Problem Frame Patterns:
An Exploration of Patterns in the Problem Space

Rebecca Wirfs-Brock Paul R. Taylor James Noble
Wirfs-Brock Associates Level 15, 180 Lonsdale Computer Science
Sherwood, Oregon Melbourne 3000 Victoria University of Wellington
United States of America Australia New Zealand
+1 (503) 625-9529 +61 (413) 146 080 +64 4 463 6736

rebecca@wirfs-brock.com

prt459@gmail.com

kix@mcs.vuw.ac.nz

ABSTRACT

A problem frame is a generic, abstract descriptibthe structure
of a problem. Using a problem frame requires silgca
candidate frame from a catalog and mapping theifspparts of
the problem into the principal parts of the frafmethis paper we
present five patterns, one for each of Jacksomgnal problem
frames. We hope that by writing about problem fanas
patterns, we can make the frames themselves airdsthecture
more explicit, and so expose problem frames todemaudience.

Categories and Subject Descriptors
D.2.2 [Requirements/Specificationk Elicitation methods

General Terms
Management, Documentation, Design, Theory.

Keywords

Problem Frame, Solution, Analysis

1. PROBLEMS AND SOLUTIONS

Software developers solve problems in code. It'st wd our

nature to decompose, resolve, or drive toward atisol quickly

and efficiently. We naturally gravitate to ‘the gbbn space’
where our architectures, designs, patterns andnglicombine to
resolve the plaguing problems that our clients icoratly push on
us. Patterns have in part been so successful lretaers expedite
the journey from problem to solution—they make askl good by
handing us a best-practice template that we chouilto deliver a
proven solution. So what good can come out of insimgr
ourselves in the problem space?

Patterns work like a ladder in the ‘Snakes and kasldboard
game—given a known context and problem (squaréerbbard)
they give us a leg-up to a higher place. Desigrtepa fall
squarely in the middle of the solution space aralige object-

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without fegiged that copies are
not made or distributed for profit or commercialadtage and that copies
bear this notice and the full citation on the fipsige. To copy otherwise,
to republish, to post on servers or to redistrittotdists, requires prior
specific permission and/or a fee.

PLoP '06, October 21-23, 2006, Portland, OR, USA.

Copyright 2006 ACM 978-1-60558-151-4/06/10...$5.00.

oriented design fragments to resolve solution sf@oes [1]. But
they do assume that the problem and context afieisuafly well
understood so that a sensible selection of theogpiate pattern
can be made. So what if we don’t yet have thisnbaigon? What
if we find ourselves washing around in the amorghproblem
space, unable to get a foothold on anything to teaweight of a
pattern or to anchor a fragment of architecturethése another
kind of pattern that helps to locate our thinkingrlg in the
analysis and conceptualization of systems and isok® Do
patterns in the problem space exist? If so, whadikiof patterns
are they? How do they relate to design patterng? How might
consideration of problem structure help us prochetéer software
architecture and design?

1.1 Introducing problem frames

In this paper, we work with ‘problem frames’, a plem space
classification mechanism proposed by Michael Jatdd and
further refined in [2]. Jackson’s ‘problem frameske interesting
because they build on a recognition of generic lerabtypes,
based on structures and relationships between dsmand
system elements. Problem frames are based on asppily of
phenomenology, which firmly places us in a worldcohcepts,
domains, phenomena and (software)
mechanisms of our own design—that interact witls¢helements
of the problem’s enveloping context.

In Jackson’s problem frames, a problem is descrésedonsisting
of the software machine and one or more applicatiomains.
The machine and application domain are connecegesenting
a domain of some shared phenomena in which botmtmhine
and the application domain participate. The probleomtext
provides us with the elements of a scene, buthefunction. For
example, a context may include a workbench, a lid»and tools,
and some pieces of timber. What we are missing his t
requirement that will dictate but not describe thection of the
machine. Jackson suggests that a requirement shewddpressed
in terms of the context rather than in terms of ttechine. One
possible requirement in this example context isptoduce a
wooden container with removable lid to hold pend aencils,
while another may be to transform the timber intbig pile of
wood shavings for combustion. On the other hangyirements
in terms of the machine in this example could beedes of
detailed steps that tell you how to hand-saw arsheplthe
constituent wood pieces, and how to use nails dnd p best
hold the box together. Or how to shave the wood wihandheld
plane until there is no solid wood left. By expiegs a

machines—software

Required Behavior Frame

-
Controlled | ______ /
Domain

Controller

N
\

Simple Workpieces
Frame ’
Workpieces g
Operation
Software properties
Machine
(Too)
Operation /
Requests

Figure 1: Two of Jackson’s problem frames.

requirement only in terms of the machine and notantextual
terms, we risk jumping to the solution space premsy. As a
consequence, we risk missing important aspectpedification
and opportunities for use and reuse outside thestiegi
experience or existing processes or machines. Qgng the
example, when the craftsperson ignores the workstbp
possibility of using the high-powered wood-chippingachine
sitting in the corner might get overlooked.

1.2 Examples of problem frames

A problem frame is a generic, abstract problem csime,
proposed by Jackson using the problem solving igces of
Polya [3]. A problem frame consists of ‘principabrts’, a
structure, and a solution task. Figure 1 illussateo of Jackson’s
problem frames—the Required Behavior Frame andSingple
Workpieces Frame. The Required Behavior Frame detls a
simple problem class so let's start there. Thisnfras a simple
generalization of the structure of a class of pgotd that involve
automated control—an example is an electronic tbetat for
temperature control. The frame consists of threéecjpal parts.
The machine (the component to be built) is showa a®uble-
hatched box. The machine is associated with aesidginain (the
Controlled Domain depicted by a rectangle) by ae,lin
representing an interface of shared phenomenaddh®in is in
turn connected by a dashed line to a named seatopkpies (the
Desired Behavior requirement depicted by a dashipde).

The Simple Workpieces Frame deals with a classroblpms
where a user interacts with a software tool to tereand
manipulate computer-processable text or graphiceaidj or
similar structures.

Although abstract, these problem frames generadize of a

number of basic structures that underlie every esystand

architecture that solve problems of their type. &®@izing the

structure of the problem and adopting a frame swscthis helps to
structure the specification and analysis, as edement of the

frame is specified and documented. Each fact (pateli

assertion, invariant, observation, classificaticglationship and

behavior) that will be addressed at some stage nguri
specification, analysis, design or implementatimmw has a

principal part in the problem frame with which te &ssociated. A
further benefit is that all extraneous elementshef problem can

be recognized for what they are earlier in the ysisl and

development process.

In earlier work [1] Jackson named the Required Bihid=rame a
‘Control Frame’ and the Simple Workpieces Fram&/arkpieces
Frame'. In addition to the frames we have brieflgntioned, we
present three other problem frames in pattern fothe—
Commanded Behavior Problem Frame, the Transformatio
Problem Frame, and the Information Display FramearkMs
progressing amongst problem frame adherents toelatzbrating
these frames and identifying new ones [3,7,8,9].

1.3 Using problem frames

Using a problem frame involves selecting a candidictme from
a catalog of problem frames and identifying a magpetween
elements of the specific problem with the principalts of the
selected problem frame. Practically, a real worltbbfem
frequently maps to several or many problem frarsesa simple
best-fit analysis is needed to select the mostogpjate frame or
frames. Generally, analysts decompose a compldxginto a
number of smaller problems, and then focusing om th
requirements and the concerns of each sub-probksnyou
progress through the process of fitting one or mpreblem
frames to the problem at hand, the frames guideiyowhat to
specify and what questions to ask. In effect, garciblem frame
comes with its own micro-method in the form of ssdptive
template to be completed. But to get value fronmgidiames you
do not have to ‘go formal'. In practice, the framelps you to
know what questions to ask and what issues are coiym
encountered in particular problem frames. Once lyae framed
a problem, you can start asking questions. Or aselg as you
are asking questions you find yourself exploringatviframes
seem to fit and push harder to gather appropregeirements. In
this early analysis period, we find ourselves wogkin both
directions at the same time—finding a frame thas fand
executing its associated micro-method to evalulagefit occur
simultaneously.

Each problem frame also describes a frame condéra.frame
concern, illustrated in Figure 2 characterizesdbmains making
up a frame and describes how they must be intéecklgthat is,
how the operation of the machine must interact i various
domains) to produce a stylized argument that anntaet
implementation will be correct. As well as helpipgu convince
yourself your requirements are a correct analysithe problem
you are studying, frame concerns can be usefuhéalcthat you
have characterized your problem with the correant. If you've

selected the wrong frame for a particular sub-mablthe frame
will suggest descriptions that don’t make sensewifideave out
other necessary ones—if you're fitting your problémto the

wrong frame, it will be difficult to construct a wancing

argument that your specification can meet that éarmoncern.

By helping you to ask the right questions, framewprove
specification quality. There is another benefit-~ies encourage
you to separate the concerns of the problem intoagdeated sub-
spaces (domains or problem parts) in the overablpm space,
and then to treat each in turn according to itzifjpeneeds. This
form of ‘separation of concerns’ helps you to depeminimal
and contextual descriptions, and ensures that thehime you
specify sits properly in its real-world context.iFttan result in
well-integrated and minimal software solutions tlae more
likely to deliver quality—fitness for purpose—besauyou have
understood the purpose better.

1.4 Our approach

Consistent with patterns community ethos, we makelaims on
originality for much of the material presented liistpaper, other
than the idea of bringing problem frames and pasteogether,
the identification of implementation issues disadsgor each
pattern, the running example, and our slight shiftay from

Jackson'’s insistence on real world phenomena andhiths to one
that accommodates computers and computational demahe

problem frames and their definitions are taken Iyeaerbatim

from Jackson’s books. The fitting of each frameoiat pattern
template, and the assessments and conclusiondl arar awn

work. We welcome engagement from anyone interested
developing the idea.

2. PROBLEM FRAME PATTERNS

In this section we present five patterns, one fmheof Jackson’s
problem frames. The names of the five problem framatterns,
and the classes of problem that each addresss &#aws:

¢ Required Behavior Problem Frame—there is some part of
the world whose behavior is to be controlled sa ithsatisfies
certain conditions... the problem is to build a maehthat

will impose that control.

¢« Commanded Behavior Problem Frame—there is some part
of the world whose behavior is to be controllecatordance
with commands issued by an operator... the problero is
build a machine that will accept the operator's wamds and
impose the control accordingly.

¢ Simple Workpieces Problem Frame—a tool is needed to
allow a user to create and edit a certain classoafputer-
processable text or graphic objects, or similancstires, so
that they can be subsequently copied, printed,yaedl or
used in other ways... the problem is to build a maetthat
can act as this tool.

¢ Information Display Problem Frame—there is some part of
the world about whose states and behavior cemdammation
is needed... the problem is to build a machine thiltain
this information and present it at the requiredcelan the
required form.

e Transformation Problem Frame—there are given data
which must be transformed to give certain requioedput.
The output data must be in a particular format iamdust be
derived from the input data according to certaitesu. the
problem is to build a machine that will produce tegquired
outputs from the inputs.

Each problem frame is presented using a simplematorm. The
pattern begins with a short definition of the peshlthe frame
addresses, taken verbatim from Jackson’s correspgridame
definition. Then our patterns present a brief eXemghowing the
various domains that comprise the structure ofptablem. The
pattern examples are drawn from a running exantme depicts
the specification of an email client. This clierdncexchange
messages with email servers, detect junk messalies, users to
compose new messages, and display encoded muléirobgicts.
A client with this amount of functionality necessds the use of a
number of different problem frames, and the proa#fsfitting,
then combining frames together illustrates how tkisd of
analysis can yield simple yet highly definitive arfdrmal
descriptions.

— -

Your o ‘\\
Software Controlled ! Required \
D q . -— — .
Control y \ Domain Y Behavior y;
Machine |/ Y E NN L

We will build our
software to behave \
like this, so that...

{specification}

works like this...
1

Knowin‘g thatthe
controlled domain

\f)main description}

this way

...we'll be sure itacts j

2 \{TEQUiremenm}

3

Figure 2: The Required Behavior Frame Concern

Panel display

Monitor
Machine

Display ~ Patient

Condition

Sensors

Patients

Figure 3: An example of Jackson’s problem frame nettion (for a medical monitoring machine).

Returning to the problem frame pattern descripti@ash pattern
then describes which abstract problem frame thenplacan be
fitted to, shows the generalized structure of tfratme, and
describes the ‘participants’ (or principal partshatt is, each
domain that is a part of the frame. Each pattext describes the
abstract ‘frame concern’, that is, the overall dood the machine
must satisfy if it is to embody a correct solutioreeting the
requirements of the frame. In some ways, this ngilar to the

‘collaboration’ section of an object-oriented desjgattern, in that
it shows how different domains are interrelatechimitthe frame.
The pattern shows how the frame resolves the ewlaht

example, sketching an argument to show how the pbesn
specific concerns can be resolved. Each problemefrpattern
includes a brief list of analysis, design, or impémntation
considerations that often arise with this frame] &or a few of
the frames) briefly lists common variants or clgsetlated

problem frames.

Domain Diagrams

Both specific problems and abstract frames are mirasing
Jackson’s most recent [2] problem frame diagramatiaot:

These diagrams show domains (rectangles) and esqgeits
(dashed ellipses). Domains generally represento$gthenomena
in the real world—in the example shown in Figuren®&dical
patients, sensors, display panels, and a ‘monitachine’ that
connects sensors to panels. An important pointhat the
solution—in problem frame terminology, the Machins—
considered a domain like any other. This emphasizpsactical
consequence of Jackson’s phenomenological
‘machine’ that we have to build is a domain in tkal world (at

least once the software ‘machine’ is built andalietl) and can be
treated from a specification perspective just liamy other
domain, with characteristics and phenomena ofvits.Since we
have to build it, we identify it with stripes onetteft-hand side of
its rectangle.

Domains are linked by lines representing sharedngimena
between them; that is, phenomena that occur in daamin. In
Figure 3's example, sensors are physically attathgétients and
monitor their pulse, blood oxygen levels, blood sstee, etc.
Sensors are similarly attached to the monitor mmechiia an
instrumentation bus, and the machine is attached tfisplay
panel via some graphics drivers. Requirements @nstrints on
the states or operations of various domains. lurei@’'s case,
they are linked (by dashed lines) to the domairy ttonstrain.
The requirement that the patient’s state of haaltist be reflected
accurately in the Panel display is expressed aasaertion in the
Patients domain, but acts as a specification ferRlnel Display
domain (thus the arrowhead).

2.1 Required Behavior Problem Frame

211 Problem

There is some part of the world whose behaviow Iset controlled
so that it satisfies certain conditions. The probls to build a
machine that will impose that control.

2.1.2 Example

The most basic requirement for an email client (thest

stanae—th fundamental problem that it has to solve) is todsemails from

the client program to some external Mail Served enget emails
back from that server. The problem frame diagrankigure 4

——— -

— ~

,“Send and geticheck N

Email Client Mail Server

C

- ——————— 1

for Email on)
*\predefined schedule,”
~ //

~

Figure 4: Basic emalil client operation mapped ontthe Required Behavior problem.

Control Machine

Controlled Domain

- >~
/// . . \\
- ——————= i Required Behavior)
\ /
\\ s

Figure 5: General form of the Required Behavior priolem frame.

illustrates how the Required Behavior problem frafite this
simple description of the client's most basic fiowt The
Machine (called the Email Client) must interact hwithe
immediate endpoint of the emails (the Mail Servend that
interaction must satisfy the requirement that esnaie correctly
exchanged between the two.

The Mail Server domain will consist primarily of tdies
representing email messages. The Mail Server doisdimked to
the Email Client domain by shared phenomena—oblyoersail
messages, but also events by which the Email Ctiantsend or
request emails to and from the server. This is way-
communication, since the Email Client can inspdw Malil
Server domain (i.e. to find any emails) and afiecby sending
emails to the server). Since the key problem thmé& presents is
to design the Email Clienthe problem gives no more details

about that client directly—because those details are precisely the

space we will fill in our design and implementationur
specification says nothing more about the machireere are
three basic Required Behaviors: the Email Clientiogkécally
issues Send events to send emails, it initiateciClegents to
determine if any new emails have arrived, andsités Get events
to retrieve each of those emails.

The “C” in the lower corner of the Mail Server damindicates
that it is a causal domain, one which predictaldgponds to
events. Note that although the server is internailiare of the
arrival of new email messages, it never signalso@lient when
one arrives—rather, it waits for the Client to imi¢ a Check
event. Because of this, it is always responsiviaaas the Client
is concerned.

2.1.3 Structure

This problem fits into the Required Behavior probldrame,
shown in Figure 5. The Required Behavior probleamk is
comprised of these participating elements:

¢ Control Machine (Email Client in the example)—thgésthe
part that we know we have to build, and its purpede exert
control on the Controlled Domain.

¢ Controlled Domain (Mail Server in the example)—this
domain defines just the part of the world that seéa be
‘controlled’ by the machine.

¢ Required Behavior (Send and Get Emails in the ei@mp
this part describes how the domain must be coettdily the
machine.

2.1.4 Frame Concern

They key concern of the Required Behavior probleame is that
the machine must ensure that the Controlled Doraglnibits the
required behavior. The frame concern relates mdfs domains
in the following way

1. The behavior of the Control Machine
2. AND the properties of the Controlled Domain
3. ENSURE the Required Behavior.

Concern Resolved

Referring to the example, we can say that the behaf the
Email Client and the properties of the Mail Seressure that

We will build our
software to behave

like this, so that... Knowin:g that the

{specification}

works like this...
1

controlled domain

Your
Software Controlled |, | Required
Control % Domain I Behavior
Machine / Cl|.”
o

\{iomain description}

we'll betsure it acts
this way

2 \{FEQUirements}

3

Figure 6: The Required Behavior Frame Concern.

email will be sent and received according to thedpfined
schedule.

That is, we must be able to make a convincing aemirthat:

1. The behavior of the Email Client

2. AND the properties of the Mail Server

3. ENSURE the emails will be exchanged betweennClie
and Server.

Addressing the frame concern adequately means makire that
descriptions of the requirement, the specificatbyour machine
at its interface to the controlled domain, anddbscription of the
controlled domain’s reactions to events all workgether
consistently. In the Email Client application, tieguirement must
describe how emails should be sent and received. ddmain
description must show how emails are received,edtoand
transferred by the mail server, and the machinpeification
must show how it behaves at its interface withNtadl Server. To
deal with receiving emails, for example, the En@lient must
issue Check events periodically to determine ifréhare any
incoming emails, and then a series of Get evemnig (or each
pending email). Assuming the Mail Server behavesxascted —
listing all pending emails in response to a Cheekng and
moving one Email message in response to each Guxtt,ethe
system as a whole will satisfy the required behawviethat

incoming emails are periodically transferred fragrver to client.

2.1.5 Discussion

The task of analyzing a problem that fits the RegpiiBehavior
frame is to analyze how the controlled domain wakd specify
the behavior your machine must have so that ittexe proper
control over the Controlled Domain. To fit a prableo this

problem frame, you need to match each of the frarpatts to a
portion of the problem at hand. As you proceed, gssess the
quality of the fit by working with each part in tuto write down a
mapping between the frame part’'s characteristicsl &ne

corresponding phenomena in that part of the probspace.

When you do this, the frame will guide you, promgtiyou with

questions. For example, to fit the frame’s CongwlDomain part,
you will have to answer the following kinds of gtieas—what

external state in the Controlled Domain must betrodied? What

are the natural states of these objects or phermmed how do
transitions come about? And which of these tramrstimust your

Machine command? And how and when does your sadtwar

machine decide what actions to initiate?

With an unreliable connection interspersed betwtbenmachine
and the Controlled Domain, there is an increasetatility that

the state of things as “expected” in the Controllmimain won't
match up with your machine’s intended effects am @ontrolled
Domain. If this indeed is a valid concern, then rydascriptions
must address how your machine will detect whengshiget ‘out
of synch’ and what your machine must do in thiscas

More fundamental is the question of whether oryoatr Software
Machine needs find out whether its actions havethadntended
effect. A question to ask about any Required Bedrapioblem is
whether the machine needs to know for certain, leether it can
just react later (when the state of something i @ontrolled
Domain is not as expected). A simple example fram Bmail
Client application is the case where the user vgistoe know
whether sent emails have been received by theieetifDne way
to accomplish this is to tag an email as requidngonfirmation
of receipt’ reply when it is read by its recipient.

2.1.6 Variants
Connection Domain

The part of the Required Behavior problem framé tiaaies most
across different problems is whether or not a Cotiole Domain
is part of the problem. In an ideal world your s@fte machine
directly shares phenomena with the Controlled Donaaid a rich
interface gives it access to all the phenomenaetls to detect or
control. If you can convince yourself that it isfes&qo view the
connection between your software Machine and tirgythinder
control as being direct (with no complicating coctien
properties that have to be specified and managetebiachine)
your software solution will be considerably simplén the other
hand, when software system designers assume tipéesiiaise and
overlook the complexities of this connection (whiblappens
often in the desire to selectively ignore complgxihe reliability
of the Machine can be dramatically reduced.

So, the reality is that often software isn’'t abte directly and
simply affect the Controlled Domain. A ConnectioprBain lies
between the two which interposes its own propertasl

behavior. If, as is often the case, you decide tiiatconnection
can cause quirky or interesting behavior then yay meed to
understand the properties of this Connection Dom¥éi’ll then

need to describe the properties of this domainhavdit interacts
with your software Machine and the Controlled Damdn the

example, a separate Connection Domain is mostylikekded as
part of the elaboration of the frame since therimge (a not
entirely reliable connection) lies between our Hr@dient and the
Mail Server (Figure 7).

Configuration Domain

Email Client Internet

//’éénd and get/chec;i{\
Mail Server - for Email on
C “..predefined schedule .

,,,,,,,,,,,,,

Figure 7: The Required Behavior Frame showing thenternet connection domain.

Provider

Email Client

schedule

Mail Service

Email transfer

~ - ~~
P
S

+“Send and get/check ™,
{ for Email on)
\Qredefined schedule,”

Mail Folder

C

Figure 8:Required Behavior problem frame for the Enail Client, with added ‘Mail Folder’ and ‘Email tra nsfer schedule’ domains.

Sometimes it is useful to specify the configurablpects that
drive the controlling machine’s behavior. For exéenn the case
of the Email Client, the schedule for when to sand check for
incoming mail might be represented in a designescrijgtion

domain, shown as an oval with a single vertica lim Figure 8—
the Email Transfer Schedule. While this may indbeda simple
lexical description, it is interpreted by the Em@iient, and its
values can be set by the user in yet another prolilame (a
Commanded Behavior frame). Domains in one problamé can
be represented in other frames; if this is so, tbare must be
taken to ensure that the requirement from one fralmesn't

conflict or contradict another.

Similarly, it can be useful to model other domatimat the Control
Machine interfaces to as it performs its contrahdiions. For
example, in the email example, incoming and outgy@mails are
transferred between the Mail Folder Domain andgimail Client.
A more complete picture of the use of the RequiBsthavior
frame for specifying the Email Client is shown iigie 8.

2.2 Commanded Behavior Problem Frame

2.2.1 Problem

There is some part of the world whose behavioo iset controlled
in accordance with commands issued by an operBiter problem
is to build a machine that will accept the operatoommands and
impose the control accordingly.

2.2.2 Example

An Email Client cannot only communicate with the iM@erver:
it must also provide an interface to its usersampgose and send,
receive, and read email The frame diagram belowvshthis
problem: the Machine, the Email Client, must exgeemails
with the Mail Server with the requirement that théeractions
with the Mail Server are commanded by the client.

The Mail Server domain, once again, will consisimarily of
entities representing email messages, and is linGethe Email
Client domain by shared phenomena—Control EventsafEm
messages, and Send, Get, and Check events. Thaltsain is
also a source of events, in this case Commands thenuser to
Queue (i.e. edit to send later), to Send queuedignand to
Check Mail. The Commanded Behaviors are as folloims:

Mail Server e

Send and receive

Email Client

User! Send,
Queue, Check

email when user
says to

Mail..

User

B

Figure 9:User’s control of the email client mappednto the Commanded Behavior problem frame.

Mail Server N

Send and receive

Email Client

User! Send,
Queue, Check

email when user
says to

Mail..

User

B

Figure 10: General form of the Commanded Behavior pblem frame.

response to User Send commands, the Email Cliest sand all
queued Email Messages; in response to User Checkseit must
check Email and use Get events as necessary igvesthem.

As explained earlier, the “C” in the lower cornefr the Mail

Server domain indicates that it is a causal domaig which
predictably responds to events. The User domaimkedawith a
“B”, is a biddable domain—one which isn’t guaramteto

respond predictably. This is because it is impdesib predict
how (when, and in what sequence) the user willésstents to the
Email Client.

2.2.3 Sructure
This problem fits into the Commanded Behavior peablframe
shown in Figure 10:

Participants

e Control Machine (Email Client)—the part that must lbuilt
in software, it controls the Controlled Domain wsi@perator
Commands as commanded by the Operator domain.

e Controlled Domain (Mail Server)—the part of the \oto be
controlled via Control Events issued by the ConMalkhine.

¢ Operator (User)—autonomously active domain thati@ss
Commands (Operator Commands) directly
Machine.

 Commanded Behavior (Send and Receive Emails)—dbescri
how the Controlled Domain must be controlled ipm@sse to
user commands.

2.2.4 Frame Concern

The key concern of the Commanded Behavior problemé is
that the Control Machine must produce the Commarigthvior
in the Controlled Domain in response to the Opeiato
commands. The frame’s concern, illustrated in Féglt, can be
stated as follows:

1. When the Operator issues a Command

to Control

2. AND the Machine rejects invalid Commands

3. AND the Machine either ignores it if unviable RO

issues Control Events
AND the Control Events change the Controlled Bom

5. ENSURE the changed state meets the Commanded
Behavior in every case.

Concern Resolved

Referring to the example, we can say that the behaf the
Email Client and the properties of the Mail Senasrd User
ensure that email will be sent and received inoBsp to user
commands:

1. When the User issues a command

2. AND the Email Client accepts that command ofiyis
valid

3. AND the Email Client issues email requests dfitiey
are viable

4. AND the Email Client requests an exchange ofikema
with the Mail Server

5. ENSURE that email is exchanged only when ther Use
says so.

In the Email Client application, the Commanded Badra
requirement must describe how emails should be semnt
received. The domain descriptions must show howilensae

received, stored, and transferred by the Mail Seaved describe
the commands that may be issued by the User. Firbg

Machine’s specification must show how it behavessainterface
with the Mail Server in response to commands cormirfgom the

user. To deal with sending emails, for example,BEhil Client
must collect outgoing emails (in response to Queowmmand
events from the User domain) and then, when the igsaes a
Send command must issue the correct Send everitee tMail

Server domain. Assuming the Mail Server and Usenalos issue
and interpret the required events, the systenmvdsote will queue
and then forward email, satisfying this requiretidgour.

...or ignore it if it isn’
viable, or else cause
these events...

{spegification}

Your
Software
Control
Machine

...resulting in this
change in the
domain...

{domain properties}

Domain

Controlled

c

Operator

the machine will
reject it...

{specification}

...if it's not sensiblﬂé

B

When the operator
issues this
command, it may or

2

1 | may not be
sensible...
{requirement}

...thus achieving the
required result

\ Commanded
‘ Behavior

Figure 11: The Commanded Behavior Frame Concerns.

2.2.5 Discussion

An added complication in the Commanded Behavian&as the
unpredictability of the operator's decisions antkiactions with
the Machine. The underlying issue that the CommarRihavior
frame forces the analyst to deal with is what'so@dymodel of
user-system interaction and what does the user te&dow in
order to “command” the machine to do things. Anti@igh you
may specify permissible actions in detail (becatige Operator
domain is biddable) you cannot rely on the operéodowing

operating instructions at all times. As a resulie tControl
Machine can’t be required to respond to every contim&ome

Software
machine 1
Controlled |,
domain ~
Software
Machine 2
/
Operator 7

commands may make no sense in the context of prelyigssued
ones. Certain commands may not be viable because dte
inappropriate or not permitted given the currerdtestof the
Machine or the Controlled Domain. For example, ents email”

command doesn’t make sense if there is no unseail.efiis

leads you to ask what commands need to be inhibésdd on the
current state of the Machine or the Controlled Dom@&ne way
to inhibit “send mail” would be to disable the ‘sEmmenu item

/ Requirement

Second

Figure 12: A composite frame with both commanded ahrequired behaviours.

when there is no unsent mail.

For more complex Commanded Behavior frames, it rhay
appropriate to ask if a sequence of actions malkeses or
whether a lag between issuing a command and thehineac
performing the action could cause the operator tstakenly

believe that a command has been ignored. In soroenestances,
it is legitimate to ignore certain sequences of wamds—
repeated presses of the elevator ‘call’ buttoreageod example.

In any case, it is always appropriate to ask whaukl happen
when a command fails. Should the operator be ireghn
“steering” the Control Machine through a recovergqedure? Do
commands need to be reversible, logged, monitoreztherwise
tracked? What kinds of feedback (if any) shouldNMeechine give
the Operator to indicate when commands have beeressfully
processed?

Because of the interplay between the Operatoriert reasons
for disobeying or failing to execute commands, &mel required
properties of the Controlled Domain, there are metdtle
relationships among the descriptions in a Commariisthvior
problem than those in a typical Required Behaviobfem.

2.2.6 Variants
Designated Domain

Is it possible that commands may be specified édMlachine that
do not immediately take effect? If so, then a “Desd Domain”
may need to be specified that describes commantusiy t
parameters and when they take effect. Are thersilplesconflicts
between Operator-issued commands and required ioehava
problem where operator commands modify or overrigegired
default behavior (as shown in Figure 12)? If sepecification of
frame concern priorities may be needed. This waintply state
relative priorities (possibly in the form of rulesd resolve
conflicting commands and situations.

2.3 Information Display Problem Frame

2.3.1 Problem

There is some part of the world about whose statesbehavior
certain information is continually needed. The peabis to build
a machine that will obtain this information frometlworld and
present it at the required place in the requirecthfo

2.3.2 Example

These days, email clients need to do more thawalkers to edit
emails, and exchange those emails with mail sernirsy also
need to identify the large amount of junk mailstthest email
users receive. The frame diagram in Figure 13 shdws
problem: the Machine (a ‘Junk Mail Filter') must spect
Incoming Mail and then produce a report which assig junk
mail rating to each email based on a Bayesian isifgor

2.3.3 Sructure
This problem fits into the Information Display ptem frame:

Participants

« Information Machine (Junk Mail Filter)—the part be built,
the Information Machine displays information frometreal

world—something that (relative to our problem) & mnder
our software’s control.

Incoming Mail

/" Identify Junk
f Mail
%, Requirement /

Junk Mail
Filter

Filter Report »

Figure 13: Junk mail detection problem mapped ontdhe
Information Display problem frame.

* Real World (Incoming Mail)—an active and autonomous
domain containing the information that needs talisplayed.
Nothing in the problem context can affect the R&akld.

e Display (Junk Mail Report)—the part of the world evh
information is to be presented.

¢ Display~Real World (Identify Junk Mail Requiremenihe
requirement that relates the domains (the Displagtrshow
true information about the Real World).

2.3.4 Frame Concern

The key concern of the Information Display problgame is that
the Information Machine must ensure the Displaylgpat is
derived from the values in the Real World. The fe&concern,
illustrated in Figure 15, can be stated as follows:

1. When the Real World is in a particular state

2. THEN because the Real
particular values

3. AND the Machine will detect those values frora feal
World domain

Real World |,

Information

Display ~ Real
Machine :

World

Display »

Figure 14: General form of the Information Display problem frame.

World domain contains

...then because the
things are like this...

...the software will
detect these
phenomena...

{domain properties-a}

world is this...

When the state of thﬁ

{specification}

Real world

{requirement}

3
Your Displ
Software reSIpvfng;j
Information N
Machine T e
L
Display 14/
~.and cause these E .
events... ’ ...whii:h correspond as
4 T required to what is
{specification} ‘ , happening in the world
tSlf]ci>sthe output will be {requirement}
{domain properties-b} J
5
6

Figure 15: Information Display Frame Concern.

AND it causes events to the Display domain

AND the Display domain produces some output in
response to those events

6. ENSURES the Display can be interpreted as
corresponding (as required) to the Real World.

Concern Resolved

Referring to the example, we can say that the iné&ion
Machine always ensures that the Display respondsetstate of
the Real World according to the Display~Real World
requirement:

1. When the user is receiving spam
2. THEN the Incoming Mail includes junk mail meseag
3. AND the junk mail filter will detect those jumkessages

and assign each a junk mail rating value

4. AND it sends the title, junk mail rating valuand
‘From:’ line of those messages to the junk mailefil
report

5. AND the junk mail filter report can be interpdtas
listing junk messages

6. ENSURES the junk mail filter report lists thenkumail

messages within the Incoming Mail stream.

2.3.,5 Discussion

To address the frame concern for an InformatiopRisproblem,
you describe the requirement of how information utiobe

presented to the Display domain, the propertiagh®Real World
domain, and the phenomena that are available dtitwhine-to-

Real World domain interface. In essence, you makf @hat is
the form of “observation” that the Machine must maikbout
some event, fact or thing? Indeed, it may be diffito ascertain
when an event has occurred in the Real World sirbpbause the
Real World domain-to-Machine interface is a narrdew onto

the real world. For example, if your software igirig to record
how many vehicles passed over sensors placed awaldeit may
be difficult to characterize what constitutes aiglh—is it two

axles passing within a time period? What about neytdes,

backed-up slow traffic, etc?

An Information Display problem is often charactedzby a
significant gap between the real world phenomerththa ability
of your Machine to make an accurate interpretatibrireality”

based on limited phenomena available at its interfa the Real
Word domain. Although a human recipient can ansyaéckly by
scanning email whether it is junk or not, it is rutarder for a
machine to make an accurate discrimination. Whemsidering
the specification of your Machine, it is often innfant to ask,
how much computation does your software have ttodmme to
an observation? For example, most spam mail detedsi based
on analysis of the email contents compared to “kfojunk, as

Real World .
Modeling " Model ~ Real |
Machine World
Model
Display Display ~
Machine Model
Display »

Figure 16: Information Display frame with an addedModel
domain—an example of a composite frame.

well as matching an email's properties with otheowkn junk
mail characteristics (such as where the email watgid from). A
“junk mail probability rating” can be assigned to email, based
on Bayesian analysis of the contents of a messagedbon
sample data currently loaded into the junk mail.box

This leads to consideration of how precise or amteuryour

information display requirement is. Is it sufficte assign a junk
mail confidence rating value (i.e. 50%) to an inaggremail, or is
a more precise (but potentially less accurate)™gesno” answer
satisfactory?

Although the basic Information Display frame onlgsdribes the
problem of representing a transitory value on thispRy,

information display requirements are often more glex For

example, historical information may be importantdaisers may
need to query, organize and manipulate informatlbiso, this

will lead to further analysis of the requirements isplay,

querying, and retention of information.

2.3.6 Variants
Model Domain

Sometimes, to simplify the workings of your Displshachine, it

is useful to include a “Model domain” of the phersra being
observed in order to answer questions about itfEid.6). When
you do this, you've essentially decomposed an métion

Display problem into two sub-problems: one thatestes the real
world and creates model of it (called the Model dowjy and

another that displays the information based omtbee accessible
phenomena in the model. It is important to reattzat a Model

domain is completely distinct from the Real Worlshahin, but it

is introduced when events that are unavailabldénReal World
would be useful to drive the display. In essenciloglel domain

is part of a solution—and not an intrinsic parttof problem.

Commanded Information Frame

In the basic Information Frame, the choice of infation to be
displayed is fixed in the requirement. But somesiités useful to
have a kind of information problem where the maehamswers
questions of a user. Jackson calls this variantoanr@anded
Information frame. The operator is called the Eng@perator
whose enquiries are regarded as commands to theefing
Machine. The machine produces its information otgpn the
Display domain. In the case of our junk mail ratimgchine, a
Commanded Information frame, shown in Figure 17ulddet
the user query and view a junk mail report basedspecific

Real world

Answering .
machine Display
c
Operator!
Commands
Enquiry
Operator
B

Figure 17: Commanded Information frame.

Email
messages __|[™&

x|

Email
Editing
Tool

N ’ \
./ Effects of user's ™
N commands on
_message contents /

User

B

Figure 18: Email editing function mapped onto the 8nple Workpieces problem frame.

threshold values.
2.4 Simple Workpieces Problem Frame

24.1 Problem

A tool is needed to allow a user to create and &dirtain class
of computer-processable text or graphic objects, sonilar
structures, so that they can be subsequently copddted,
analyzed or used in other ways. The problem isutllla machine
that can act as this tool.

24.2 Example

In order to have email messages to send, an emieilt anust
allow users to compose emails. The frame diagraffignre 18
shows this problem: this Machine (the Email Editifgpl) must
support Users editing a set of email messages. Himail

messages (annotated ‘X’) comprise a lexical donthit, is, a set
of symbolic objects rather than a part of the warkternal to the
system. The User domain (annotated ‘B’), whichriatés with the
Email Editing Tool domain, is biddable—that is, imost

situations it's impossible to compel a person titidgte an event
(your machine can ask, but their response is ngvaranteed).

2.4.3 Sructure
This problem fits into the Simple Workpieces praoblEame:

Participants:

¢ Editing Tool (Email Editing Tool)—the part to be iliuthis
domain issues Operations on the Workpieces in respo
User’'s commands.

¢ User (User)—autonomously (actively) issues Commaiods
the Editing Tool to manipulate Workpieces.

e Workpieces (Email Messages)—an inert, lexical (sytch
domain containing materials to be worked on.

¢ Command Effects (User's Commands on Message
Contents)—the requirement that describes how ther'ss
commands should affect the Workpieces.

2.4.4 Frame Concern

The key concern of the Workpieces frame is that Mezhine
correctly changes the Workpieces in response tatingdi
Commands. The frame’s concern, illustrated in Feg2@, can be
stated as follows:

1. When the User issues a Command
2. AND the Machine rejects invalid Commands
3. AND the Machine either ignores a Command if

unviable, OR invokes editing Operations
4. AND the editing Operations result in changes of

Workpieces W

Editing

>y Command effects |

Tool

User

B

Figure 19: General form of the Simple Workpieces poblem frame.

Workpiece values and states manipulated by user commands. It is usually a desiglomain

5. ENSURE the changed state meets the Commanded(©rs in the case of email message contents, a gioenair) whose
Behavior in every case correctly formed contents are defined by email mmgss
' standards).

Concern Resolved L . .
It is important to identify both the structural mlents of the

Referring to the example, we can say that the ieglifiool ensures orkpiece and the commands that operate upon tSemetimes

Command Effects requirement: published or printed. One question to ask is whegherorkpiece
1. When the User issues an editing gesture (eygtroke, has an interesting lifecycle, or whether it is jasanged and then
mouse click) treated as “static” after each user command. Ceraiiton of
. . lifecycle questions lead to asking whether a wa&pi can be
2. AND that command-ls syntact-lcally correct shared, and if so, how? It may be that a workpisceassed
AND the command is semantically correct around between various users, for example a dodureqairing
4. AND that command changes the email message being@PProvals or a meeting appointment whose attendeast
edited confirm their attendance. In cases like these ety be a more
. . complex workflow associated with changes to thekpiarce.
5. ENSURE the message is edited correctly. P g

2.4.6 Variants

2.4.5 Discussion Command File

The Simple Workpieces frame’'s concern bears a gtron))

resemblance to that of the Commanded Behavior frdime User ~ Sometimes a Command File can take the place ofea Uistead
has a role and characteristics very similar to @merator in a Of the User domain controlling edit events as sl the Simple
Commanded Behavior problem. The chief differencettiast ~ Workpieces frame, a Command File (a passive lexioatain) is
Workpieces is a lexical domain whose contents can b Substituted as shown in Figure 21.

...resulting in this
4 change of workpiece
values and states...

{information properties} 5

g B - 7 N
O ignore itif it isn / N, ...thus achieving the
viable, or else invoke K \ .
these operations / AN required results...
! \ requirement
{ ﬁ t } \‘\ { q ll"/ }
specification \ A
P ~< Work i
. . s
pieces RN 7
Cc R\ f S e~
\\ e ~
N I // N\
Your N ,;7 c d \‘
omman
Software A\ p I
Editi 7\ Effects Vi
iting FARN /
Fd ’,—\\ //
Tool i S
” /’I
e -
\ User sl
s u \ 7/
...in that case the N E /
software will reject \ y
it... “\ '/"

;) /

{specification} When the user i_ssues'
this command, it may
2 k be out of context or
syntactically incorrect,
then...
1
{requirement}

Figure 20: Simple Workpieces frame concern.

Workpiece W

Operator!
Commands

Editing
machine

Command File

Figure 21: Command File Workpieces problem.

2.5 Transformation Problem Frame 253 Sructure

251 Problem This problem fits into the Transformation problemnfie:

There are some given inputs which must be trangfdrto give Participants
certain required outputs. The output data mustmba particular
format, and it must be derived from the input dataording to
certain rules. The problem is to build a machire thill produce
the required outputs from the inputs.

e Transform Machine (Email Decoder)—the part to bétbu
this domain transforms inputs into outputs withohanging
inputs.

¢ Inputs (Encoded Email)—a static lexical domain edmihg
25.2 Example inputs.
Consider multimedia messages, that is, email emtddesome
particular way. The frame diagram in Figure 22 shothis
problem: the Machine (the Email Decoder) must fiGins
Encoded Email messages into Viewable Email messages. |/O Relation (Decoding Requirements)—a descriptirthe
according to some Decoding Requirements. desired relationship between inputs and outputs.
The “X” in the lower corner of the Encoded Emaibaviiewable
Email domains indicates that they are lexical dowatphysical 254 Frame Concern
representations of structured data. The key concern of the Transformation problem fraithestrated

Outputs (Decoded Email)—a static lexical domairnt tkato
be made by the machine.

Encoded Email |

Email ~ Decoding y
. Requirements
Decoder \ q)

b

Viewable Email
X

Figure 22: Multimedia decoding problem mapped ontdhe Transformation problem frame.

Inputs

Transform
Machine

ANV 110
Relation

Outputs

X

Figure 23: General form of the Transformation problem frame.

in Figure 24, is that the input is correctly trarsfied into the
output:

1. BY traversing the input in sequence, and simeltaisly
traversing the outputs in sequence

2. AND finding values in the input domain, and ¢heg
values in the output domain

3. AND that the input values produce the corredpou
values

4. ENSURES the /O relation is satisfied.

Concern resolved

Referring to the example, we can say that the Emaitoder
ensures that decodes all the emails correctly:

1. BY traversing an encoded email, and the decoded
representation
2. AND finding values in the encoded emails, arehting

values in the decoded emails

3. AND that the encoded values produce the correct
decoded values

4. ENSURES the email message is decoded correctly

255 Discussion

In a transformation problem, the two problem domaire lexical.
The transform machine traverses over the Input dtoraacessing
the data values it needs by visiting the placegléndomain where
they are to be found. In the same way it simultasBotraverses
the Output domain, creating data values and depgsihem at

in the domain
structuredike this...
a

...finding these values

By traversing input i
this sequence...

{specification-a} ‘

1a

Your
Software
Transform

{domain properties-a} 3a

...the software
ensures that these
values...
{requirement}

1/0
Relation

4

Machine

Outputs

...and simultaneousl

,,,,,,,, " 0
P ...which satisfy
a0 the rules...

{requirement}

traversing the output
in this sequence...

1b

{specification-b}

in the domain
structured like this...
{domain porperties-b}

...creating these valué

...produce these
values...

/
/
X g
/
/
/
/
/

{requirement}

3b

2b

Figure 24: Transformation Problem Frame Concern.

places where they are required. The frame concerntie
Transformation Frame is to show that as the Machimeerses the
Input and Output domains that it correctly calcesathe values to
be written to the proper places in the Output domai

If the transformation is complex, or the input dam&size isn’t

well-known or bounded, there are other considematioFor

example, the analyst might need to consider whetdpspace, or
time tradeoffs exist for performing any particuteansformation.

Is the transformation “lossy”, i.e. is it permidsitio lose certain
information when space and speed tradeoffs mushdme? And

does the transform need to be reversible?

Efficiency of the Machine and its traversal aldomis is a
common concern. A practical efficient traversakdrito avoid
multiple visits to the same data or unnecessaisvig irrelevant
data. If the transformation is complex, then altwnic
descriptions may be part of the Machine specificati

Another question to ask is whether a transformatidh always
work. What should happen when your transform maehin
encounters anomalies in the Input or unknown datthé Input
domain? For example, what should happen when acplart
encoded element cannot be read by the Email Deecstenuld it
ignore it, put it in the Output as some distingesh
(uninterpretable item) and continue, or terminate?

25.6 Variants
Description Domain

A more flexible way of treating a transformatioroblem is to add
a description domain that guides the behavior efrtfachine. For
example, the definitions of tokens and their typesencoded in a
description domain that a Lexical Analyzer intetprduring its
traversal of the Input stream (Figure 25). The ToKefinitions
domain describes the relationship between the ctas or
values in the input domain and tokens. The requérdris that the
Output domain should contain token records cornedjmy to the
Input domain tokens.

Input
stream

Lexical

analyzer Token

definitions

3. ASSESSMENT AND CONCLUSIONS

Now that Jackson’'s problem frames have been eltdzbrin
pattern form, we can assess just how their expmesss patterns
has helped us understand and use problem framesin®iguing
question is the similarities and differences betwg@oblem
frames and patterns. On face value, the two hauehmnin
common. They are both based on a structural deasifn and
require decomposition or abstraction of aspecthefproblem at
hand. They both require selection, fitting and riptetation of a
reference structure (a pattern or problem framegeCitted, they
both dictate a highly specific process (a ‘microtmoe’). And
both of them can be combined, with parts that ceerlap and
other parts that must remain separate. Howeveenwte look
closely, we can also see a number of importantediffces.
Problem frames produce descriptions, whereas patteroduce
architecture or code structure. Problem framesap@own (they
have their roots in formal specification) whereaattgrns are
bottom-up (they are rooted in practitioner experén and
emergent design. A problem frame is a templatedhainges and
describes phenomena in the problem space, whergatern
maps forces to a solution in the solution spaced Ainally,
problem frames are method-centric (frames are slihate to
methodology), whereas patterns are artifact/assgric—they
focus on particular designs (i.e. the patterns)thonde designs are
useful across a wide range of development methgaesdp from
UML Design Up Front to Extreme Agile Hacking [10].

Patterns are about designing things. The factweaput problem
frames into pattern form demonstrates that whempleewrite
specifications, they are designing too—they areigiésg the
overall system, not its internal structure. And lhproblem
frames are firmly rooted in the problem space, $othey also
suggest solutions. When solving translation probldétnseems
reasonable to check out patterns about how to aétsers, or to
consider the Command pattern when designing aisolub a
Commanded Behavior problem (or most frames invgharuser-
operator domain). Required Behavior problems sugges
investigating event and event handling patternsjtefi state
machines, or reactive system design patterns. Aretyereport
patterns come to mind when solving the Commandfdriration

X

Output
stream

X

Fiaure 25: Transformation nroblem describtion variant.

Frame variant. Likewise, when designing a Model diom
inspiration can come from considering the naturehat model
and various patterns that may apply based on itessary
behavior and intrinsic structure. So it appears phablem frames
usefully suggest patterns. But the link seems tesLo

Connections between problem frame concerns andnfalte
design pattern solutions certainly exist. It sedmiful to view
framing as one way of guiding the exploration faotgmtial
solutions. However, stronger connections betweamdrconcerns
and architectural or design patterns, other tharsehwe have
mentioned, don’t appear so obvious. This may beumse certain
design patterns resolve tensions that are intrittsithie solution,
not the problem. Design patterns as a whole needetbetter
organized before more connections can become clear.

One recurring question that arises from our viewpodblem
frames as patterns is how they help the analysteifsgly, the
question of how people are supposed to use prolfiame
patterns. We suggest that as you look at a prolbebre solved
ask, “Is there a workpiece here? Or a transformatioa required
behavior? What problem frames seem to predominate®!’ll
apply a frame and see whether it fits. And thislée® meaningful
questions to ask. As you explore a problem, yod @idcover
ancillary problems and decompose larger problents sub-
problems. You'll try to write requirements. While a
phenomenological world view can lead to formal digsions of
events, states, statements about truths and cadseffects, we
haven't found ourselves “going more formal” justchese we
know problem frames. Instead, we find that knowprgblem
frames leads us to ask deeper questions and digting
requirements from assertions, wishes, and techgalogstraints.
Framing also helps us spot the need for developiog rigorous
state models, event descriptions or behaviorakrule

We find that analysts steeped in other forms of lyam
descriptions and models find problem frames tontberésting but
not immediately applicable. Problem framing doessgem to
supplant other analysis activites nor do phenoruogical
descriptions replace other analysis artifacts. gragon of
problem framing with other analysis activities neeflirther
investigation. We hope that by writing about probléames as
patterns, we can expose problem frames to a widdieace who
in turn integrate framing activities with their eth analysis
activities and report on their experiences.

4. GLOSSARY

Problem Frames have their own specialized term@olblere’s a
brief illustrated glossary, shamelessly culled iiadily from the
Problem Frames book [2].

Biddable Domain—a domain that a Machine can tell what to do
(although the outcome of such a mutation is notessarily
reliable or predictable). ‘B’ marks a biddable dama

User

Causal Domain—a domain that a Machine can tell what to do,
and where the outcome is perfectly predictablenfatks a causal
domain.

Causal Domain
[c

Designed Domain—a realization of a description or model that
the developer is free to design. A box with a gnglripe is a
designed domain.

Designed Domain

Domain—a collection of phenomena. A domain is designated
a box.

Domain

Domain Dependency-two domains may be linked by shared
phenomena.

Entity—an individual phenomenon that persists over time,
changing properties and state. In an email appicagmails or
mail folders and their contents are entities.

Event—an individual phenomenon representing an indivsibl
instantaneous happening taking place at some potithe. In an
email client problem, “email sent” or “email reced are events.

Frame Concern—an argument (or argument schema) that
describes how the Machine Domain must interact vather
Domains within a Problem Frame if the specificatemturately
fits that Frame.

Given Domain—a domain that is given or fixed in a particular
problem, that is, it is not subject to changeg(ipie-established).

Individual Phenomena—individual elements of a domain that
may be observed. Classified into states, truthd rales.

Interface—a connection among domains consisting of
phenomena that they share. On a frame diagramnmection is
represented by a solid line between two domains.

Control Machine Causal Domain

c

Machine (or Machine Domain—the software program you are
specifying. A machine is drawn as a box with dougtigpes.

Control Machine

Lexical Domain—a domain that is a set of data with a Problem Frames reading and study group | (Rebgmudyipated
in. Finally, we'd like to acknowledge Michael Jaoksfor his
contribution of problem frames to the software camity.

deterministic structure. An ‘X’ marks a lexical dam.

Lexical Domain

X

Phenomenon—thing that may be observed; a part or quality of a
domain. Classified into Individual Phenomena anthi&ships.

Problem Frame—a set of Domains and Interconnections that
describes a recurring problem structure.

Requirement—a condition on one or more domains of the
problem context that the machine must bring abfoutexample a
stipulated correspondence between an informatisplaly value
and the reality it concerns. A dashed oval is aireqent.

e T
- ~
e N
4 \

/ .
'\ A requirement)
/

~ —~

Role—a relation between an event and individuals thetigigate
in it such as Sendmail(Emailxxx,Outbox).

State—a relationship phenomenon (or predicate) among dwo
more individual phenomena that can be true at one and false
at another. So, for example Temperature(myOffi&, i3 a state
as is Sent(Emailxxx).

Truth— a relationship among two or more individuals thetroot
change that is either true at all times or falseakttimes.
LaterThan(“timestamp: 9.9.2007”, “timestamp: 9.120 is a
truth just as GreaterThan(5,3) is.

Value—an immutable individual phenomenon existing outsitle
time and space—such as numbers or characters.

5. ACKNOWLEDGMENTS

Many thanks are due to Susan Kurian, who ably strejgld this
paper for PLoP 2006. Thanks also to John Schwantzhfs
discussion of meaningful frame questions with Rebet¢o Jim
Holt and Nathan Ward for their development of a kirg frame
example with Rebecca, and to Nathan for his indgigading of a

6.
[1]
(2]
(3]

[4]
(5]

[6]

[7]

(8]

9]

REFERENCES
Software Requirements and Specifications, Michaeksgon,
Addison-Wesley, 1995.

Problem Frames: Analyzing and structuring software
development problems, Michael Jackson, Addison-&yesl|
2001.

http://www.ferg.org/pfa/ —A website devoted to pierin
frames and their application.

http://mcs.open.ac.uk/mj665/ —Jackson’s home page.

http://www.wirfs-brock.com/rebeccasblog.html —Retegs
Blog (including some entries about problem framing)

http://homepage.mac.com/jon_hall/Academic/IWAAPFQ6/
—The 2nd International Workshop on Advances and
Applications of Problem Frames.

http://csdl2.computer.org/comp/proceedings/re/20025/0
0/11250306.pdf —Geographic Frames, Maria Nelson,
Donald Cowan, and Paolo Alencar, Proceedings ofFiftle
International Symposium on Requirements Engineering
2001.

http://csdl2.computer.org/comp/proceedings/re/20980/0
0/19800371.pdf —Introducing Abuse Frames for Anialys
Security Threats, Luncheng Lin, Bashar NuseibemrdDda
Ince, Michael Jackson, Jonathon Moffett; Proceeslofghe
Eleventh International Symposium on Requirements
Engineering, 2003.

http://mcs.open.ac.uk/mj665/ArchDrvn.pdf —Architeet-
driven Problem Decomposition Lucia Rapanotti, Jor&il,
Michael Jackson and Bashar Nuseibeh; Proceediniie of
2004 International Conference on Requirements
Engineering.

[10] http://www.xpuniverse.com/2001/pdfs/Edu02.pdf —

Adapting Problem Frames to eXtreme Programmingedam
Tomayko.

