
The Application Monitor Aspect Pattern
Roberta Coelho

Pontifical Catholic University of
Rio de Janeiro (PUC-Rio)

Rio de Janeiro, Brazil

roberta@inf.puc-rio.br

Walfredo Cirne
Universidade Federal de

Campina Grande (UFCG)
Laboratório de Sistemas Distribuídos

walfredo@dsc.ufcg.edu.br

Ayla Dantas
Universidade Federal de

Campina Grande (UFCG)
Laboratório de Sistemas Distribuídos

ayla@dsc.ufcg.edu.br

Arndt von Staa

Pontifical Catholic University of
Rio de Janeiro (PUC-Rio)

Rio de Janeiro, Brazil

arndt@inf.puc-rio.br

Uirá Kulesza
Pontifical Catholic University of

Rio de Janeiro (PUC-Rio)
Rio de Janeiro, Brazil

uira@inf.puc-rio.br

Carlos Lucena

Pontifical Catholic University of
Rio de Janeiro (PUC-Rio)

Rio de Janeiro, Brazil

lucena@inf.puc-rio.br

ABSTRACT

Modern applications are typically complex, multithreaded,
distributed, and often should provide real-time responses and
small-footprint. Due to such characteristics, most often, it is hard
to understand the behavior of such systems and consequently
detect the root causes of performance or reliability problems. In
order to collect information about system’s runtime behavior -
operations’ performance, internal threads status - the system
developer is required to instrument the target application (and
sometimes also its execution platform). Such monitoring code
which allows the developer to reason about the code execution is
not localized in a single application module; it must be included
in many modules. As a consequence, the monitoring concern
tends to be scattered across multiple application/platform modules
and tangled with other application concerns. The Application
Monitor pattern supports the separate definition of monitoring-
related functionalities concerns through the use of aspect-oriented
programming. It decouples such concerns from the
implementation of application-specific concerns, which in turn
improves the system reusability and maintainability.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Object-oriented design

methods.

General Terms

Measurement, Performance, Design.

Keywords

Dynamic Analysis, Monitoring, Aspect-Oriented Programming.

1. INTRODUCTION
This document contains the description of the design pattern
called Application Monitor Pattern discussed on a Writers
Workshop at PLoP 2006. Its structure is based on the pattern
structure proposed by Buschmann [10].

2. THE PATTERN

2.1 Example
Consider a system for Book Trading, which is from herein
referred to as Book Trading (BT) system. The BT system follows
a service oriented architecture in which system functionalities are
structured as a set of loosely coupled modules called services. The
two main services that encompasses BT system are the following:

• Book Seller Service: deals with the book-registration
requests submitted to the BT system. This service is
accessed by users interested in selling books. It provides a
book catalog in which book profiles can be managed. A
book profile is a n-tuple which comprises a book title, a
price and a book seller’s identification.

• Book Buyer Service: this service receives the book-buying
requests submitted to BT system. The Book Buyer Service
receives a book title from the user and interacts with the
Book Seller Service in order to find out the cheapest book
and then start the selling process.

As soon as a user logs in the BT System a thread of
BookSeller service and a thread of BookBuyer service are created.
As a consequence, each request to the BookSeller service or to the
BookBuyer service is executed in separate thread – created per
each user. Figure 1 depicts the sequence diagrams of book-
registration and book-buying requests.

According to Figure 1(a), the BookBuyer service asks the
BookSeller service about the available book offers for a specified
book title (message 2). Than, BookSeller service searches its
catalogue, looking for the requested book (message 3). If there are
available books, the BookSeller returns a list of book profiles
(message 4). Otherwise, the BookSeller will return a message
informing the BookBuyer service that the book is not available -
this exceptional message is not represented in Figure 1 since it
only illustrates a successful scenario.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLoP '06, October 21–23, 2006, Portland, OR, USA
Copyright 2006 ACM 978-1-60558-151-4/06/10…$5.00.

The BookBuyer service receives a set of book profiles from
BookSeller service and chooses the one with the lowest price (the
best book offer) (message 5). Then, it informs the best offer to the
user, who sends a “purchase” request (message 7). When the
BookBuyer service receives the “purchase” request, it asks the
BookSeller service to update its catalogue – remove the book
profile of the book that was just sold – (message 8) and notifies
the user that the book sale was completed (message 10).

Along the program execution a variety of information can be
harvested, concerning the state of the program modules, the
memory usage, and the main operations’ performance – which can
not be known until runtime. This information can be used to
influence the program behavior at runtime, or in a subsequent
offline analysis whose result can be used to improve the program
on later runs.

During the development of the BT system some questions
arose: What’s the cost of each operation? What is the status of
each thread (ex: running, waiting or dead) at a specific moment
during system execution?

The answer of the first question enables the developer to
discover the root cause of application poor performance. On the
other hand, the answer of the second one enables to diagnose
deadlocks and also to test a system based on multiple threads - as
tests are based on assertions, in order to test a multi-threaded
operation, the developer usually needs to know the application
threads state before performing certain verifications.

In order to collect such information the developer will need
to include monitoring code at specific places of application code.

Figure 1 shows the main classes of BT system and some examples
of where the monitoring code should be inserted in order to
collect the information that allows the developer to answer the
two questions stated above.

The object-oriented design and implementation of the
monitoring concern are intrusive. Figure 2 illustrates how the
monitoring-related code is tangled and scattered through the basic
application classes. The methods affected by the performance-
monitoring and thread-monitoring code are shadowed in the
figure. The notes depicted in Figure 2 shows some code that
should to be included in each method in order to keep track of
methods performance and thread status, respectively.

2.2 Context
When collecting dynamic information about program behavior in
order to perform offline analysis or to use this information to
make some decision during runtime.

2.3 Problem
How to monitor the behavior of complex (possibly legacy)
applications? The following forces are associated with this
problem:

• Modern applications are typically complex, multithreaded,
distributed, and often should provide real-time responses and
small-footprint requirements. Due to such characteristics,
most often, it is hard to understand the behavior of such
systems and consequently detect the root causes of
performance or reliability problems.

Figure 1. Sequence diagrams of book trading related transactions. Figure 1(a) illustrates the sequence diagram of a book-

registration request, and Figure 1(b) depicts the sequence diagram of a book-buying request.

• Trying to understand or detect performance and reliability
problems in such applications requires the developer to
include additional instrumentation code. Such “monitoring”
code is not localized in a single component; it is often spread
over several application elements. As a consequence, the
monitoring code becomes tangled with application code.

• The monitoring code should be defined in a way that
facilitates its reusability and maintainability. The developer
does not want to copy and paste the same code over several
application components, since it will impairs the
instrumentation code maintainability.

• It should be easy to evolve the application being monitored as
well as the code responsible for monitoring the application.

• The monitoring code does not contribute with the application
purpose, but consumes computational resources. Thus, the
developer needs an easy way of removing the instrumentation
code.

• Sometimes the components to be monitored may be part of
third party library, or legacy application of which they do not
have access to the source code. The solution should deal with
this situation.

2.4 Solution
Define an application monitor responsible for (i) gathering

information about an application property (i.e performance,
threads status) from a set of application components, and (ii)
making such information available for a runtime use or a
subsequent off-line analysis.

The application monitor comprises the monitoring code
which, on the other hand, would be scattered across multiple
platform modules and tangled with other application concerns. In
order to make it possible, the application monitor is built upon the
facilities of Aspect Oriented Software Development (AOSD)
[7,10]. AOSD has been proposed as a paradigm for improving
separation of concerns in software design and implementation. It
proposes a new abstraction, called Aspect , with new composition
mechanisms which support the modularization of crosscutting

concerns. The aspect abstraction aims at encapsulating concerns
that crosscut several system modules. Since the object monitor has
a crosscutting nature, it is addressed in this pattern by an aspect.

Thus, the object monitor is able to crosscut specific classes
execution points – e.g. method invocations, constructors calls -
and add an extra code in order to store monitoring information in
a file or database for a subsequent off-line analysis, or in a data
structure available in memory – which can be used to in program
runtime decisions.

2.5 Structure
Figure 4 illustrates the structure of the Application Monitor
pattern. In order to represent the new elements and composition
mechanisms of AOP, we defined simple extensions to the
standard UML class and sequence diagrams. In the former, an
aspect is represented using the <<aspect>> stereotype in a class
element, and the crosscutting relation between aspects and classes
are represented by means of a dependency relationship with the
<<crosscuts>> stereotype. In the latter, an aspect is represented by
a diamond and its pointcuts are represented by circles in the
intercepted objects’ lifeline (see Figure 5) – this notation was
inspired by the one proposed by [3].

The Application Monitor pattern has four participants:

• Application Monitor : Keeps track of specific events
that occur along application execution. In order to do
that it uses a Monitoring-Data repository in which it
includes monitoring data related to such events. The
events of interest are specified by means of pointcuts.

• Monitoring Target: The element whose
methods are under monitoring.

• Monitoring-Data: Specifies the data that is collected
by the Application Monitor. The kind of such data
varies according to the purpose of the monitoring task,
which can be, for instance: (i) to check the operations
performance; (ii) to detect bottle necks in the system;
(iii) to track the memory usage ; and (iv) for testing
purposes of multi-threaded applications.

BookSellerService

BookBuyerService

Book Catalogue

+ include ()
+ remove()

+ update()
…

Legend:

 method with some monitoring code to track threads status.

+ registerBook()
+ removeFromCatalogue(infor
+ search()
+ run()
+ wait()

method with some monitoring to track operations Performance.

1 1
1 1

+ lookForBook()
+ chooseTheBestOffer ()
+ informBestOffer()
+ buyBook()
+ informSellingCode ()
+ run()
+ wait()

public void search (String title){

 long start = getTime();

 // perform request

 ...
 long timeConsumed = start - getTime();

 //store method performance

 ...

}

Figure 2. The Object-Oriented design of Book Trading system.

• Monitoring- Data Repository: Stores a collection of
Monitoring Data. It is only accessed by the monitor
aspect in order to guarantee that the monitoring data
will not be corrupted by another application component.

As depicted in Figure 4, the Application Monitor aspect has
four parts: (i) one ore more references to Monitoring Data
Repositories; (ii) a set of pointcuts that specify the points of
execution that should be monitored (pointcut1 and pointcut2) ;
(iii) a set of advices that contains the code that will be inserted in
such points of execution in order to collect and store monitoring
data (the around and the before advices - pointcut1_() and
_pointcut2() respectively); and finally, (iv) a set of methods
responsible for exposing the monitoring data, making it available
to other system components (getAllMonitoringData() and
getMonitoringDataByKey()).

2.6 Dynamics
The following scenarios depict the dynamic behavior of the

Application Monitor pattern.

2.6.1 Scenario I – Collecting monitoring data.
This scenario is illustrated in Figure 5 which presents the
sequence of method calls performed when the Application
Monitor aspect collects monitoring information at specific points
in the execution flow of a Source. When the operation to be
monitored is called (step 1), the Application Monitor aspect
intercepts its execution with a before, after or around advice (step
2). After that, it collects (or calculates) the data to be monitored
(step 3) (i.e the operations performance). Then, the Application
Monitor finds a key which uniquely identifies the Source

operation (i.e the signature of the method being monitored) or the
Source itself (step 4). Finally, it creates the monitoring data and
stores it in the repository (steps 5 and 6).

2.6.2 Scenario II – Using the monitoring data
This scenario is illustrated in Figure 6 that presents the sequence
of method calls performed when a component gets any monitoring
information. Since the Application Monitor is the only component
that has direct access to the Monitoring Data Repositories (step
2), any access to the monitoring data must be mediated by the
Application Monitor. The Application Monitor regulates the
access to data repositories. By default the application components
only have reading access to the monitoring data, through a set of
accessor methods available in Application Monitor interface (step
1).

2.7 Solved Example
Figure 7 illustrates the Application Monitor pattern instantiation
in the context of the BT system. Note that, differently from Figure
1, monitoring concerns are modularized here in the Application
Monitor aspect. For the sake of simplicity, Figure 7 omits some
auxiliary classes which support book trading transactions (i.e
Book).

The Application Monitor aspect crosscuts two classes
(BookBuyerService and BookSellerService) whose methods
should be monitored for one of the following reasons: (i) the
tracking of operations performance or (ii) the tracking of
application thread status. The way the Application Monitor aspect
affects such classes essentially follows two different patterns
detailed in sequence diagrams illustrated in Figures 8 and 9.

Figure 3. The Static View of the Application Monitor Aspect Pattern.

Figure 8 illustrates a scenario in which the Application
Monitor aspect intercepts a method from BookSeller object (steps
1 and 2) in order to calculate (step 3) and store the methods
performance (steps 4, 5, 6).

Figure 9 illustrates a scenario in which the Application
Monitor aspect intercepts a method from BookSeller object (steps
1 and 2) in order to collect and store information about the status
of the Book Seller object.

2.8 Consequences
+ The application classes do not need to be aware that they

are monitored. It eases the evolution of the monitoring code and
also of the application.

+ Different application properties can be monitored without
affecting the application code.

+ The monitoring-related code is entirely separated from the
other concerns implemented in the application. It contributes to
increase maintainability and reusability of the monitoring code.

+ This pattern can monitor components of third-party
libraries or legacy systems whose source code is not available,
since many aspect-oriented languages (such as AspectJ) support
bytecode weaving. In this case, only the .class files are required to
perform the weaving.

- This pattern is based on the use of aspects which is not a
well known concept by many software developers.

- The proposed pattern may impose a burden on efficiency
(due to characteristics of AOP languages) when compared to other
non-modularized monitoring solutions. However, with the
evolution of AOP language, this burden is becoming shorter.

2.9 Implementation
We present some guidelines for implementing the Application
Monitor pattern. We provide AspectJ [1,9] code fragments to
illustrate a possible codification of the pattern, describing
implementation details in the context of BT system example.
Although we use AspectJ, the Application Monitor pattern can be

:Application

Monitor

2. _monitoredOps_() 1. operation()

obj :Monitoring

Data :Source

new()

6. put(dataKey,obj)

3. data=process()

4. datakey=findKey()

:Monitoring
Data

Repository

Legend:

 join point

 object

 aspect

Figure 5. The monitoring task.

:Application

Monitor

1.getMonitoringData(dataKey)

 :Component

2.obj= get(dataKey)

:Monitoring
Data

Repository

Legend:

 join point

 object

 aspect

Figure 6. The monitoring data is made available by the Application Monitor and can be accessed by any application

component.

specified using other aspect-oriented programming languages
following the guidelines presented below.

2.9.1 Step1: Define the Application Monitor aspect
The partial code of Application Monitor aspect presented below
specifies two hash tables, the performancePerOperationRep (line
4) and the threadStatusRep (line 7), which represents the
Monitoring Data Repositories in which the Application Monitor
will store the Monitoring Data related to operations’ performance
and threads status, respectively.

1. public aspect ApplicationMonitor {
2.
3. //Monitoring Data Repository
4. private Map operationPerfRep = new Hashtable();
5.
6. // Monitoring Data Repository
7. private Map threadStatusRep = new Hashtable();

 … �
}

The repositories are declared as private, which means that
“they are private to the aspect”. Only code in the aspect can access
these data structures. This design decision avoids a monitoring-
data corruption by other application component. The
ApplicationMonitor aspect should be a singleton [8], since it
needs to crosscut all system classes to collect monitoring data. In
the current version of AspectJ, each aspect is singleton by default,
which means the scope of each aspect is the whole system.

2.9.2 Step2: Define the types of information to be

monitored

We need to specify what kind of data will be collected by the
Application Monitor. In our example, we are interested in

collecting two sorts of information: (i) the performance of
operations; and (ii) the thread status of Book Sellers and Book
Buyers - which are subclasses of Java Thread class. Bellow we
show partial codes that show how these sorts of data are
represented in this example.

/* Monitoring Data for tracking operations
performance */
public class OperationPerf {

 private long time = 0;
 public OperationPerf (long pTime) {
 time = pTime;
 }
 public long getValue(){
 return time;
 }
 ...
}

/* Monitoring Data for tracking Threads status */
public class ThreadStatus {
 public static final int STARTED = 1;
 public static final int RUNNING = 2;
 public static final int WAITING = 3;
 public static final int DEAD = 4;
 int currentStatus = 0;

 public int getValue(){
 return currentStatus;
 }
}

2.9.3 Step3: Exclude Application Monitor aspect

from being monitored.
At this step we want to restrain the monitoring aspect from
monitoring himself – this step was inspired in [6]. This restriction
is useful, for instance, in scenarios where the developer defines a

BookSellerService

BookBuyerService

BookCatalogue

ApplicationMonitor

<<aspect>>

+ bookTradingRelatedOperations_ ()

+ threadRunOperation();
+ threadRunOperation_();
+ getOperationPerformanceByKey ()
+ getAllOperationsPerformance ()

+ getThreadStatusByKey ()

+ allThreadsStatus()

ThreadStatus
 Repository

+ getAllMonitoringData()
+ put(key, ThreadStatuds)

+ get(key)

<<crosscuts>>

Book Trading System
OperationPerformance

- long consumedTime

ThreadStatus

+ int RUNNING =1
+ int WAITING=2
+ int DEAD=3
- int currentStatus

+ registerBook()
+ removeFromCatalogue()
+ search()
+ run()
+ wait()

+ lookForBook()
+ chooseTheBestOffer ()
+ informBestOffer()
+ buyBook()
+ informSellingCode ()
+ run()
+ wait()

OperationPerformance
 Repository

<<crosscuts>>

Figure 7. The Application Monitor Pattern for the EC’s User Agent.

general pointcut expression to define the points of execution to be
monitored:

 pointcut methodExecutions():

 execution(* *..*.*(..));

 The point cut expression showed above intercepts all the
methods executions of all system components. The pointcut
expression below, named withinMonitoring(), restrains aspects
from acting on themselves, in the following manner:

 pointcut withinMonitoring():

 within(booktrading.monitoring..*);

 This pointcut relies on the fact that all the monitoring-related
code is stored in specific packages. It intercepts all the
components defined in the package booktrading.monitoring and
its sub-packages. Using this pointcut expression, a new way of
implementing the former pointcut would be:

 pointcut methodExecutions():

 execution(* *..*.*(..)) && !withinMonitoring();

 However, such restriction is not be desired in every
circumstance. Sometimes it should be useful to measure the effect
of the monitoring aspect itself in order to intentionally remove
such effect from timing calculations (offline analysis). On the
other hand, when the monitoring aspect is part of the system
architecture and executes in production environment - constantly
collecting performance data - we must consider the
instrumentation time in our time calculations.

2.9.4 Step 4: Specify the points of application

execution that should be monitored

From our point of view, classes should not be aware of the
monitoring related tasks. The execution points that should be
affected by monitoring-related code in BT system are shown in
Figure 2. The partial code of ApplicationMonitor aspect listed
bellow details how each one of these execution points should be
specified in AspectJ language. ApplicationMonitor aspect
contains a set of pointcuts for the methods that should be
monitored for the purpose of collecting performance or thread
lifecycle information.

1. public aspect ApplicationMonitor {

2. ...

8. //Set of joinpoints under performance checking

9. pointcut bookTradingRelatedOperations
(Object operation):

10. execution(* BookBuyer.*(..)) ||

11. execution(* BookSeller.*(..)) &&

12. this(operation);

13.

14. pointcut allBTSystemOperations(Object obj):

15. execution(* *..*.*(..))

16. && !withinMonitoring()&& this(obj);

17.

18. //Set of joinpoints thread status monitoring

24. pointcut threadIsRunnig (Object o):

25. execution(* BookSeller.run()) ||

26. execution(* BookBuyer.run()) && target(o);

27.

�

The pointcut bookTradingRelatedOperations() (lines 9-12)
intercepts all methods which performance should be tracked –
Figure 2 shows such methods inside a gray rectangle. The
pointcut allBTSystemOperations()(lines 14-16) intercept the
execution of all application methods, except the methods related
to the monitoring concern. In line 24, one of the point cuts
responsible for monitoring application’s threads status was
defined. This pointcut intercepts the execution of the run()
method from BookSeller and BookBuyer components. The other
thread-related monitoring point cuts that should track the other
thread status should be similar to the one defined above.

2.9.5 Step 5: Store the monitoring data.

Once the Application Monitor has intercepted the specific points
in the program that should be monitored, it is necessary to collect
the monitoring information on such points and store them in one
of the Monitoring Data Repositories defined in step 1, according
to the monitoring purpose (performance or thread status tracking).
The advice code associated to each pointcut will be responsible
for this task. The list bellow shows the advices associated with
each one of the pointcuts defined in the step 4.

28. // Advice that stores the performance
29. // data for each monitored operation.
30.void around(): bookTradingRelatedOperations() {
31. OperationPerf opTime = null;
32. long start = getTime();
33. proceed();
34. long execTime = getTime() - start;
35. opTime = new OperationPerf(execTime);
36. String key;
37. key=thisJoinPointStaticPart.getSignature().
 getName();
40. Vector times = operationPerfRep.get(key);
41. if(times == null){
42. times = new Vector();
43. }
44. times.add(pTime);
45. operationPerfRep.put(key,times);
46. }
47. //Advice that stores the status of each
 system thread
48.before(Object o):threadIsRunnig(){
49. ThreadStatus ts = null;
50. ts = new ThreadStatus(ThreadStatus.RUNNING);
51. threadStatusRep.put(getThreadID(o), ts);
52.}
53.
54. //Advice that stores the status of each
 system thread
55.after(Object o):threadIsRunnig(){
56. ThreadStatus ts = null;
57. ts = new ThreadStatus (ThreadStatus.DEAD);
58. threadStatusRep.put(getThreadID(o), ts);
59.}
60.
61. //Auxiliary method for getting the thread id
62. private long getThreadID(Thread t){
63. return new Long (t.hashCode());
64. // In Java 5.0 would be:
65. // return new Long (t.getID());
66.}

�

The threadStatusRep hash table defined in step 1 maps a thread id
to one instance of the ThreadStatus class (lines 51 and 58) which
corresponds to the last collected thread status. Hence, when the
status of a system thread changes (i.e when a thread dies), its entry
in the hash table is overwritten with the new thread status.
However, in order to calculate the performance of an specific
method we should not store only the last operation performance,
but all the operation performances calculated along the system
execution. As a consequence, the performancePerOperationRep
hash table, defined in the step 1, maps a monitored operation
signature to a vector of OperationPerf class instances (lines 40-
45).

2.9.6 Step 6: Expose the Monitoring Data.

Once the Application Monitor has collected the performance and
threads’ status data along application execution, there is a variety
of options of how to make this information available. The easiest
way is to write the information in a log file. Another option is to
store it in a database for off-line analysis. Moreover, the

Application Monitor should provide direct access to the
monitoring data. In order to provide such direct access, a set of
accessor methods should be defined in the Application Monitor
aspect as detailed bellow.

67.//A set of methods for exposing monitoring data
68. public IOperationPerformance
69. OperationPerformanceByKey (String key){
70. return operationPerfRep.get(key)
71. }
72.
73. public Map getAllOperationsPerformance (){
74. return generateACopy(operationPerfRep);
75. }
76.
77. public ThreadStatus
78. getThreadStatusByKey (long threadID){
79. return threadStatusRep.get(new Long(threadID))
80. }
81. public Map getAllThreadsStatus(){
82. return generateACopy(threadStatusRep);
83. }

�

:Application
Monitor

2. _bookTradingRelatedOperations_()

obj:Operation
Performance :BookSellerService

5. new (opduration)

6.put(opSignature,obj)

3. opDuration= calcTime()

4. opSignature=findKey()

Legend:

 join point

 object

 aspect

:Operation
Performance
Repository

 _beforeAdvice

 afterAdvice_

 aroundAdvice

Figure 8. Application Monitor tracking the performance of an operation.

:Application

Monitor

2._threadRunOperation()

obj:ThreadStatus
:Book BuyerService

 4. new (RUNNIG_STATE)

:ThreadStatus
Repository

 5. put(threadID,obj)

3. threadID=findKey()

Legend:

 join point

 object

 aspect

 _beforeAdvice

 afterAdvice_

 aroundAdvice

1. run()

 Figure 9. The Application Monitor tracking the thread status of a BookBuyer Service.

The above code illustrates is a very simple way of reporting
monitoring information during runtime. More sophisticated
implementations could be defined, for example:

• The Application Monitor aspect should provide a
notification (publish/subscribe) service. This would
allow application components register interest in some
particular condition (e.g. the number of running threads
greater than 50).

• The Application Monitor aspect should enable the
integration of the monitored application with a
management tool. Management tools, such as the Java
Management Extensions (JMX), provides graphical user
interfaces to show the monitoring data, required that the
application under monitoring implements a specific
interface. The Application Monitor pattern should make
application elements implement required interfaces
through the use of intertype declarations.

2.9.7 Step 7: How to Use the Monitoring Data.

Once the monitoring information was collected and is accessible
through the accessor methods defined in the Application Monitor
interface (detailed previously), any other component can access
the information according to the code showed bellow.

The Application Monitor aspect could be the one responsible
for analyzing the monitoring data and generating reports.
However, in our example we delegated this task to another
component. We defined the PerformanceReporter class which
generates a set of reports based on the performance information
collected by the Application Monitor. We used the aspectOf()
static method (line 5) available in all AspectJ aspects. The
aspectOf() method returns the singleton instance of an aspect,
which can be used by any class to call the public methods from an
aspect.

1.public class PerformanceReporter {
2.
3. public void calcMaxPerformance (String key){
4. Map perfs;
5. perf=ApplicationMonitor.aspectOf().
 getOperationPerformance(key);
6. //analyze all operation performances
7. // and generate a report.
 ...
 }

2.10 Related Patterns
Our thanks to ACM SIGCHI for allowing us to modify templates
they had developed.

• Composite Design Pattern [8]: The Composite Design
Pattern may be used for tracking Monitoring-Data nested
within another Monitoring-Data. The Composite pattern
describes part-whole hierarchies where a composite object is
comprised of numerous of pieces, all of which are treated as
logically equivalent. In this pattern, each Monitoring-Data
element should hold other Monitoring-Data elements
(children) and the Application Monitor operations
responsible for collecting and storing Monitoring-Data
elements should be updated to address this new scenario.

• Singleton [8]: The Application Monitor element is based on
the Singleton pattern, which provides a single instance to an
object. This aspect is declared to be singleton in order to
enable its scope to be the whole system, and as a result the
aspect can crosscut all system classes.

2.11 Known Uses
Implementation of Application Monitor pattern can be seen

in the following scenarios:

• A Unit Test Strategy for multi-agent systems detailed in [4],
was developed based on the use of Application Monitor
pattern. The Application Monitor pattern was implemented
in this system in order monitor the agents’ life cycle. Such
information was used during test time to enable the
execution of unit tests of a multi-agent system, using JUnit -
a well known OO unit testing framework. Details about the
implementation can be found in [4].

• Bodkin [2] uses AspectJ in a flexible and modular approach
to performance monitoring. The performance-monitoring
solutions proposed in his work rely on the use of an aspect
that contains a reference to a data structure in which the
monitoring data is stored. Such solution can also be seen as
an implementation of the Application Monitor pattern.

• Deters and Cytron [6] define aspects to harvests runtime
information about the application’s memory usage. This
information is used in subsequent offline analysis. The
purpose of this offline analysis was to optimize the program
memory usage in latter runs. The Probe aspect defined in
this work can be seen as a strict implementation of
Application Monitor pattern.

• The Application Monitor pattern was also observed in the
OurGrid project while applying a strategy to improve its
tests based on AOP [5]. As the OurGrid middleware is
multithreaded, it was difficult to provide deterministic tests
for it, because a better control of the application threads was
necessary for that. By using aspects, the tests could use
methods to wait until certain thread configurations before
performing assertions and that feature could be implemented
in a modularized way. There were aspects to monitor when
each thread changed its state.

3. ACKNOWLEDGMENTS

We would like to give special thanks to Nelly shepherd,for the
important comments, helping us to improve our pattern. Joe
Yoder and Linda Rinsing for their help to improve the pattern and
every member of our writers workshop for their pternent
comments. This work has been partially supported by CNPq
under grant No. 150678/2004-7 for Roberta de Souza Coelho and
grant No. 140252/2003-7 for Uirá Kulesza, and by FAPERJ under
grant No. E-26/151.493/2005 for Uirá. The authors are also
supported by the PRONEX Project under grant 7697102900, and
by ESSMA under grant 552068/2002-0 and by the art. 1st of
Decree number 3.800, of 04.20.2001.

4. REFERENCES
[1] AspectJ Team.The AspectJ Programming Guide. Available at:
eclipse.org/aspectj

[2] Bodkin, R., Performance monitoring with AspectJ – Parts I &
II, AOP@Work, Sep 2005. Available at: http://www-
128.ibm.com/developerworks/java/libra ry/j-aopwor
k12/index.html (Accessed 05/2006)

[3] Chavez, C. A Model-Driven Approach to Aspect-Oriented
Design. PhD Thesis, Computer Science Department, PUC-Rio,
April 2004, Rio de Janeiro, Brazil.

[4] Coelho, R., Kulesza, U., Staa, A., Lucena, C., Unit Testing in
Multi-agent Systems using Mock Agents and Aspects,
International Workshop on Software Engineering for Large-scale
Multi-Agent Systems (SELMAS), 2006.

[5] Dantas, A., Cirne, W., Saikoski, K. Using AOP to Bring a
Project Back in Shape : The OurGrid Case. Journal of the
Brazilian Computer Society. 2006.

[6] Deters, M. and Cytron, R., Introduction of Program
Instrumentation using Aspects, In: Proceedings of the OOPSLA
2001, Workshop on Advanced Separation of Concerns in Object-
Oriented Systems, 2001.

[7] Filman, R., Elrad, T., Clarke, S., Aksit, M. Aspect-
Oriented Software Development. Addison-Wesley, 2005.

[8] Gamma, E. et al. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[9] Kiczales, G. et al. An Overview of AspectJ. Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP’01), Budapest, Hungary, 2001.

[10] Kiczales, G. et al. Aspect-Oriented Programming. Proc. of
the European Conference on OO Programming - ECOOP’97,
LNCS 1241, Springer, Finland, June 1997.

[11] F. Buschmann, C. Jkel, R. Meunier, H. Rohnert, and
M.Stahl. Pattern-Oriented Software Architecture - A System of
Patterns. John Wiley & Sons, 1996 they had developed.

5. APPENDIX A - Aspect Terminology

This appendix contains a brief overview of the terminology
associated with aspect-oriented software development. We have

used the terminology described by Kiczales et al [7, 8] and
adopted by aspect-oriented programming languages, such as
AspectJ [1]. We present below the main terms that are usually
considered as a conceptual framework for aspect-orientated design
and programming.

Aspects. Aspects are modular units that aim to support improved
separation of crosscutting concerns. An aspect can affect, or
crosscut, one or more classes and/or objects in different ways. An
aspect can change the static structure (static crosscutting) or the
dynamics (dynamic crosscutting) of classes and objects. An aspect
is composed of internal attributes and methods, pointcuts, advices,
and inter-type declarations.

Join Points and Pointcuts. Join points are the elements that
specify how classes and aspects are related. Join points are well-
defined points in the dynamic execution of a system. Examples of
join points are method calls, method executions, exception
throwing and field sets and reads. Pointcuts are collections of join
points and may have name.

Advices. Advice is a special method-like construct attached to
pointcuts. Advices are dynamic crosscutting features since they
affect the dynamic behavior of classes or objects. There are
different kinds of advices: (i) before advices - run whenever a join
point is reached and before the actual computation proceeds; (ii)
after advices - run after the computation “under the join point”
finishes; (iii) around advices run whenever a join point is reached,
and has explicit control whether the computation under the join
point is allowed to run at all.

Inter-Type Declarations. Inter-type declarations either specify new
members (attributes or methods) to the classes to which the aspect
is attached, or change the inheritance relationship between
classes. Inter-type declarations are static crosscutting features
since they affect the static structure of components.

Weaving. Aspects are composed with classes by a process called
weaving. Weaver is the mechanism responsible for composing the
classes and aspects. Weaving can be performed either as a pre-
processing step at compile-time or as a dynamic step at runtime.

