose proper behavior a developer
defines. Instead, they exercise a useful business process, whose
correct outcome is defined by a customer. We speak of a
business process because we mean more than just the static
business rules; we mean also the sequence of steps that invoke
the business rules to generate a useful outcome. If use cases are
used, then each scenario of a use case can be covered by a
functional test. Our goal is to assure that the program does
something useful for a real user.
If functional tests cover more than a unit, just how much should
they cover? There are several options, depending on the type of
testing you want to do. Our experience is primarily with
functional tests that are driven from the service layer (or control
layer or system-façade layer), a layer between the GUI and
domain layers on n-tier systems. That is, our functional tests
exercise all layers except the GUI so that they are almost end-
to-end. We will call these service-driven functional tests.
Many functional testing tools drive tests through the GUI.
Some of the patterns we describe also apply to these GUI-driven
tools. However, the tests of GUI-driven tools are often more
fragile than those of service-driven tools because they may
break when a button is moved. More importantly, GUI-driven

tools do not have the architectural benefits of service-driven
tools. For example, they do not help drive business logic out of
the GUI [3].

 Forces
The forces in a pattern are the driving factors that lead to the
implementation of the pattern. Patterns can be considered as
problem/solution pairs. The forces are the problems that are
addressed by the pattern as a potential solution. The main
forces pushing us to try functional testing are too many bugs,
delayed releases, and poorly captured requirements.

Bugs Increase As Inter-Module
Dependencies Grow
Most development groups that we have seen try
functional testing were motivated primarily by a
desire to reduce bugs. That is, when they hear the
phrase “functional testing,” they particularly focus on
the word “testing.” Unit tests can keep individual
classes fairly free of bugs, but they do not address
inter-module bugs. Furthermore, as the code base
grows, the number of potential inter-module bugs
grows faster.

Delayed Releases
As the application grows and the product matures, the
testing department cycle can take longer, causing
increasingly delayed releases.

Slow Manual Testing
Manual testing by a testing department will take
significantly longer with a large product than a small
one. Because manual testing is slow, the feedback
about a bug occurs long after the code changes that
caused the problem were made. The delayed feedback
makes it hard to diagnose which change caused the
bug, so fixing a bug found by the testing department
takes longer, too.

Slow Patches
A corollary of slow releases is slow patches
for bugs reported in the field. In many
development environments, developers have
to set up a full database and perform many
manual steps to reproduce a bug. And they
must reproduce the bug both to diagnose it
and to confirm they have eliminated it.
How much nicer if they had an easy way to
script the system with the minimal
conditions to reproduce the bug!

Not Knowing When a Task is Done
Almost everyone has experienced a project that was
declared “done” and then continued for weeks or
months afterward. With functional testing, the
customer writes tests that exercise the business
process (represented in a use case, story or feature)
scheduled for the current iteration. When the
functional tests pass, the work is done.

Poorly Captured Requirements
2...1 Imprecise Requirements
One of the reasons projects drag on after
they are declared “done” is that the original
requirements were imprecise. Verbal
requirements do not provide enough detail
for coding. Developers guess what the
customer meant and call the project done.
But if the developers guessed wrong, the
code will have to be re-worked.

2...2 Contradictory Requirements
Many “done” projects get stuck in the
testing phase because of bug cycles. An
example of a simple cycle is that when bug
A is fixed, bug B appears; and when bug B
is fixed, bug A re-appears. But the cycle is
rarely that obvious, especially if A and B
are in different parts of the system or take a
long list of manual steps to reproduce.
An automated test suite could quickly show
that both bugs are never fixed at the same
time. At that point, one might discover that
A and B cannot both be true at the same
time because they are contradictory.
Functional tests help “test” our requirements
for contradictions.

Outdated Requirements
Finally, requirements are also often outdated. The
longer running the project, the more likely that at least
some of the requirements have fallen behind the code.
Let us be frank—have any of us really had
requirements that were 100% up-to-date after a year
of development?
Outdated requirements can be more nefarious than no
requirements. If there are no requirements, developers
will try to extract them from the customer, the code,
or the unit tests, all of which are likely to provide
fairly up-to-date information. But outdated
requirements are misinformation. They can waste a
lot of time by sending developers down the wrong
track.

 Description
Functional testing is much more than automated acceptance
tests; the set of tests can be considered “executable
requirements.” That is, they are requirements written by the
customer (sometimes with the help of a developer depending on
tool support) that can be run and either passed or failed.
Unit testing is often practiced with test-driven development.
The developer writes a test for a case the code cannot yet
handle. Because the case has not been implemented yet, the test
fails, resulting in a red bar in the unit test GUI. Then the code
to pass the test is written, which turns the bar green. Then the
cycle is repeated in a red-green-red rhythm.
 Functional tests take the red-green-red loop of unit testing to
the level of red-green-red loops for adding new business
functionality to the application. From that point of view,

functional tests allow the developer to know when she is done
with the task at hand as indicated by the customer. This reduces
a large amount of effort where code is submitted to the customer
or testing group only to be found lacking in functionality and be
brought back into the development group.
A major—often uncited—contribution of functional testing is
the improvement of the architecture of the system under test.
Functional tests force business logic to be removed from the
GUI and moved into the service layer, where the functional tests
can exercise it. Functional tests also encourage modularity and
the separation of subsystems, analogous to how unit tests force
loose coupling between objects for testability. This idea is still
new to us but we have found that it rings true with others with
similar experiences.
Another major contribution of functional testing is that it tests
an entire set of possible errors that is not addressed by unit
testing. As any experienced object-oriented programmer knows,
a significant part of the complexity of an object-oriented system
is in the relationships between the objects. Functional testing
exercises these complexities as unit testing cannot (and is not
intended to). Software quality increases. And development can
proceed at an even faster pace than unit testing enabled.
A fourth contribution of functional testing shows up more in the
later stages of a project as it enters maintenance mode; bugs
reported either by the testing team or the customer come in to
the developer as a set of steps for reproduction. The immediate
response for a developer when functional testing is available is
to write a failing functional test to reproduce the steps. Then
she digs in, finds the problem, writes a failing unit test, and fixes
the problem, causing both the unit and functional tests to go
green (most of the time). This technique, which is enabled by
functional tests, catches the “false fixes” where the developer
finds the bug, writes the unit test, and assumes the bug has been
fixed when it truly is not.
Note that for all of these benefits, the functional test suite must
be part of the continuous integration build. If functional tests
are not in the build, they can easily become a liability instead of
a benefit, a situation we describe in the smells below.

 Variations
Covering the Domain Only
This paper focuses on functional tests that execute
logic from the service layer through the domain layer
all the way down to persistence. Not all functional
tests must exercise all these layers; in fact Mugridge
and Cunningham [3] argue for writing functional tests
to exercise the domain logic only. Such tests are still
useful, but they do not cover the subsystem
boundaries, which are bug-prone. The domain-only
approach is a viable alternative if running end-to-end
tests within a developer check-in cycle is infeasible.

Functional Tests Written By Committee
We argue that customers or analysts should write
functional tests because they are in the best position to
write requirements. However, testers and developers
can join customers and analysts to co-write tests.
Testers bring their expertise in test-case development
and help write requirements that cover the necessary

details. Developers may be needed to help make the
requirements executable depending on the tool. For
example, the Framework for Integrated Tests (FIT)
tool [4] requires developers to write fixtures before
tests can execute. We have found that writing tests by
committee usually happens primarily in the beginning
stages of adoption of functional testing as analysts
learn to think like a tester, and developers build their
domain language. In later stages, writing tests by
committee tapers off and the brunt of test authoring
falls to the analysts with occasional help from others
in the development group.

Functional Tests Written With Unit Testing
Tool
Some teams write their functional tests with a unit
testing tool such as NUnit or JUnit. Using an xUnit
testing tool covers code adequately but loses
involvement from customers and analysts, since the
tests are now coded in a language that they can neither
write nor read. It becomes the developer’s job to
translate the requirements into these tests. The status
of the tests as passing or failing is also not visible to
either the customer or testing group.
We consider functional tests in xUnit to be rather
hobbled because of the exclusive focus on coverage.
These tests are indeed better than no functional tests
but could be considered a smell.

Functional Tests Within a Traditional
Development Environment
Our experience with functional testing is within an
agile development environment, but there is no reason
it cannot be used on non-agile projects. The key point
is that the functional tests must be run at a frequency
that matches the developer check-in cycle. That way,
the source of failing tests can be identified. All of the
benefits of agile functional testing are achieved, just at
a slower cycle time because there is no continuous
integration build. When done in this environment, the
emphasis on speed of running tests is reduced because
the check-in cycles are typically much longer.

 Benefits
Whereas forces push us toward a pattern, benefits pull us.
Forces describe a problem that the pattern will solve. In
contrast, we obtain the benefits even if we do not currently have
any problems.

Development Team Has More Confidence
There is a definite sense of confidence that developers
acquire when there is a solid test framework that they
rely upon. Unit testing and TDD have gone a long
way in making developers more confident of their
code. This is not merely a “warm-fuzzy” feeling
(which is always good for morale), but enables faster
development because developers change what needs
to be changed via refactoring. Functional tests take
this confidence up a notch or two above and beyond
unit testing. They also improve the confidence of the
customers/analysts and testers because they have a

direct relationship to the requirements and regression
tests. They know a green test is a non-ambiguous
indication that the related scenario is working.

Robust Tests
Service-driven functional tests skip the GUI and focus
on business logic. Business logic tends to be fairly
stable, and so the tests don’t have to change much. In
contrast, automated tests that hit GUI elements break
when GUI elements are re-arranged.

Errors and Bugs are Reproducible Quickly
Once a bug is found, a functional test is written, and
that bug doesn’t come back to haunt us. A unit test
should also be written around the buggy code, of
course, but when developers first begin investigating a
bug, they don’t know where to write the unit test
because they don’t know which unit caused the
problem. But they (hopefully!) know which use case
caused the problem, so they should be able to write a
functional test immediately. By writing tests as soon
as bugs are discovered, we eliminate the bug-fix-break
thrashing that happens when systems become brittle.
We have found that when a system moves from initial
development to production that the amount of time
spent developing new functionality decreases. With a
functional testing framework at hand the “business
language” has already been built and it becomes very
straight-forward (more than for unit testing) to build a
functional test that exactly reproduces the error based
on the bug report. This allows the developer to have
an executable reproduction of the bug that can be used
for digging into the code repeatedly without having to
keep setting up the environment “just so”.

Testers Have Time to Be More Pro-Active
If “Slow Manual Testing” is a reason to try functional
testing, then quick automated testing is a benefit. The
consequence is that testers are relieved of much of the
day-to-day burden of manual testing of the main
business rules. Instead, testers have more time to be
pro-active, collaboratively helping developers design
more testable code, rather than waiting to “clean up”
at the end of an iteration.

When a Task Is "Done" is Visible for All
Recall that without functional testing, we are driven
by the force of “Not knowing when a task is done.”
Using functional testing does help us know when a
task is done, but it’s more than just that. Functional
testing makes progress visible to the entire
development team—customer, analyst, developer,
tester, and manager. At any point in time all passing
(and failing) tests can be viewed. With a little effort
business value produced at a functional level can be
analyzed for management needs.

Better Design, Better Architecture
Functional testing drives better layer and subsystem
separation. Consider the layers of a multi-tier
architecture. Since the functional tests execute
through the service layer, every bit of business logic

that has found its way into the presentation layer must
either be duplicated in the test fixture or pulled into
the service layer. We explore this point in more detail
in section 4.1.
Similarly, consider the subsystems of the system—the
modules with functional responsibility, such as a
module for tax calculations. As we show in section
4.2, any tax logic that has leaked out of the tax
module will be duplicated in the test fixture unless it
is moved into the tax module. Functional tests help
solidify the responsibilities of a subsystem.

Analysts Think Through Requirements in
Greater Detail
Analysts think through requirements in greater detail
to achieve the descriptions needed to write a test. For
example, an analyst might state that textboxes should
be disabled whenever they are not needed. But when
he writes a functional test for this requirement, he is
forced to get explicit about which conditions cause
which textboxes—or really their representations in the
underlying service layer—to be disabled.

Improved Customer-Developer
Communication
The concrete examples codified in the functional tests
are not sufficient to specify requirements. Customers
would not know how to create such detail by
themselves, anyway. Instead, it is the collaboration
between customers and developers that helps flesh out
requirements for both of them.

On the whole, functional testing with requirements specification
can improve communication between developers and customers.
Over time, the discussions of the functional tests help the team
develop a common vocabulary and a common vision for the
system [4]. Examples of the development of such collaboration
can be found in Mugridge and Cunningham’s recent book [5].

 When to Use It
There are several tool requirements when it comes to functional
testing. Only use functional testing if you are able to make it
part of your build process. On agile development projects this
means that it must be part of the continuous integration build.
On more traditional projects, the functional test suite must be
run within the granularity of a typical check-in cycle.
If you cannot run your test suite within the normal check-in
cycle time, you may find that your tests are noisy and often
failing because they cannot keep up with the current build
(more detail in section 0). For functional tests realistically to be
part of the build, the functional test suite should not take more
than 20 minutes to run (as a rule of thumb for agile projects). To
achieve this, the following strategies have been found helpful:

• Database where test set is present and
refreshable/loadable within an acceptable time. That
means we have to actively keep a snapshot to support
our suite of tests.

• Tests can use transactions and rollback at the end of
the test instead of committing (usually 5-10 times
faster than a committed transaction).

• Distribute functional tests on separate machines every
time one machine's run takes too long.

Finally, you are ready to introduce functional tests if you have
the attitude that testing is a primary development practice and
not a secondary practice that can be dropped in a crunch or if it
requires a large effort. Functional testing does not come free,
and we will see below in section 3 that the cost of cutting
corners is very expensive.

 How to Use Functional Testing
Functional testing is much more than just testing. It is also
about communication between developers, analysts, and testers.
It is about understanding the requirements, the business domain,
and your system as a solution addressing business problems.
Jim Shore states, “In the same way that test-driven development,
when done well, facilitates thinking about design, [functional
testing] done well facilitates thinking about the domain. This
thinking happens at the requirements level and at the design
level” [6]. Ultimately functional tests become a domain-level
language spoken among the various members of the
development team. So as you embark on functional tests, be
sure to focus on communication of requirements and building up
of the domain language. In fact, Functional Tests Written By
Committee in section 0 is an excellent way to start off.
We would add that service-driven functional testing also
facilitate thinking about system architecture. You simply can’t
put much logic in your GUI if you have to run your functional
tests without the GUI!
Functional testing is also very tool sensitive. If the tools are not
up-to-par in speed and feedback then functional tests lose much
of their benefit. Once you have the right tools, you need to
know how to use them. Functional tests should iteratively cover
use cases, one thin scenario slice at a time.

1. Choose one specific example of a path through a
business process—e.g. one scenario through a use
case—to test at a time. Keep the scenario “slice” thin
and deep. That is, test a small set of functions at a
time and run it from the service layer all the way to
the database. We would recommend selecting a high-
risk slice first, e.g. replicating a recent bug, so that
team members care about the outcome.
2. Minimize the amount of data in your database
snapshot used for your testing. Remember, the
smaller the database, the faster the refresh and the
actions that are performed in the database.
3. Mock out external systems whenever possible for
speed and independence. A good example would be
mocking out an external credit card authorization
service for an e-commerce application.
4. However, you may want to include a few tests that
interface “high risk” external systems that could
cause (or already have caused) your system to fail if
you misunderstand their API. The tests can then help
document the API.
5. Whenever a functional test strip gets too “thick”—
e.g. if it includes more than one scenario—separate it
into different tests.

 When Not To Use It—Are you ready for
Functional Testing?
The long and short of it is this: don’t use functional tests if you
are not willing to put the effort to write the tests. This may turn
out to be a non-trivial effort—there are definite costs. So if you
are not willing to do all of the following, then maybe functional
testing is not appropriate at this time:

• Introduce a technique to determine what coding
modifications have broken a build. We recommend
that you make functional testing part of the continuous
build, but if not then at least have a functional testing
cop. This is discussed in detail in section 0.

• Modify your existing system for testing. Most
systems built without functional testing in mind will
need modifications. Many of these modifications are
not simple and may involve architectural changes.
Section 5 discusses architectural smells that will
require these types of changes to enable useful
functional testing.

 Suggested Adoption Strategy
Like almost everything in agile development, functional testing
should be adopted iteratively. Be careful that you keep
“people” ahead of “process.” That is, iterate to get developers
and customers trained and have them build a few functional
tests. Then, after the team has a few working functional tests
that are part of the build, ask them for feedback on the tools and
processes. Improve your tools and processes until the
developers and customers are happy with functional testing.
Then iteratively expand the practice to the team.
When functional tests are not part of the build, they can cause
much more harm than good and may not catch on or ever be
useful. We have seen this happen and it is not a pretty sight.
Adding functional tests to a legacy system—i.e. one that does
not already have functional tests—can be challenging because
the architecture might not allow excluding the GUI or testing a
single use case scenario at a time. You also may have re-
architect some of your system to speed up the functional tests
enough to be part of the continuous build. Functional tests can
initially be added for new features or to reproduce bugs, with
supporting unit tests added for the implementing code. As we
describe below, we do not recommend adding functional tests
without unit tests.
During the transition to functional tests, it can help to assign a
developer the role of "Functional Test Cop." The cop’s job is to
track down the developers who break the functional tests, help
them see why their code broke the test and help them fix the
problem. See the narrative in section 0 for more detail on this
role.

3. EXAMPLE OF FUNCTIONAL
TESTING WITH FIT
Those new to functional testing might feel frustrated at the
general nature of the pattern description. How exactly does it
work? For the purpose of helping you decide whether
functional testing is right for your team, we provide a brief taste
of doing functional testing with a tool we like, Framework for
Integrated Tests, or FIT for short. Our example is extremely

simplified. Mugridge and Cunninham [5] describe how to write
more complicated functional tests with FIT. But we hope this
simple example will illustrate our claims about functional
testing’s benefits.

 A Simple, Fully Explained Example
FIT tests are expressed in table form. The simplest type of table
has several test input columns on the left and a test output
column on the right, with each row representing one test. (Such
a table uses what FIT calls “column fixtures.”) To add a new
test, a user adds a row. He then types the input data and
expected output data for that row. When FIT is executed, it
takes the input data, feeds them into the function under test, and
compares the output of the function to the expected output. It
colors the output cell of each test green if the actual output
matched the expected output, and otherwise colors the cell red
and inserts the actual value below the expected value.
Below is a simple example of a FIT table for a payroll
calculator. The first row just tells FIT which code to execute,
which we will describe more shortly. The second row is the
column headers. Each remaining row represents a test, so there
are three tests in this table. The column headers indicate the
column type. Plain headers indicate inputs while headers
followed by open and closed parentheses “()” indicate outputs.
So in these tests, Hours and Wage are inputs while Pay is an
output.

Accounting.Fixture.PayrollCalculato
r

Hours Wage Pay()

10 $20 $200

40 $10 $400

45 $10 $475

When FIT is executed on the payroll calculator table, the first
two tests pass, so their cells in the Pay() column turn green, but
the third test fails and turns red, as shown below. (If you have a
black and white printout, the green should be light shading, and
the red should be dark shading with bold text.) This third test is
the specification of a new feature. An overtime rule will be
added to the payroll calculator in this iteration so that hours
above 40 will be applied with 1.5 times the wage rate. A
developer now has not just a description of the overtime rule but
an example. When the developer is done coding, she can
execute FIT again, and the third row will turn green if she
implemented it correctly.

Accounting.Fixture.PayrollCalculator

Hours Wage Pay()

10 $20 $200

40 $10 $400

45 $10 $475
expected
$450 actual

FIT tests are designed to be very expressive, so that non-
technical people can write and read the tables. Furthermore,
since these tables can be embedded in HTML or ordinary

Microsoft Word documents, users can provide context to the
tests. For example, for the payroll calculator, the table could be
preceded by a verbal description “Demonstrates pay calculation.
The first two tests just multiply hours by wages while the third
test demonstrates that 1.5 * wages are used for overtime hours.”
FIT knows to skip over everything but the tables.
In order to keep the test interface simple and impervious to code
refactoring, developers usually create an object—called a test
fixture—that translates between the test’s interface and the
code’s interface. For the payroll calculator, the test fixture
would have settable public member variables called Hours and
Wage. Then it would have a method called Pay() that does any
necessary set-up, calls into the appropriate real objects in the
system under test, and returns the calculated pay.

 A More Realistic Example
Now, if we are going to do end-to-end testing of a reasonably
complex system, there will be far more complicated test
scenarios than the one above. They may involve configuration
parameters for the set-up, connecting to databases and so on.
Rest assured that FIT can do it all, and our example was the
simplest possible. FIT tests can extend over multiple tables,
some of which do essential set-up for other tables. FIT also
offers many types of pre-built fixtures that let you break out of
the basic NxM grid we demonstrated. For a complete
description, we refer you again to Mugridge and Cunningham
[5].
Despite this extra complexity, non-experts can easily understand
the tables. To prove our point, we present a more complex
example of FIT tests for a shopping cart application. The cells
in green represent passed tests. We bet you can understand the
requirements even without knowing how exactly the fixtures
work or are implemented.

Load inventory to be used for tests and confirm 5
items loaded.

Fit.ActionFixture

Start com.valtech.service.tests.ItemInventoryFixtur
e

Enter Inventory ./src/com/valtech/post/service/tests/inventor
y

Chec
k

Total items 5

Make sure the items have the correct UPC,
descriptions and prices.

com.valtech.service.tests.ItemInventoryDisplayFixtur
e

UPC Description Price

2458 Chocolate 0.75

1244 Cola 0.99

3214 Milk 2.34

8743 Eggs 1.89

0987 Olives 3.15

Confirm you can select an item and change its
description.

Fit.ActionFixture

Start com.valtech.service.tests.ItemInventoryFixtur
e

Enter Select 2458

Chec
k

Description Chocolat
e

Enter Description Dark
Chocolat
e

Chec
k

Description Dark
Chocolat
e

Confirm you can add a new item.

Fit.ActionFixture

Start com.valtech.service.tests.ItemInventoryFixtur
e

Enter Add item 1112

Enter Description Hone
y

Enter Price 5.60

Chec
k

Total items 11

These examples demonstrate that with an expressive testing
tool, developers and customers can collaborate on writing tests.
The concrete examples in each test are a meeting ground for
domain knowledge and code functionality, understandable by
everyone on the team. Furthermore, the tables can be executed
to ensure that what they claim should be true really is currently
true—which is why they are called “living documentation” or
“executable requirements.”
So if functional testing is so easy, why isn’t everyone doing it?
Well, there are a number of pitfalls that we describe next,
including how to avoid them.

4. IMPLEMENTATION SMELLS
Your first attempt at functional testing might encounter
problems. We’ve encountered two broad classes of functional
testing problems. The first class involves the implementation of
the functional tests themselves; the second is related to the
(un)suitability of our system under test.

We describe these problems in terms of “smells,” which are
early warning signals that the development process needs to be
“refactored” [7]. In this section, we consider smells of poor
implementation and offer the techniques that can alleviate them.

 Little (or No) Accountability for Broken
Tests
If there is no accountability for broken tests, then they don’t get
fixed. In general there is no accountability if it is difficult to tell

whose code change broke the test. We have found that this
usually happens when the test-run cycle is significantly slower
than the check-in cycle of developers; that is, if several
developers have checked in their code since the last time the
tests were run, it is difficult to determine whose changes broke
the tests.

Solution: Functional Tests In Continuous
Build
We strongly recommend including functional tests in
the continuous build. Inclusion in the continuous
build was also recommended in Gandhi et al.’s
experience report [8]. In a traditional development
environment without a continuous build, the
functional tests should be run after every check-in.
Another variation is to use a “functional test cop” as
described in “” Slow Tests Removed From Build Stay
Broken” below. Remember, the goal is to identify the
check-in that broke the tests.

Technical Tips for Speed
In order to get functional tests into the
continuous build, the tests must be made fast
enough. First, the team must make a
commitment to functional testing as a
primary development practice instead of a
secondary one. When it is not an option to
drop the tests, then teams find creative
solutions. The main thing is to speed up the
running of the functional tests so they can
be run effectively by developers on their
local machines before checking in.
Effective strategies we have found are:

• Functional Tests on Separate
Machines: By grouping tests into
related suites then each suite can
easily be run on its own machine.
This effectively parallelizes the
test suite and can give a speed
increase proportional to the
number of machines used.

• Functional Tests Rollback
Database Transaction: This is a
very simple but effective idea –
don’t commit your database
transactions if you are testing end-
to-end. We have seen this
practice emerge independently on
different projects and this usually
gives about an order of magnitude
increase in speed.

• Functional Tests Refactored to
Thinner Slices: By testing a small
scenario within each test instead
of several scenarios (or even all
scenarios) for a use case we get a
finer granularity for splitting up
tests. We have also found that
larger tests tend to have more

redundancy – breaking them up
allows for faster individual tests.

• Functional Tests Grouped By
Business Area: Grouping
functional tests by business area
allows a developer to test the
subset of relevant tests on their
machine without running the full
suite. This allows for a faster red-
green-red test loop and will keep a
test suite from slowing the pace of
development.

Note that having independent database sandboxes for
each functional test run is a prerequisite for the above
advice. If two functional tests run against the same
database, one may report an incorrect “failure”
because of interactions with the data inserted by the
other test.

Related Smell: Confidence in Functional
Tests is Lost
Leaving tests broken takes away from much of the
value of the functional test suite as a “safety net” that
prevents bugs from entering the build in the first
place. The tests aren’t catching the bugs and helping
us keep the code in working order as we would
expect. Without this safety net, confidence in the tests
is lost. Test writing is reduced, and in the more
serious cases they are deleted and finally dropped as a
whole.

Narrative: Slow Tests Removed From Build
Stay Broken
The context of the following example is from a large
leasing application after one year of practicing XP
with a 50-person development team consisting of
about 30 developers, 7 analysts, 8 testers and
management. The code base was over 500,000 lines
of executable code and the technology was J2EE with
EJB 1.0.
When we first started implementing functional tests
we weren't quite sure how much value they would
have, but we had a very smart and experienced
consultant advising us to do so. We knew we were
missing inter-object testing and our xUnit tests were
testing unit and more increasingly “integration” tests
by testing systems of objects together. We had greatly
reduced the errors found by the testers in QA, but
there were still many getting through. Also, we had
several cases of the developer saying they were
“done,” but when his code was reviewed, there was
either missing or incorrect functionality even though
the unit tests passed. So those were the driving factors
to implement functional testing.
But functional tests were slow and the build went
from 20 minutes to 50 minutes. We decoupled the
functional tests from the build and their time shot up
from 50 minutes to 120+ minutes over the next few
months. Now every 4 or 5 builds, one set of

functional tests would be run, and we didn’t know
who exactly broke the test. Several check-ins had
happened and everyone knew the failure wasn't caused
by their code. The tests would break and stay broken
for over a week, and frequently we needed someone to
step up and be a “hero” to clean up those stupid tests!
Sometimes (ok many times) we thought they were
more trouble than they were worth.
Thankfully, we didn't drop them. I don't remember
who, but someone on the team stepped up and
proposed that we have a coded functional test (CFT)
cop. This person had the painful job of watching the
CFTs and fixing them when they broke. Of course
this was a pain, and one cop got tired of it and dug
into the CFTs to try to make them faster. With a few
solutions such as Functional Tests on Separate
Machines and Functional Tests Roll Back Database
Transaction and Functional Tests Refactored to
Thinner Slices (described in the section above) the
CFTs were running in less than 20 minutes and
brought back into the build.
Surprisingly the functional tests stopped being broken
because developers could run them effectively on their
local machines before checking in. Even if they
missed something, the CFT was run with every build,
so broken unit tests were immediately fixed because it
was (almost always) obvious who the culprit was.

 Small Code Changes Break Many Tests
When many tests fail, one normally assumes that a big code
change must have been checked in. However, if only a small
change caused many failures, then there must be a large amount
of overlap of the tests.

Solution: Each Test Focused on One Thin
Slice
When each test focuses on one thin slice of
functionality and does not overlap much with other
tests, then it’s more likely that only one or two tests
break when a bug is introduced. It is much easier to
diagnose why a thin test failed. Thus, writing tests to
exercise one thin slice of functionality in one major
system provides the best feedback on that example of
a business process.

Related Smells
If your functional tests cover too much ground, you
may notice these smells:

• Many test fixtures must be used in a single
test

• Developers get frustrated with updating
many tests for small code changes

Narrative: Trying to Test Everything
We experienced the smell of small code changes
breaking many tests on a project of about 15
developers who had developed a code base over two
years (though it was integrated with a larger, 10-year-
old code base). At that point, the team decided to add
functional tests, beginning with the code they were

currently working on, called project B. They thought
it would be best to test with all real objects (rather
than mock objects) in order to maximize the test
coverage for each functional test.

The team spent a month setting up their first
functional test. This set up included writing a test
fixture for each class, which is code that mediates
between a test specification (e.g. a FIT table) and the
appropriate object in the system under test [5]. Since
many parts of the system were “upstream” of the code
they were working on, they had to write many fixtures
before they could reach the part of the system that
they intended to test. The result was then when
anyone made a code change “upstream” of project B,
all of the tests for project B failed and had to be
updated. Developers became extremely frustrated
with the burden of test maintenance.

One solution is to mock out parts of the system that
are not the focus of your current test. We can use
mock objects as we do with unit tests, and for
functional testing we can also mock subsystems.
Mocks mean you don’t have to write “real” fixtures
for everything upstream.

Similar principles are echoed in Mugridge and
Cunningham’s book [5], which advises teams to
“avoid over-commitment to details that are not
essential to the specific business rule…[and] focus on
only one business issue, so that it is less vulnerable to
change” (p. 156).

 Functional Tests Try—and Fail—to
Catch Unit-Level Bugs
If functional testing does not reduce the bugs found by your
testing group and customers, the problem may be that the bugs
are at the wrong level for functional tests.

Solution: Unit Tests Support Functional
Tests
Functional tests are not a replacement for unit tests,
even if the coverage statistics look high. Unit tests
support functional tests by exercising the code most
likely to break, even if it is buried deep in otherwise
inaccessible parts of the system under test. Use unit
tests for unit-level bugs and functional tests for
interaction bugs.

Related Smells
If you use functional tests without unit tests, you may
experience these smells:

• It’s hard to diagnose failed tests

• Test fixtures work around known issues
rather than diagnosing and fixing them

Narrative: Pathological Functional Tests
The previously mentioned project with 15 developers
had a cluster of three or four classes that was
repeatedly the source of bug reports. The classes
already had unit tests, so the team tried to reduce the

bug count with functional tests. But the developers
writing the test fixtures coded around the buggy
classes so that they could get their use case for the
functional test done. For example, the developers
discovered that their fixture had to call “Save” twice
to get the object saved properly.
Why didn’t the developers fix the “Save” method?
They explained that saving was only a small, initial
part of their use case, and their usage did not go deep
enough into the code for them to diagnose the
problem. So the bugs were not getting fixed.
Finally, the team assigned two developers to refactor
the module and improve its unit test coverage. They
quickly discovered that the unit tests were inadequate
because they were some of the first unit tests the team
had ever attempted to write. After a month of work,
the module was cleaned up. It was no longer the
source of bug reports. The functional test fixture
could call “Save” only once. But it was the unit tests,
not the functional tests, that ensured this basic
functionality.

Unit Testing Complements Functional
Testing
Unit tests make sure the units are working properly;
functional tests make sure the units interact properly.
It is very difficult to use a test of interactions to
improve the units themselves. If basic functionality is
buggy, focus on refactoring and unit testing the
individual classes. If the units are solid but don’t
interact correctly, use functional tests. We need both
kinds of tests.
A commonly cited reason for adopting agile
development techniques is the increased
communication between the developer and customer
to really solve the problem and use iteration and
feedback to come up with a good solution. Well, unit
testing does not address this issue at all and functional
testing greatly improves this communication. Asking,
“Which testing is more important” is equivalent to
asking, “Are requirements quality or code quality
more important?” You cannot drop either—you must
have both for a successful software system.
With that said, let us provide detail on how unit
testing is more powerful than its coverage numbers
would suggest.

Unit Tests Cover Important Code Paths
Unit tests exercise the most important code paths more
easily than functional tests can. Imagine two classes,
A and B, each with 5 code paths, A1 through A5 and
B1 through B5. Consider writing unit tests for the two
classes. A4 and A5 are a getter and setter respectively,
so we don’t write unit tests for them. We write one
test for each other code path for a total of 8 tests. A
code path coverage metric would tell us we have 80%
coverage. But because we did white box testing, we
know we covered the 80% that was most likely to
break.

Now consider functionally testing the two classes.
Let’s assume class A is called before class B and that
it’s easy to set up three of the tests: Test 1 exercises
A1 followed by B1, Test 2 exercises A2 followed by
B2, and Test 3 exercises A3 followed by B3. All three
tests incidentally exercise the getter A4 and setter A5.
With just these three functional tests, we again have
80% coverage.
Unfortunately, the functional tests have failed to
exercise code paths B4 and B5. These code paths are
triggered by exceptional circumstances that are
difficult to set up in a functional test. For example, B4
could deal with a division by zero that results when
certain combinations of values are produced by class
A, and B5 could handle an exception thrown by a
resource. So the functional tests’ 80% coverage does
not include the code that is most likely to break.
Instead, functional tests tend to focus on the “main
success scenarios” of the use cases. That’s helpful
coverage, of course. But it is unit tests that ferret out
the most common bugs.
Furthermore, as the code base grows, it becomes
harder for functional tests to cover code that is many
classes deep into the system. The functional test has
to provide the input to A that leads B to output
something to C that causes D to throw an exception so
the test can make sure E handles the exception
correctly. It’s much easier to just write a unit test for
E.

 Our Testing Tool is in the Foreground
An immature functional testing tool can lead developers to
spend more time getting the tool to work right than they spend
on understanding the domain and specifying the tests with
customers. Of course, it’s important that developers are trained
in the functional testing tool, and there will be some start-up
costs when they first start using the tool. But if the tool is the
root of the problem, you will notice functional testing smells:

• It takes a long time to write tests and test fixtures; the
team spends more time on fixtures than test
specification

• It’s hard to diagnose incorrect test fixtures

• Developers and customers complain about functional
testing

Solution: Don’t Rebuild the Wheel – Use a
Mature Tool
We recommend starting functional testing with an
established tool that has a track record of providing good
feedback for customers and developers. Framework for
Integrated Tests, called FIT for short, is an example of a
widely used tool that provides good feedback [5]. Teams
may already have their own tools, of course. But if the tool
is taking over your testing, you may want to reconsider.

Narrative: Changing Tools
Recall the 15-developer team who spent a month writing
their first functional test. This team was using a home-
grown functional testing tool. The tool had a number of

advanced features, but it did not provide good feedback
when a test was incorrectly specified or fixturized: it was
common to get a null reference exception somewhere deep
in the tool code. Customers simply could not diagnose the
test output. Developers had to attach a debugger and step
through the test. They spent significantly more time in the
debugger than collaborating with customers to write tests.
Both developers and customers complained about working
on functional tests.

This team is now in the process of switching to FIT. The
very same developers who complained about functional
testing are now clamoring to be the first ones to try the new
tool.

A good tool lets you focus on the domain and the
requirements; the tool itself “fades into the background”
[6]. If the tool is in the foreground, you need a better tool.

5. ARCHITECTURAL SMELLS
If you are using good tools and techniques and it’s still hard to
write functional tests, then the root problem may be your
system’s architecture. In particular, if your test fixtures contain
business logic, rather than merely translating test specifications
into method calls, then you will want to consider the smells
below. We also consider a smell when it is hard for a functional
test to run through a single, complete use case.
Functional tests help push business logic into the correct layer
(in a tiered architecture) and the correct functional module.
When business logic has found its way into the wrong place,
functional tests expose the misplacement.

 Fixtures Contain Business Logic to
Mirror GUI Work
If you find yourself writing fixtures that must perform business
logic so that they mirror what is done in the GUI, you may have
an architecture smell. A common cause of such duplicated
business logic is the use of a canonical three-tiered architecture
having presentation, domain, and persistence layers. Such
architecture does not always succeed in keeping business logic
away from the presentation layer. In fact, it is very common for
GUIs in this setup to contain “control” logic.
For example, a simple GUI to transfer money from one account
to another (account1, account2) often does the following in the
GUI:

(1) Account1.withdraw($100)
(2) Account2.deposit($100)

This is simple logic, but it is business logic and not view logic.
So, if your fixture for the transfer(account1, account2) function
has this logic in it, then you have code duplication with the UI
(which is bad), and you have uncovered business logic in the
presentation layer (which is worse).

Solution: Service Layer Gets Control Logic
When you encounter this type of problem, the solution
is to pull out the duplicate code in a common place.
That place is the service layer [1], which lies between
the presentation and domain layers and contains
control logic. In this way, functional tests help in
proper separation of business and presentation logic

and encourage a new logical layer to hold control
logic.

Narrative: Building Up Fixtures For
Functional Testing
This story is one from the 50-person J2EE leasing
application. As stated earlier, we introduced
functional testing after we had gained experience with
XP as an agile development methodology. Building
our initial functional tests took a large amount of work
upfront because we had to build a fixture for every
single test. Moreover, we discovered as we started
building these fixtures that there was a significant
amount of business logic that had seeped into our GUI
even though we had both a domain and service layer.
The first developers working on these tests had not
only to build the fixtures but also to understand the
UIs in detail so that they could refactor them and pull
out all the business logic into the service layer.
We took two full iterations with a five-person team to
do a set of large refactorings for the entire
presentation layer. We then had a design session to
explain the problem with the old ways of doing things
and how they were not testable to the rest of the
group. Finally, for the next few iterations, whenever
someone was to write their first fixture, they would
pair-program with one of the team who did the large
refactorings. Over a period of three to four months,
we had made several large refactorings to the
presentation layer and solidified the boundary
between presentation and service layers. We had also
reached critical mass with the number of fixtures
present so that other developers began to feel
comfortable writing test fixtures easily.

 Fixture for a Module Contains Business
Logic That Belongs in the Module
There is another way that business logic can turn up in a test
fixture—when a functional module fails to contain all the
business logic that belongs in it. An example can best illustrate
this point.

Let us assume that one of our subsystems is a tax module that is
responsible for doing all tax-related calculations. Before
introducing functional testing, we wrote this module and
believed we had good functional separation. Unfortunately,
over the development of our project not everyone using the tax
module was completely familiar with it, so some “pre-
calculation” was made outside of the tax module depending on
special tax-exempt days. This functionality should have been in
the tax module; in a sense, the tax module’s boundary was
breached.
When functional tests were written for the tax module, we
would find that the fixture code had to perform the “pre-
calculation” that depended on the tax-exempt days. At that
point, a responsible developer would notice the duplication and
refactor the calculation into the tax module and out of the
fixture and the non-tax-module code.

We have found that functional testing frequently solidified the
boundaries and responsibilities of our subsystems. Our
functional tests help us focus our modules.

 Functional Tests Difficult To Run
Through a Single, Complete Use Case
Legacy systems—that is, systems that were not designed with
functional testing—can be especially difficult to test.
Sometimes they do not let you easily run through a single
example of a business process. This is a very difficult smell to
eradicate, and the solution depends on the architecture.
In some cases, the source of the problem is that a module
assumes that multiple use cases are run simultaneously. When
you try to isolate a single use case, you discover you still have
to perform the set up for all the other use cases or the system
crashes. We provide an example of this situation below. We
highly encourage you to listen to your tests—if they are hard to
write, then they are indicating a larger problem.

Narrative: An Executable Calculator
The project with 15 developers mentioned earlier had
an architecture that made some of its primary uses
cases difficult to test. The system used C# for
presentation; this code allowed the user to enter input
data and view output data. The system used C++ for
the main business logic and calculations. However,
what made the system tricky was that the main
medium of inter-language communication was the
database. The C++ was an executable that accepted a
handful command line parameters; it read hundreds of
additional inputs from the database and wrote its
outputs to the database.
To execute a single business process in such a system,
we had to set up a fairly complete database with a lot
of extraneous information that did not matter for the
process we wanted to test. After this set-up, we could
enter the one record we wished to test through the
service layer of C#. Then we would fire off the C++
executable, which would perform far more
calculations than we actually needed for our test.
Finally, we would check the results in the service
layer of the C# output screen.
Because testing one use case was so burdensome, the
team tried shortened use cases. They wrote functional
tests that entered the data in the input screen’s service
layer and then confirmed that the values were saved
correctly to the database. These tests failed to
exercise the most important business logic of the
system, so the analysts were not very interested in
whether they passed or failed. After all, these tests
rarely found bugs that really mattered. After a few
months, both customers and developers resented the
functional tests as a waste of time.
To make this architecture more amenable to functional
testing, we would have had to convert the C++ code
into a library (e.g. a dll). Then we would have
exposed individual methods so that the calculator
would not always process everything in one batch.
Then a test could set up just the data needed in C#,

call a handful of C++ library methods, presumably
through a new service layer, and confirm the results in
C# again.
These architecture changes would not have merely
made the code more testable; they would have made it
more agile. Clients later requested real-time updating
of the calculations as new input data became available
throughout the day. If the C++ code had been a
library that could fire off single requests, adding real-
time updating would have been a snap. As it is, the
system is not expected to offer real-time updating for
years.

6. CONCLUSION
Functional testing is a practice that can have great benefits to
the development process as a whole. When done properly, it
increases the communication between analysts, developers and
testers. The progress of the entire project is objectively visible
at any point in time to management by examining the passing
(and failing) functional tests. Eventually, the speed of
development increases because well-communicated
requirements result in less re-work. The tests also drive a more
modular architecture with subsystems that have clear
responsibilities.

However, functional testing is not free. A significant
investment must be made to get it right. Cutting corners can
cause myriad problems that we have outlined in the smells
sections. If the smells are not addressed, the costs of functional
testing can outweigh the benefits.

So we recommend that you evaluate your current environment
to determine whether functional testing addresses your needs
and provides useful benefits. Then, take a careful look at the
costs to functional testing as indicated in the When Not To Use
It section to make sure that you are willing to make the
commitment. And if you adopt functional testing, pay attention
for smells so you can catch problems early.

With the right techniques, we have seen developers and
customers get excited about functional testing. They enjoy
learning about the domain and its requirements in a deep way.
And they take great pride in the high-quality software that
results, on time and within budget. Functional testing is a
pattern that works.

7. ACKNOWLEDGMENTS
We would like to thank Robert Osborne, Steve Sparks, Jason C.
Yip, and two anonymous reviewers for thoughtful comments
and suggestions. Furthermore, we would like to thank the PLoP
2006 workshop members for reviewing this work yet again and
providing useful feedback these are Ralph Johnson, Paul Arumi,
David Garcia, Jason Yip, Hesham Sadawi, Leon Welicki, D.
Bellibia, Dirk Riehle, and Paddy Fagan.

8. REFERENCES
[1] Fowler, M., Patterns of Enterprise Application

Architecture. Pearson Education, Boston, MA, 2003.
[2] Highsmith, J., Agile Software Development Ecosystems,

Pearson Education, Boston, MA, 2002.

[3] Marick, Brian. “Bypassing the GUI.” In Software Testing
and Quality Engineering, (September / October, 2002), 41-
47.

[4] Evans, E. Domain Driven Design: Tackling Complexity in
the Heart of Software. Addison Wesley, 2003.

[5] Mugridge, R., and Cunningham, W. FIT for Developing
Software: Framework for Integrated Tests. Pearson
Education, Upper Saddle River, NJ, 2005.

[6] Jim Shore, “A Vision For Fit,”
http://www.jamesshore.com/Blog/A-Vision-For-Fit.html

[7] Elssamadisy, A., and Schalliol, G. “Recognizing and
Responding to ‘Bad Smells’ in Extreme Programming.”
ICSE 2002, pp. 617-622.

[8] Gandhi, P., Haugen, N., Hill, M., Watt, R. “Creating a
Living Specification Document with FIT,”
http://www.agile2005.org/XR22.pdf

