
Two Executable Mobility Design Patterns: mfold
and mmap

Zara Field, Rick Dewar, Phil Trinder, Andre R. Du Bois

School of Mathematical and Computer Sciences,
Heriot-Watt University,

Riccarton, Edinburgh EH14 4AS, U.K.
zf1@macs.hw.ac.uk, rick@macs.hw.ac.uk,

trinder@macs.hw.ac.uk,dubois@ucpel.tche.br

Abstract. We present two mobility design patterns, mfold and mmap.
The patterns are equipped with corresponding coordination specifica-
tions, mobility skeletons, implemented on top of a host object-orientated
mobile code language, Voyager. The mobility skeletons provide a high-
level of abstraction and control all coordination aspects of the mobility
design patterns. We conclude by demonstrating, through a simple yet
concrete example, how the composite of these patterns and skeletons
can be used in the development of a practical distributed application, a
mobile meeting scheduler.

1 Introduction
Mobile design paradigms, including Mobile Agent, Remote Evaluation and Code-
on-Demand [AF98] and mobile code languages such as Telescript [Whi94], Aglets
[LO99], Voyager [Whe05] and JoCaml [FFMS] have the potential to increase the
efficiency and effectiveness of the development of complex and customizable, dis-
tributed systems. In spite of this, the greater flexibility offered by mobile com-
putation comes at additional costs. Designing and implementing mobile code
systems is more complex than systems based on the traditional client-server
paradigm, as complete mobility of cooperating applications forms large-scale,
loosely-coupled and complex distributed systems. Furthermore, mobile code sys-
tem development is not yet fully supported by sound technologies or method-
ological background.

Design patterns are a recognized means for promoting the use of mobile
code. Several mobile agent design patterns have already been proposed [SD98],
[LMSF04], [TOH99], [AL98], [ken97]. The problems shared by these previous
efforts are described in [KKPS98] and [Kue], which include lack of agreed defi-
nitions, duplicated efforts, complexity and the difficulty in identifying and spec-
ifying common abstractions above the level of single agents. Also, their docu-
mentation and classifications are often difficult to apply since their purposes are
not clearly stated or are unnecessarily related to a specific platform [LMSF04].
They also tend to focus on how to build mobility systems, and not why to use
computational mobility [Wei03].

This paper aims to go further and deeper in the explanation of mobility de-
sign patterns by identifying the real-world forces and contexts of the problems

that gave rise to the mfold and mmap patterns and corresponding skeletons.
Furthermore, the patterns will be described in a language, platform and domain
independent manner. The patterns are therefore macroarchitecture [EGV95] pat-
terns as they represent the outline of the system configuration and are not de-
pendent on any specific mobile code platform .

To enhance these mobility design patterns we also provide implementations of
corresponding mobility skeletons. Mobility skeletons, including mfold and mmap
have already been implemented in mHaskell, an extension of Haskell, as a set of
higher-order functions [DBTL05]. However, the mobility skeletons provided here
are implemented in the object-orientated mobile code language, Java Voyager.
Mobility skeletons use the template design method [EGV95] by setting up the
skeleton of the coordination algorithms for each mobility pattern. At this point,
the patterns are described at the microarchitecture layer [EGV95] that represents
the detail of the system configuration and mobile code behavior in the specific
platform, Voyager. A case study example is then used to illustrate the use and
composition of the patterns and skeletons.

The patterns are therefore presented at different layers, where each layer
refines the abstractions of the previous layer. Table 1 illustrates the abstrac-
tion relationship between mobility patterns, skeletons, mobile paradigms and a
mobile code API.

Abstract Level Mobility Patterns

High Level Mobility Skeletons

Medium Level Mobile Code Paradigms

Low Level Mobile Code API Primitives
Table 1. Abstraction Layers for Mobile Computation

2 Mobile Code in Distributed Information Processing

Distributed information processing tasks are traditionally performed with a cen-
tralized, sequential information processing methodology based on the client-
server architecture. Using this method, large amounts of unfiltered information
are often retrieved on the client, who then processes the information in order
to extract information of importance. This information shipping process is ef-
fective for simple, uniform procedures where access to information is restricted.
The system is typically ’closed’ in terms of what data can be accessed and how
it can be accessed as the sever stores a set of fixed procedures for accessing the
information.

Nowadays, customization and flexibility is key. People want to access infor-
mation in a variety of ways, from a variety of devices, ranging from desktop
PCs to handheld devices accessing the internet on a variety of connection modes
and speeds. Evidentally, distributing computation load, providing flexibility and

reducing network interactions would increase the efficiency and effectiveness of
distributed information processing applications in this dynamic and disparate
computing environment.

The application domains which may potentially benefit from mobile code ap-
plications and mobility patterns include Active Documents [CTZ02], Advanced
Telecommunications Services [MRK96], Remote Device Control and Configura-
tion, Network Management [BGP97] [BP98], Workflow Management and Co-
operation [TKI+97], [STO99], Active Networks [CH02], Grid Computing and
Global Computing [KBD02], [MR04] and Advanced E-Commerce [WT02], [KA03],
[HfL02].

Mobile agents [AF98] are regarded highly attractive for distributed informa-
tion proccessing applications [CPV97], [Lan98], [BGM+99]. A mobile agent is
executable code that can autonomously migrate from one location to another,
providing dynamic function shipping. In data collection problems where the data
is remotely located, mobile agents can be used to migrate to the remote location
to perform the data collection locally and reduce the data collected by either
filtering or compressing the results, realizing network bandwidth savings. Using
mobile agents for distributed information processing also addresses the problem
of network reliability. With mobile agents, the agent can continue execution at
one side of an unreliable link. When the network link is back up, the agent ei-
ther continues migrating to the next information source or returns home with
the results.

Remote Evaluation, a one-shot remote code mechanism that is more flexible
than proxies but less complicated than fully-general mobile agents, is another
promising mobile code paradigm for distributed information processing. Several
advantages arise from limiting movement to one hop. By avoiding some of the se-
curity issues introduced by code that can roam from site to site, infra-structural
support is simplified. Also, technical problems associated with maintaining and
updating program state during migration are avoided, without losing much func-
tionality, a view supported by [KGR02].

3 Mobility Design Patterns: mfold and mmap

3.1 Mobile Fold

1. Name mobile fold (mfold)
The name for the mfold pattern is inspired by the fold higher order func-
tion in functional languages that captures a common recursion pattern for
processing and reducing lists. In an mfold invocation, a mobile operation is
performed at each remote location within a given list. The results are sys-
tematically reduced at the remote locations and returned when the mobile
operation has been performed at the last location.

2. Problem

– How can a customizable (mobile) computation be used to migrate se-
quentially through a list of remote locations performing a task at each

location reducing the results (i.e. merging/filtering), while hiding the
migratory and coordination details from the user?

– How can a programmer force a customizable computation to migrate
sequentially through a list of remote locations, perform a distributed
processing task, while separating the migration and coordination details
from the task to be performed?

3. Motivating Scenario
You are designing a flexible and customizable distributed information sys-
tem. You need to implement an algorithm that will allow an arbitrary mobile
computation to migrate sequentially through a known set of locations (i.e. a
static itinerary), perform a task at each location and automatically process
the results (i.e. reduce them) before migrating to the next location. You re-
quire this distributed reducing of intermediate results, for example through
merging or filtering, to retain only those results of relevance to your re-
quirements and to reduce the amount of information to be transmitted. The
solution needs to be reliable against possible intermittent/low bandwidth
connections, but security of the transmitted data (i.e. results) is not a signif-
icant issue. If the transmitted data is sensitive and security is an issue, the
user should refer to the secure mfold pattern to be presented in a companion
paper.
The distributed task most suitable for this mobility pattern is distributed
information retrieval of selective yet non-sensitive information. For exam-
ple, e-commerce agents searching remote product sites for the best price or
network management agents collating management information from remote
network nodes. This pattern could also be used for distributed information
dispersal applications, for example, dynamic load balancing on computa-
tional grids as proposed in [BSH02] and [GS01]. Applications with a similar
structure could also benefit from the mfold pattern.

4. Forces
Consider the mfold pattern when:
– The application domain is characterised by decentralised resources, or

the system can be thought of a set of co-operating components. You want
to take this distributed data structure and apply a function to each of
its components.

– The mobile computation can be autonomous in the sense that it requires
no user intervention at each resource location and can autonomously
migrate to each location in its itinerary.

– You only want relevant information returned from your distributed process-
ing task. You want the mobile code to remotely process the results from
each resource location, for example by merging or filtering, before migrat-
ing to the next resource location, thus reducing bandwidth consumption
and the amount of data to be transmitted through the network. If the
amount of data to be transmitted is large, this is not the best pattern
and the user should refer to the mmap pattern.

– Using a client server model, the server would be overloaded with infor-
mation. Using the mfold pattern eliminates server overload and possible

bottlenecks by distributing computation load. It also reduces the number
of messages sent through the network as the mobile code carries inter-
mediate results with it as it migrates from location to location. Using
the traditional client server model would also restrict your distributed
processing tasks to those already predefined at the remote locations.

– You want the flexibility to perform any processing task on the locations,
i.e. a plug and play application.

– The user may want to use resources on a network with relatively narrow
bandwidth or on devices with intermitted access to a network. The user
may also have concerns with network reliability.

– You are not concerned with the security of the mobile code or the results
it obtains. If security is an issue, the user is directed to the secure mfold
pattern, to be presented in a companion paper.

– The remote locations are known in advance and all locations are known
to be stable. If not, the reliable mfold pattern, to be presented in a future
companion paper, should be used.

5. Solution
Mobile agents have been chosen as the mobile design paradigm most appro-
priate for the mfold mobility pattern and subsequent skeleton due to their
inherent advantages over the other mobile code paradigms (REV and COD).
Not only can the customizable and flexible mobile agent autonomously mi-
grate to the remote location of a required resource but they can also carry
intermediate data as they autonomously migrate to the next location, con-
serving bandwidth and overcoming latency. These interactions can also con-
tinue if the network connection goes down temporarily, increasing reliability.

The following platform independent models provide an abstract view of the
mfold pattern, including the entities, their relationships and the operations
that must be implemented in general.

The diagram in figure 1 illustrates the behaviour of the mfold pattern. The
mobile agent is created at host 1. It then migrates to host 2, where it re-
sumes execution and performs a task with the local resources. The mecha-
nisms for resuming execution of the agent at a new location differ slightly
with each mobile agent framework, although in object-orientated mobile lan-
guages they typically work on entry-point migration strategies based on call-
back methods which are invoked transparently as the result of arriving at a
new location. Once execution is complete, the mobile agent merges or filters
the results and then carries these intermediate results with it as it migrates
to the next location. Once again, it resumes execution and performs a task
with the local resources. It continues with this pattern until it reaches the
last host, where it performs the task for the last time and returns the result
to the initiating program residing on host 1.

The class diagram in figure 2 shows the simple structure of the mfold pattern
and the participants. In practice, the mfold class is initiated with a list of lo-

Fig. 1. Behaviour of mfold

cations and an ObjectTomfold, which encapsulates the task to be performed
at each location and the helper method to process the results.

-locations : String

mfold <<agent>>

List = mfold(locations,ObjectToFold)

ConcreteObjectTomfold

«interface»

ObjectTomfold

List = execute(currentLoc, prevResult)

List = execute(currentLoc, prevResult)

[]

Fig. 2. UML class diagram for mfold pattern

Participants
– mfold The mfold class contains the implementation for,

• the sequential coordination algorithm responsible for the agents tra-
versal along a list of locations,

• invoking a polymorphic List = execute(currentLoc, prevRes),
whereby each call to this method is performed on the current location
with the results from the previous location.

• handling the storage of the intermediate results within the mobile
agent.

• returning the result to the initiating program when the task has been
performed at the last location in the given list.

– ObjectTomfold
The ObjectTomfold interface, which must be implemented to use the pat-
tern, forces the programmer to implement a List = execute(currentLoc,

prevRes) method that conforms to the List = execute(currentLoc,
prevRes) used by the mfold class to invoke the polymorphic method at
each location.

– ConcreteObjectTomfold
This class contains the implementation for the List = execute(currentLoc,
prevRes) method to be performed at each location. It should contain
the implementation for the distributed information processing task and
helper methods that defines how newly obtained results should be com-
bined with the results from the previous location (i.e. how the results
should be reduced).

The UML sequence diagram in figure 3 further illustrates the mfold pattern
by showing the sequence of interactions involved. It shows how, after the
instantiation of an mfold agent with a list of locations and an ObjectTomfold
at location 1, the agent migrates to the first location in the list. It then
invokes the List = execute(currentLoc, prevRes), contained within the
ObjectTomfold and handles the reduction and storage of the intermediate
results before migrating to the next location. This continues until the last
location where the result is returned to the initiating program.

Location 1
 Location 2
 Location 3
 Location 4

migrate

migrate

migrate

ObjectTomfold.execute(currentLoc, prevRes)

ObjectTomfold.execute(currentLoc, prevRes)

ObjectTomfold.execute(currentLoc, prevRes)

return result List

mfold(locations,ObjectTomfold)

Fig. 3. Platform Independent Sequence Diagram for mfold Pattern

6. mfold Mobility Skeleton implemented in Voyager
The mobility patterns described in this paper are equipped with correspond-
ing mobility skeletons. Although these mobility skeletons have been imple-
mented in Voyager, Aglets and mHaskell, the following section describes the
specific implementation details for the mfold skeleton implemented in Voy-
ager.
The mobility skeleton for the mfold pattern using the mobile agent paradigm
and implemented in Voyager has the method signature,

List = mfold(ObjectTomfold obj, String[] lo)

and takes as its parameters, an ObjectTomfold obj that contains the distrib-
uted information processing and result reducing methods and a list of remote
locations lo. In a call to mfold, the obj is converted into a agent by Voy-
ager’s dynamic aggregation. It then migrates through the list of locations lo
performing a task, execute(currentLoc, prevRes) at each location. The
results from the task performed at each location are processed using the
helper method contained within the ObjectTomfold, with the final results
returned when all locations have been visited.
In practice, a callback method is responsible for invoking the execute(currentLoc,
prevRes) method when the agent arrives at each location, which subse-
quently reduces the results and initiates the agents movement to the next
location in the list lo(the itinerary). Incidentally, the use of a reflexive call-
back method, that is automatically called by the destination voyager dae-
mon, is the only means for coordinating Voyager agents and is hard-coded
into Voyager. When the agent has reached the last location in the list lo, it
returns home with the result.
The class diagram in figure 4 shows how the Voyager implementation re-
quires the additional interface classes IAgent that is provided by Voyager
and Imfold. The IAgent class contains the methods for creating mobile
agents (obtaining an agent facet), moving them to new locations and in-
voking the callback method. The Imfold class is required in Voyager as the
framework forces the use of interfaces for invoking the methods of mobile
agents.

-locations : String

mfold <<agent>>

List = mfold(locations,ObjectToFold)

ConcreteObjectTomfold

«interface»

ObjectTomfold

List = execute(currentLoc, prevResult)

List = execute(currentLoc, prevResult)

[]

«interface»

IAgent

«interface»

Imfold

moveTo(String destination, callback, arg)

List = mfold(locations,ObjectToFold)

Fig. 4. UML class diagram for mfold pattern in Voyager

7. Consequences

– Advantages
• The benefit of using the mfold pattern is that once you have en-

capsulated the required coordination behaviour of your mobile agent
within the mfold object, you can attach any arbitrary OjectTomfold
object to it that contains the correct execute() method and format.
You can then effectively plug the functionality required from a set
of predefined task objects, or simply create them as required.

• The mobile agent can invoke resource operations locally, increas-
ing performance through locality. These results are also remotely
processed (i.e. reduced), which serves to distribute computation load.

• The mobile agent can carry results with it as it travels through the
network, eliminating the transfer of intermediate data.

• The mobile agent can continue even if network links go down.
– Disadvantages

• Information transmitted from location to location is practically inse-
cure. Although machines can be protected from foreign and migrat-
ing objects, migrating agents and the data they carry are typically
unprotected from potentially malicious hosts [JK00]. This issue will
be addressed in the secure form of the mfold pattern and skeleton
(to be presented in a companion paper).

• Reliability and fault-tolerance is an issue. If the mobile agent gets
lost, for example, as a result of an infrastructure failure, the informa-
tion retrieved is also lost. This issue will be addressed in the reliable
form of the mfold pattern and skeleton (to be presented in a com-
panion paper).

• It may be possible that when the environment is stable and network
links are reliable, a distributed system using mobile code may not
perform as efficiently as traditional RMI or RPC approaches. This
however depends on the mobile code platform being used whereby
performance is subject to performance refinements.

8. Known Uses One such common example is when mobile agents are used in
e-commerce to visit a set of potential product sources searching for prices.
However, rather than returning with a list of all prices, the agent could
use the mfold pattern and return only the best price. Mobile agents are
currently used in e-commerce and are commonly referred to as shopping
or e-commerce bots (for a list visit www.botspot.com/search/s-shop.htm)
however the migration pattern of these mobile agents is unclear.

9. Related Patterns and Frameworks
– Mobile Agent Itinerary Pattern [TOH99]

The mfold is similar to the itinerary pattern present in [TOH99] where
a single agent is used to itinerate through the destination locations per-
forming a task at each location. However, the mfold pattern differs from
this simple pattern as it also addresses the processing of the information
returned from performing a task at each of the locations, providing yet
a higher level of abstraction.

– mmap
The mmap pattern can be composed neatly with the mfold pattern. The
mfold pattern can initially be used to locate a result common to all
locations in the itinerary and the mmap to use these results (see section
4).

3.2 Mobile Map

1. Name mobile map (mmap)
The name for the mmap pattern is inspired by the map higher-order function
in functional languages that applies a function to every element in a list and

returns the resulting list. In an mmap invocation, a list is returned that is
the result of executing a function on every location within the list of remote
locations.

2. Problem
– How can a customizable (mobile) computation be used to perform a task

at a set of locations, while immediately returning the results from each
location?

– How can a customizable (mobile) computation be multicast to a set of
remote locations, while hiding the migration details from the user?

3. Motivating Scenario
You are designing a distributed information system. You need to implement
an algorithm that will migrate a customizable mobile computation to each
location within a list, perform a task and return the result. The system will
be run on reliable/high bandwidth connections where the amount of data to
be transmitted after each location visit is potentially relatively large.
The distributed information processing task most suitable for this mobility
pattern is distributed information retrieval of large amounts of unfiltered in-
formation. In contrast to the mfold pattern, the mmap returns the full results
from each location immediately and does not carry the intermediate results
from one location to the next. The main benefit of mmap mobility pattern
is that the user can perform any task on the remote locations and is not
restricted to predefined operations, for example in traditional client/server
technologies such as remote method invocation (RMI) or remote procedure
call (RPC). The user can also delegate the migration of the mobile code to
the algorithm, which returns the results from all locations once complete.
This pattern can also be used for distributed information dispersal of the
same task to a set of locations, as observed in systems such as grid computing.

4. Forces
Consider the mmap pattern when:
– The application domain is characterised by decentralised resources, or

the system can be thought of a set of co-operating components.
– You want to multicast a customisable mobile computation either syn-

chronously or asynchronously to a set of remote locations.
– You want the flexibility to perform any processing task on the remote

locations. The client/server model is too restricted in terms of services
available as in this traditional paradigm, the server only offers a pre-
defined set of services that may or may not accept code fragments as
parameters.

– The amount of data to be returned from performing a task at the remote
locations may be relatively large and using the mfold pattern (and mobile
agents) would under perform in relation to the amount of data to be
transmitted through the network.

– The user does not require any remote preprocessing of the results re-
turned from performing a task at each location.

– The system may be used on devices with relatively high processing ca-
pabilities.

– Autonomy is required by the user, wherein they wish to delegate some
task to a mobile computation.

– Repetitive time consuming tasks can be delegated to a mobile compu-
tation to perform a task on behalf of the user and require only minimal
intervention.

– The user wants to control what task the mobile computation performs.
5. Solution

Remote evaluation (REV) [AF98] has been chosen as the mobile paradigm
most appropriate for the mmap mobility pattern and subsequent mobility
skeleton. With remote evaluation, one location has the code to perform a
task but does not have the required resources, which are located at a remote
location. The location with the code migrates the code to the location with
the resources, which then performs the task locally, using the resources as
instructed and returning the results. A direct interaction between the source
location and remote location exists with each interaction, as the code sent
by the source always returns the data directly back to the source (see figure
5). Therefore, in essence the context of execution of remote evaluation is
fundamentally limited to a single host location. This pattern can therefore
be applied in situations where you require flexibility to multicast a task to
a set of remote locations and the amount of data to be transmitted may be
relatively large.

The following platform independent models provide an abstract view of the
mmap pattern, including the entities, their relationships and the operations
that must be implemented in general.

Fig. 5. Behaviour of mmap

The diagram in figure 5 illustrates the behaviour of the mmap pattern. The
remote evaluation unit is created at host 1. It then migrates to host 2, per-
forms the task with the resources locally and returns the result. This pattern

continues until all locations have been visited. Unlike the mfold pattern, the
results from each location are stored at host 1 and no intermediate processing
is performed.
The class diagram in figure 6 shows the simple structure of the mmap pat-
tern and the participants. In practice, the mmap class is initiated with a list
of locations and an ObjectTommap, which encapsulates the task to be per-
formed at each location. An additional value can also be supplied at compile
time, which is to be used by the ObjectTommap object i.e. the ObjectToMap
holds the method to update a file and the value is passed as a parameter.
– mmap The mmap class contains the implementation for,

• the sequential coordination algorithm responsible for migrating the
remote evaluation unit to each location in the list,

• invoking a polymorphic Object = execute(currentLoc, value),
whereby each call to this method is performed on the current location
with the optional value.

– ObjectTommap
The ObjectTomfmap interface, which must be implemented to use the
pattern, forces the programmer to implement an Object = execute(currentLoc,
value) method that conforms to the Object = execute(currentLoc,
value) used by the mmap class to invoke the polymorphic method at
each location.

– ConcreteObjectTommap
This class contains the implementation for the Object = execute(currentLoc,
value) method to be performed at each location.

-locations : String

mmap <<REV>>

List = mmap(locations,ObjectTommap, value)

ConcreteObjectTommap

«interface»

ObjectTommap

Object = execute(currentLoc, value)

Object = execute(currentLoc, value)

[]

Fig. 6. UML class diagram for mmap pattern

The UML sequence diagram in figure 7 further illustrates the mmap pattern
by showing the sequence of interactions involved. It shows how, after the in-
stantiation of the remote evaluation unit with a list of locations and an Ob-
jectTommap at location 1, it migrates to the first location in the list. It then
invokes the Object = execute(currentLoc, value), contained within the
ObjectTommap. The result is then returned to location 1. This pattern con-
tinues until all locations have been visited. It should be noted here that you
can perform these interactions either synchronously (as shown in figure 7 or
asynchronously.

Location 1
 Location 2
 Location 3
 Location 4

migrate

migrate

perform service with local resource

perform service with local resource

perform service with local resource

return result

return result

return result

migrate

create mobile

 REV unit

Fig. 7. Platform Independent Sequence Diagram for mmap Pattern

6. mmap Mobility Skeleton implemented in Voyager
The mobility skeleton for the mmap pattern using the remote evaluation
paradigm and implemented in Voyager has the method signature,

List = mmap(ObjectTommap obj, String[] lo, Object value)

and takes as its parameters, an object obj which is converted into a mo-
bile object by Voyager’s dynamic aggregation. It then migrates to the first
location in the list lo, passed as the second argument. A task is then in-
voked, execute(currentLoc, value using the value as the parameter to
that method. The result is then returned. This continues until the remote
evaluation has been performed at all locations. In contrast to the mfold
skeleton, the mmap skeleton stores the results within the initiating program.
When all results have been returned, a list of all results is returned to the
user.
The UML class diagram in figure 8 shows how the Voyager implementation
of the mmap pattern/skeleton requires an additional IMobility class, pro-
vided by Voyager, which contains the methods for creating a mobile object
(obtaining a mobile facet) and transparently moving objects to new loca-
tions.

-locations : String

mmap <<REV>>

List = mmap(locations,ObjectTommap, value)

ConcreteObjectTommap

«interface»

ObjectTommap

Object = execute(currentLoc, value)

Object = execute(currentLoc, value)

[]

«interface»

IMobility

moveTo(String destination)

Fig. 8. UML class diagram for mmap pattern in Voyager

7. Consequences
– Advantages

• The benefit of using the mmap pattern is that once you have encapsu-
lated the required coordination behaviour of your remote evaluation
within the mmap object, you can attach any arbitrary OjectTommap
object to it that contains the correct execute() method and format.
You can then effectively plug the functionality required from a set
of predefined task objects, or simply create them as required.

• The remote evaluation can invoke customizable resource operations
locally, increasing performance through locality.

• The remote evaluation can continue even if network links go down,
with result returned when the network link is regained.

• The security of the results obtained from each location becomes less
of an issue as compared to the mfold pattern, as intermediate results
are not carried from location to location.

– Disadvantages
• The results from the distributed information processing task may

still need to be processed on the initiating host, in contrast to the
mfold pattern where the results are preprocessed and reduced at the
remote locations. In extreme circumstances, this could lead to server
overload.

• Reliability and fault-tolerance is an issue. If an infrastructure failure
occurs on the remote location, the remote evaluation, and thus re-
sults are lost. This issue will be addressed in the reliable form of the
mmap pattern and skeleton (to be presented in a companion paper).

8. Known Uses
This type of pattern can be observed in branching and merging patterns
[TOH99] that are used in software development (version control tools). Branch-
ing can be likened to the Unix fork that creates a new thread of execution,
which incidentally corresponds to the rfork function used in the mHaskell
implementation of the mmap skeleton. [DBTL05]. Another more prominent
example of such a pattern being observed in distributed computing is the use
of remote evaluation is grid computing. The mmap pattern would simplify
the programmers task when performing the same computation on a set of
remote computers in the grid.

4 Executable Mobility Patterns in Practice: An Example

4.1 Mobile Meeting Scheduler

A mobile, automatic meeting scheduler is designed that exploits code mobility by
distributing computation load and reducing network interactions. Users request
a meeting and the scheduler automatically checks the availability of peers by se-
quentially migrating to their respective calendar locations performing availabil-
ity assessments through local interactions (use the mfold pattern here!). When

the first common time is identified for all peers, a meeting allocation will be
broadcast that automatically updates their calendars (and the mmap here!).

This application can be built by composing the mfold and mmap patterns,
wherein the mfold is used to perform the calendar assessments, carry the in-
termittent results and finally return the results to the initiating program. The
mmap pattern is then used to multicast the results.

Location 1
 Location 2
 Location 3
 Location 4

Create

Scheduling

Agent

migrate

migrate

migrate

perform calendar assessment

perform calendar assessment

perform calendar assessment

return List of free times

migrate

migrate

update calendar

update calendar

update calendar

return confirmation

return confirmation

return confirmation

migrate

Create

Mobile Update

Object

mfold

mmap

Fig. 9. Sequence diagram for mobile meeting scheduler

The agents mfold interactions are depicted in figure 9. Upon creation, the
agent accesses the local calendar for a list of free times available. These inter-
mediate free times are then carried with the agent to the next location and
intersected with the free times at the new location. The agent traverses the list
of locations performing an intersection between the newly acquired list of free
times and the result of the previous intersection, whereby the final result of the
distributed and systematic intersections is a list of common free times to all
peers. At the last location, the intersection is performed for the last time and
the first free time from the resulting list is returned to the initiating program.

Figure 9 then shows how the initiating program, after receiving the result,
multi-casts it to all peer calendars. A synchronous mmap method provides con-
firmation that the calendars have been updated.

The following implementation code, in Voyager, shows how mfold and mmap
patterns are composed to form a multifunctional and flexible distributed infor-
mation system.

public class meetingScheduler{

public static void main (String[] args)

{

String[] s = new String[3];

s[0] = "//linux25:8000";

s[1] = "//linux26:8000";

s[2] = "//linux29:8000";

s[3] = "//linux30:8000";

List results;

try{

Voyager.startup("8000");

}catch(Exception e){}

IObjectToFold b = new ObjectToFold(); // Object used for the fold

IObjectToMap c = new ObjectToMap(); // Object used for the map

try{

mfold f = new mfold();

results = f.mobilefold(b,s); // mfold skeleton

if(results.size()==0){ // no result

Voyager.shutdown();

}

mmap m = new mmap();

List l = m.map(c,s,results.get(0).toString()); // mmap skeleton

for(int i = 0 ; i< l.size(); i++){

System.out.println(l.get(i).toString());

}

Voyager.shutdown();

}catch(Exception e){}

}

}

5 Conclusion and Further Work

The patterns and corresponding skeletons are designed to improve the communi-
cation and comprehension of the mobility concepts they describe, thus providing
more support for the development of distributed information system applications
that may benefit from code mobility.

The consequence of defining such patterns and corresponding skeletons is
that the developer can use the patterns and skeletons to create a number of
reusable modules (classes) that coordinate mobile code using a variety of mo-
bile paradigms. A set of objects can then be created that perform alternative
distributed information processing tasks. In effect, the programmer will have a
dynamic and very flexible set of predefined tools suitable for any distributed
information processing task.

We will extend this work by formalising additional distributed information
processing mobility patterns. These patterns, and more significantly the skele-
tons, will be extended to ensure the reliability and fault-tolerance of the mobile
computations.

References

[AF98] Giovanni Vigna Alfonso Fuggetta, Gian Pietro Picco. Understanding code
mobility. IEEE Transactions on Software Engineering, 24(5):342–361, may
1998.

[AL98] Yariv Aridor and Danny B. Lange. Agent design patterns: elements of agent
application design. In AGENTS ’98: Proceedings of the second international
conference on Autonomous agents, pages 108–115. ACM Press, 1998.

[BGM+99] Brian Brewington, Robert Gray, Katsuhiro Moizumi, David Kotz, George
Cybenko, and Daniela Rus. Mobile agents in distributed information
retrieval. In Matthias Klusch, editor, Intelligent Information Agents.
Springer-Verlag: Heidelberg, Germany, 1999.

[BGP97] Mario Baldi, Silvano Gai, and Gian Pietro Picco. Exploiting code mobil-
ity in decentralized and flexible network management. In Proceedings of
the First International Workshop on Mobile Agents, pages 13–26, Berlin,
Germany, 1997.

[BP98] Mario Baldi and Gian Pietro Picco. Evaluating the Tradeoffs of Mobile
Code Design Paradigms in Network Management Applications. In R. Kem-
merer, editor, Proceedings of the 20th International Conference on Software
Engineering, pages 146–155. IEEE Computer Society Press, 1998.

[BSH02] W. Binder, G. Scrugendo, and J. Hulaas. Towards a secure and efficient
model for grid computing using mobile code, 2002.

[CH02] Wen-Shyen E. Chen and Chih-Lin Hu. A mobile agent-based active network
architecture for intelligent network control. Inf. Sci. Inf. Comput. Sci.,
141(1-2):3–35, 2002.

[CPV97] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. Designing
distributed applications with a mobile code paradigm. In Proceedings of the
19th International Conference on Software Engineering, Boston, MA, USA,
1997.

[CTZ02] Paolo Ciancarini, Robert Tolksdorf, and Franco Zambonelli. Coordination
middleware for xml-centric applications. In SAC ’02: Proceedings of the
2002 ACM symposium on Applied computing, pages 336–343, New York,
NY, USA, 2002. ACM Press.

[DBTL05] André Rauber Du Bois, Phil Trinder, and Hans-Wolfgang Loidl. Towards
Mobility Skeletons. Parallel Processing Letters, 15(3):273–288, 2005.

[EGV95] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides. De-
sign Patterns - Elements of Reusable Object-Orientated Software. Addison-
Wesley, 1995.

[FFMS] Cedric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. Jo-
caml: a language for concurrent distributed and mobile programming.

[GS01] J. Gomoluch and M. Schroeder. Information agents on the move: A survey
on loadbalancing with mobile agents, 2001.

[HfL02] Minghua He and Ho fung Leung. Agents in e-commerce: state of the art.
Knowl. Inf. Syst., 4(3):257–282, 2002.

[JK00] W. Jansen and T. Karygiannis. Nist special publication 800-19 - mobile
agent security, 2000.

[KA03] Ryszard Kowalczyk and Leila Alem. Supporting mobility and negotiation
in agent-based e-commerce. pages 226–244, 2003.

[KBD02] Hairong Kuang, Lubomir F. Bic, and Michael B. Dillencourt. Iterative grid-
based computing using mobile agents. In Tarek S. Abdelrahman, editor,
Proceedings of the 2002 Intternational Conference on Parallel Processing,
pages 109–117, Los Alamitos, Calif., aug 2002. The International Associa-
tion for Computers and Communications (IACC), IEEE Computer Society.

[ken97] The Layered Agent Pattern Language, 1997.
[KGR02] David Kotz, Robert S. Gray, and Daniela Rus. Future Directions for Mobile-

Agent Research. Technical Report TR2002-415, Hanover, NH, 2002.
[KKPS98] Elizabeth A. Kendall, P. V. Murali Krishna, Chirag V. Pathak, and C. B.

Suresh. Patterns of intelligent and mobile agents. In Katia P. Sycara and
Michael Wooldridge, editors, Proceedings of the 2nd International Confer-
ence on Autonomous Agents (Agents’98), pages 92–99, New York, 9–13,
1998. ACM Press.

[Kue] Deugo Oppacher Kuester. Ic-ai’99 502sa patterns as a means for intelligent
software engineering.

[Lan98] Danny B. Lange. Mobile objects and mobile agents: The future of distrib-
uted computing? Lecture Notes in Computer Science, 1445, 1998.

[LMSF04] Emerson F. A. Lima, Patricia D. L. Machado, Flavio R. Sampaio, and
Jorge C. A. Figueiredo. An approach to modelling and applying mobile
agent design patterns. SIGSOFT Softw. Eng. Notes, 29(3):1–8, 2004.

[LO99] D. Lange and M. Oshima. Programming And Deploying Java Mobile Agents
with Aglets. Addison-Wesley, 1999.

[MR04] Beniamino Di Martino and Omer F. Rana. Grid performance and resource
management using mobile agents. pages 251–263, 2004.

[MRK96] T. Magedanz, K. Rothermel, and S. Krause. Intelligent agents: An emerging
technology for next generation telecommunications? In INFOCOM’96, San
Francisco, CA, USA, 24–28 1996.

[SD98] R. Silva and A. Delgado. The agent pattern: A design pattern for dynamic
and distributed applications, 1998.

[STO99] J. W. Shepherdson, S. G. Thompson, and B. R. Odgers. Decentralised
workflows and software agents. BT Technology Journal, 17(4):65–71, 1999.

[TKI+97] Hiroyuki Tarumi, Koji Kida, Yoshihide Ishiguro, Kenji Yoshifu, and
Takayoshi Asakura. Workweb system multi workflow management with
a multi-agent system. In GROUP ’97: Proceedings of the international
ACM SIGGROUP conference on Supporting group work, pages 299–308,
New York, NY, USA, 1997. ACM Press.

[TOH99] Yasuyuki Tahara, Akihiko Ohsuga, and Shinichi Honiden. Agent system
development method based on agent patterns. In ICSE ’99: Proceedings of
the 21st international conference on Software engineering, pages 356–367.
IEEE Computer Society Press, 1999.

[Wei03] Michael Weiss. A pattern language for motivating the use of agents. In
AOIS, pages 142–157, 2003.

[Whe05] Thomas Wheeler. Voyager architecture best practices. March 2005.
[Whi94] Jim White. Mobile agents white paper. 1994.
[WT02] Christian Wagner and Efraim Turban. Are intelligent e-commerce agents

partners or predators? Commun. ACM, 45(5):84–90, 2002.

