
 1

Patterns for Session-Based Access Control

Eduardo B. Fernandez1) and Günther Pernul2)

 Dept. of Computer Science and Engineerging 2) Department of Information Systems
 Florida Atlantic University Universität Regensburg
 Boca Raton, FL 33431, USA Universitätsstraße 31, Regensburg, Germany
 ed@cse.fau.edu guenther.pernul@wiwi.uni-regensburg.de

Abstract: The concept of session, the context under which a user accesses
resource is very important to apply access control. We present first a pattern
for describing access sessions, and we combine it with two existing access
control patterns to define session-based versions of them. First we consider a
pattern for Session-Bbased Role-Based Access Control for organizations in
which job functions form the basis for privilege assignments and then, a
Ssession-Based Attribute-Based Access Control pattern for organizations in
which accesses should be controlled based on values of user attributes and
object properties. We emphasize the effect of using sessions on those patterns.

1. Introduction
It is important to develop systems where security has been considered at all stages of design, which
not only satisfy their functional specifications but also satisfy security requirements. To do this we
need to start with high-level models that represent the security policies of the institution. There are
three models currently used by most systems: the access matrix, the Role-Based Access Control
(RBAC) model, and the multilevel model.

The basic model rule of the protection matrix [Lam71] included the tuple {s,o,t}, where s indicates a
subject or active entity, o is the protected object or resource, and t indicates the type of access
permitted. [Har76] proved security properties of this model. In the HRU model [Har76] users are
allowed to delegate their rights (discretionary property, delegatable authorization), implying a tuple
{s,o,t,f}, where f is a Boolean copy flag indicating if the right is allowed to be delegated or not. A
predicate was added to the basic rule to allow content-based authorization [Fer75], becoming
{s,o,t,p,f}, where p is the predicate. The predicate could also include environment variables. Patterns
for the basic rule and the tuple {s,o,t,p,f} were given in [Fer01a, Sch06]. The rule could also include
the concept of Authorizer (a), becoming {a,s,o,t,p,f} [Fer81] (Explicitly Granted Authorization).
RBAC [San96] can be considered a special interpretation of the basic authorization model, where
subjects are roles instead of individual users. We presented two varieties of RBAC in [Fer01a,
Sch06]. Subsequently, several variations and extensions of these models have appeared. We
presented a variation called Metadata-Based Access Control, which later we renamed Attribute-Based
Access Control (ABAC) [Pri04, Pri05].

ABAC can be seen in two ways:
• A specialization of the model {s,o,t,p}, where p is a predicate which depends on attribute

values.

 2

• A variant where s and o are defined by descriptors which depend on attribute values.

We presented patterns for ABAC in [Pri04] and [Pri05]. In this paper we present a general pattern for
Access Session as a building block and two patterns for RBAC and ABAC making use of the session
pattern, the session-Based RBAC and the session-Based ABAC pattern. Sessions describe an
environment where the rights available to a user can be dynamically limited based on the context in
which the user is acting (in addition to their standard use to avoid reauthentication [Sch06]).

The Internet has brought the need for more flexible access control approaches. Applications such as
digital libraries, enterprise integration, and collaborative work involve a large variety of users
interacting in many ways. In particular, these users may not be known in advance and constitute a
highly dynamic set, with users leaving and joining at any moment. This makes models such as the
access matrix and RBAC hard to apply. While these models have their unique aspects, in an abstract
sense they are all manifestations of the same underlying concepts. We present here a unification of
those models through a generalized pattern. A key point, neglected in most of these models, is the use
of dynamic aspects for the application. The pattern diagram of Figure 1 shows the relationships
between these patterns. For example, adding a condition to Basic Authorization results in Content-
Based Authorization, using the concept of session results in session-based models, and so on. Note
that RBAC is not delegatable in general. All these patterns define authorization rules and they need a
reference monitor for their enforcement; we don’t show it in this diagram for simplicity (see [Sch06]
for the corresponding pattern). The double-lined patterns are the ones presented here.

 Figure 1. Relationships between access control patterns

Session-based
RBAC

Basic
Authorization

authorizer

Session-based
ABAC

Delegatable
Authorization

Basic
RBAC

Content-based
Authorization

Explicitly
Granted

Authorization

ABAC

á =Role

á or É =attribute values

session

condition

session

CopyFlag

Access Session
uses uses

 3

2. Access Session

Provide a context in which a security subject can access resources. Depending on the context he is
using, the rights of a user may vary.

2.1 Example
 John is a developer in a project. He is also a project leader in another project. As a project leader he
can evaluate the performance of the members of his project. He combines his two functions and adds
several flattering evaluations about himself in the project where he is a developer. Later his manager
thinking that they came from the project leader of that project, gives John a big bonus.

2.2 Context
Any system supporting access control to its resources. Access control should be flexible, in the sense
that access rights depend on the context in which the user is acting.

2.3 Problem
A given user may be authorized to access a system by performing several roles. However, for a
particular access only those privileges (roles) should be active which are necessary to perform the
intended task. This is an application of the principle of least-privilege and necessary to prevent the
user from misusing the system (intentionally, accidentally by performing an error, or without
knowledge and tricked to do so, for example through a Trojan Horse attack). Additionally this would
potentially restrict damage in case of session hijacking. A successfully attacking process would not
have all privileges of a user available but only the active subset.

The following forces will affect the solution:
• Subjects may have many rights directly or indirectly through their execution contexts. Using all of

them at one time may result in conflicts of interest and security violations. We need to restrict the
use of those rights depending on the application or task the subject is performing.

• In the context of an interaction we can make the access to some functions implicit, thus facilitating

the use of the system and preventing errors that may result on vulnerabilities. For example, some
editors or other tools could be implicitly available in some sessions.

• It is not convenient to make subjects reauthenticate every time they request a new resource. Once

the subject is authenticated, this condition should remain valid during the whole session.

2.4 Solution
Define a context for interaction, a session, which has a limited lifetime, e.g. between login and logoff
of a user or between the beginning and the end of a transaction. When a user logs on and after
authentication, she activates a context with only a subset of the authorizations she possesses. It should
be the minimal subset which is needed for the user or transaction to perform the intended task. Only
those rights are available within the session. A subject can be in several sessions at the same time;
however, in every session only the necessary rights are active.

Structure
Figure 2 shows the class model of the access-session pattern. C;lasses Subject and Sesssion have the
obvious meaning. The class ExecutionContext contains the set of active rights that the user may use
within the session.

 4

Figure 2: Class model for Access Session pattern

Dynamics

Figure 3 shows the use case Open (Activate) a session. A subject logs on one of his contexts and the
logon interface authenticates it. The box indicates some authentication dialog. After the subject is
authenticated, the interface creates a session object and returns a handle to the subject.

2.5 Implementation
Based on institution and application policies define which rights can be used in each context and
associate them with the corresponding context. The rights should be selected using theleast privilege
principle.

2.6 Example resolved
When John logs on the project where he is a developer he only gets the rights for a developer and
cannot add evaluations. Now he only gets legitimate evaluations.

2.7 Known uses
• Session Access is part of the RBAC standard proposal by NIST which later has been adopted by

the American National Standards Institute, International Committee for Information Technology
Standards (ANSI/INCITS) as ANSI INCITS 359-2004 [Fer01b].

• Multics [Sum97] used execution contexts to limit access rights.
• Session Access is implemented in the security module CSAP [Dri03] of the Webocrat System.

Subject ExecutionContext

Session

* *

*

*

1

1inSession

hasContexts

{subset}
activeInSession

 5

 Figure 3. Sequence diagram for use case Open a session

2.8 Consequences
This pattern has the following advantages:
• We can give to each context only the needed rights according to its function.
• We can exclude combinations of contexts that might result in possible access violations or

conflicts of interest.
• Once a subject starts a session it doesn’t have to be reauthenticated. Its status is kept by the

context.

A possible disadvantage:
It might be inefficient to open many sessions to perform complex activities.

2.9 Related patterns
The session pattern is used in the session-based RBAC and ABAC patterns.

The Session pattern of [Yod97] created a session object that defined a namespace to hold all the
variables that need to be referenced by many objects. P. Sommerlad remade this pattern as a Security
Session [Sch06], intended to prevent a user to be reauthenticated every time he accesses a new object.
A pattern with a similar objective is Abstract Session [Pry00]: When an object's services are invoked
by clients, the server object may have to maintain state for each client. The server creates a session
object that encapsulates state information for the client. The server returns a pointer to the session
object.

Our pattern is an extension of those patterns emphasizing the effect of a session as a limiter of rights.

<<actor>>
:Subject :logonInterface

:Session

logon (subject, context)

returnSession (session)

authentication

create (session)

 6

3. Session-Based Role-Based Access Control

Allow access to resources based on the role of the subject and thereby limit the rights that can be
applied at a given time based on the context defined by the access session.

3.1 Example
Lisa is a secretary in a medical organization but sometimes she helps in the laboratory to perform
patient tests. As a secretary she has access to patients’ information such as name, address, SSN, etc.
This is necessary so she can bill them and their insurance companies. In the lab she has access to
anonymized patient test results. Combining her two roles she can associate test results to names,
which violates patient privacy.

3.2 Context
Any environment where we need to control access to computing resources and where users can be
classified according to their jobs or their tasks.

3.3 Problem
In an organization a user may play several roles. However, for each access the user must act only
within the authorizations of a single role (i.e. within the context of the role) or combinations of roles
that do not violate institution policies. How to restrict subjects to the policies of the institution?

The following forces apply to the solution:
• People in institutions have different needs for access to information, according to their functions.
• We want to help the institution to define precise access rights for its members according to a

need-to-know policy.
• Users may have more than one role and we may want to enforce policies such as separation of

duty, where a user cannot be in two specific roles in the same session.

3.4 Solution
A subject may have several roles. Each role collects the rights that a user can activate at a given
moment (execution context), while a session controls the way of using roles and can enforce role
exclusion at execution time.

Structure
The structure of the session-based RBAC is shown in the class diagram given in Figure 4. The class
Role is an intermediary between subject and object holding all authorizations a user possesses while
playing the role. Within a Session, only a subset of the roles assigned to a Subject may be activated,
i.e. only those necessary to perform the intended task. Roles may be composed according to a
Composite pattern [Gam94], where higher-level roles inherit rights from the lower-level roles.

 7

 Figure 4. Class model for the Session-Based RBAC

3.5 Implementation
• Determine the roles the system should contain (role catalog)
• Collect lists of incompatible roles and add them to each session (static constraints).
• Determine number of roles which may be active within a session (dynamic constraints).
• Perform subject-role assignment.

3.6 Example resolved
Lisa can log on a secretary or as a lab assistant but she cannot combine these roles. Now she cannot
relate results to patient names.

3.7 Known uses
The structure and dynamics of the session-based RBAC as given above are implemented in the
security module CSAP [Dri03] of the Webocrat system. Webocrat is a portal supporting E-
Democracy which was developed within the European Webocrcacy project (FP5-IST-1999-20364)
between 2000-2003. Currently CSAP is ported to a Peer-2-Peer architecture.

3.8 Consequences
Among the advantages of this pattern we have:
• Users can activate more than one session at a time for functional flexibility (some tasks may

require multiple views or different types of actions).
• We can add UML constraints to indicate that some roles cannot be used in the same session or

given to the same user (separation of duty).

Subject Role

Session

* *

*

*

1

1inSession

hasRoles

{subset}
activeInSession

Object

Right

accessType

* *

Simple
Role

Composite
Role

*
isAuthorizedFor

 8

Possible disadvantages include:
• Additional conceptual complexity to define which roles can be used together and which should be

mutually exclusive.

3.9 Related patterns
This pattern is a combination of the Session pattern described earlier and the RBAC pattern [Sch06].

4. Session-Based Attribute-Based Authorization

Allow access to resources based on the attributes of the subjects and the properties of the objects but
limit the rights that can be applied at a given time based on the context defined by the access session.

4.1 Example
Meili is a teenager who likes movies and subscribes to several movie services through the Internet.
She logs in a central portal where she can reach sets of movies. Sometimes she gets movies that she
finds offensive or inappropriate (pornographic, racist, plain stupid). She doesn’t have much time to
read details about the movies in advance and some of them don’t even have good descriptions so
reading about the movies is not a good approach. She would like some kind of filter. Also the portal
may be breaking the law in making available to her some of these movies.

4.2 Context
Dynamic systems supporting a large set of objects and subjects in which the structure of the subjects
changes rapidly, such as web-based information systems, e-government and e-business portals. In this
environment there is the need to control access to computing resources and the subjects may not be
preregistered. We want to give access to resources based on characteristics of the subjects such as
groups to which they belong, company for which they work, biological characteristics such as age,
etc.

4.3 Problem
As indicated access may depend on the age or other attributes of a user. In this case, privilege
assignments to the user cannot not be done statically by a security administrator but automatically by
the system based on the value of some of the attributes, e.g. “DateOfBirth” . As the user gets older or
changes functions his authorization state changes automatically. Access rights might even depend on
an external attribute, such as “physical location” of a user in a mobile environment. In this case the
authorization state changes automatically when the user moves around. At the subject’s side,
metadata such as the scope of a document, or the MPAA rating of a movie are examples of
properties. All these constraints can be applied through predicates in the rules [Fer81], but it is
difficult to have a variety of prepackaged rules for the typical cases.

The solution is constrained by the following forces:
• We need to limit the rights of subjects that belong to a variety of groups, roles, or have special

attributes. Unrestricted access might allow policy or law violations.
• This control should not imply an extra burden for the security administrator.
• This control should not imply a significant performance overhead.
• The environment is very dynamic and changes should be easy to make.

4.4 Solution

 9

Access rights are based on the comparison of values of selected attributes of subjects and properties
of objects (so called subject and object descriptors). In this pattern descriptors are a construct to
somehow “group”objects and subjects dynamically, not explicitly by an administrator but implicitly
by their attribute or property values. This grouping may result in unpredictable sets of rights that may
violate security policies. A session delimits the rights that can be applied at a given moment.

Structure
Figure 5 shows the class diagram for the solution. A Subject Descriptor is formed by applying
Qualifiers to Attribute Values. A Session selects some specific values as execution context that
defines the Subject rights.

4.5 Implementation
Select an implementation to convey the subject’s attributes. Examples would be attribute certificates
[Opp00] or Kerberos tickets.
Select an implementation to express the object’s attributes. Candidates could be standards on meta-
data resource discovery, such as the Dublin Core Metadata Initiative [DCM].

4.6 Example resolved
The portal implemented an ABAC model. Now when Meili opens a session she is given access to
contexts with sets of preselected movies according to her preferences and restricted according to legal
aspects and to the services she has paid for.

4.7 Known Uses
Session-based ABAC is implemented as an alternative to RBAC in the security module CSAP
[Dri03] of the Webocrat system. A similar pattern is also used in the authorization system of the
.NET component framework [LaM02] and in AAIs (authentication and authorization infrastructures),
such as Permis [Cha03] and Shibboleth [Shi].

The XML standard XACML [Del05, OAS03] uses attributes of subjects and objects for the
specification of access control policies. As shown in the UCONABC [Par04], ABAC may also have
potential for digital rights management.

 10

* *
isAuthorized

For

1 *

*

Object
Descriptor

Subject
Descriptor

Environment
Attribute

*

1

*

1
Object

Attribute

Object

*

* *

{subset }

1

*

activeIn
Session

hasSession

*

1

Subject
Attribute

Session

Subject

Authorization
accessType

Condition

Object
AttributeValue

value

Subject
AttributeValue

value

Attribute

*

*

Subject
Qualifier
operator

value

* *
Object

Qualifier
operator

value

*

Figure 5. Class model for the Session-Based ABAC pattern

 11

4.8 Consequences
The advantages of this pattern include:
• The rights of subjects that belong to a variety of groups, roles, or have special attributes can be

limited by restricting them to use specific contexts selected by sessions.
• This control does not imply an extra burden for the security administrator because the contexts

can be defined by application designers according to their policies.
• This control does not imply a significant performance overhead because the number of different

contexts is not very large.
• Changes in access restrictions can be easily accommodated by defining new contexts or deleting

existing contexts.

4.9 Related patterns
Figure 1 shows the relationship of this pattern to other access control patterns. As indicated
credentials such as certificates are frequently used to request access [Mor06].

5. Using session-based access control as a service

In this section we show by means of two sequence diagrams how the patterns described above can be
embedded into a general authentication, authorization and access control service. Such a service can
be called by any application or process having the need to authenticate the users and to provide
session-based access control. In the following it is assumed that the service provides both, session-
based RBAC and session-based ABAC and the client application requesting the service must chose
between the two.

Figure 6 shows a sequence diagram for the interaction of a requesting client process and the session-
based access control service. In order to hide the complexity of the subsystems in the sequence
diagram we use the structural pattern “façade” as a uniform interface to calling applications.

In order to be able to access a resource a valid session object must be requested by the calling
application (or user process). This starts with some sort of initialization process during which the
client application first requests from the authentication facade of the security service an
authentication service. In the example shown in figure 6 a password service is returned but also other
services may be available. Second is the request for an authentication service. In the example RBAC
is returned, and the initialization phase is finished. Next is the actual user authentication, role
selection and the session establishment. During user authentication the client application provides to
the password service <user-id, pwd>. The password service interacts with a userDM and in case of
successful log-in a user object is created and a reference to the object (aUser) is returned to the calling
client application.

A valid session can only be established in the case the user application activates at least one role from
the set of possible roles for the user. This starts by calling the method getAssignedRoles of the user
object. In case of a valid userID all available roles for a particular user are determined and returned
by the role data module (RoleDM) and for each role a transient role object is created by the RBAC
service. Next from the set of possible roles the user selects a subset and the RBAC service calls the
corresponding method to activate the roles.

 12

At this stage the user object is authenticated and has a set of active roles assigned. These are the only
prerequisites for establishing a session. After receiving the request the session service creates a valid
session object for which as a reference the session-id is returned to the calling client process. Under a
valid session-id the client may act under the context of the session by using the privileges of the
selected roles.

Figure 6: session establishment

Figure 7 shows an attempt of a client process to access a resource within a valid session. The process
starts with calling the method checkAccess with parameters session-id, object-id, operation, i.e. a
request of a user wishing to access a certain object by using a predefined operation and this all within
the context of an established session. First, the validity of the session is checked, second the session
object is used by the RBACService in order to get the user’s active roles within this session. Next, the
user’s permissions are determined by retrieving all the permissions assigned to the active roles.
Finally, the RBACService checks whether there is a permission for the tuple <object, operation>. In
the case there is one, the access will be granted, otherwise denied.

 13

Figure 7: permission approval

Acknowledgements
The work of E. Fernandez was supported by a Federal Earmark grant from DISA, administered by Pragmatics,
Inc. The work of G. Pernul was partly supported by the European Commission DG INFSO under the IST
program, Webocracy, contract No. IST-20364.

References

[Cha03] D.W.Chadwick and A. Otenko, “The PERMIS X.509 role based privilege management

infrastructure”, Future Generation Computer Systems, vol. 19, No 2, 2003, 277-289.

[DCM] The Dublin Core Metadata Initiative. http://www.dublincore.org.

[Del05] N. Delessy, E. B.Fernandez, and T. Sorgente, "Patterns for the eXtensible Access Control

Markup Language", Procs. of the Pattern Languages of Programs Conference (PLoP
2005), Allerton Park, IL, September 2005.

 14

[Dri03] F.Dridi, M.Fischer, and G.Pernul, “CSAP -- an adaptable security module for the e-
government system Webocrat”. Proc. of the 18th IFIP International Information Security
Conference (SEC 2003), Athens, Greece, 26-28 May 2003.

[Fer75] E. B. Fernandez, R. C. Summers, and C. B. Coleman, “An authorization model for a shared

data base,'' Proc. of the 1975 SIGMOD International Conference, ACM, New York, 23-31,
1975.

[Fer81] E. B. Fernandez, R. C. Summers, C. Wood, Database Security and Integrity, Addison-

Wesley, Reading, Massachusetts, Systems Programming Series, February 1981.

[Fer01a] E. B. Fernandez, and R. Pan, “A pattern language for security models”, Procs. of PLoP
 2001.

[Fer01b] D. Ferraiolo, R. Sandhu, S. Gavrila, D.R.Kuhn, and R. Chandramouli, “Proposed NIST

standard for Role-Based Access Control”, ACM Trans. on Information and System Security,
Vol. 4, No 3, August 2001, 224-274.

[Gam94] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, Boston, Mass., 1994.

[Har76] M.Harrison, W. Ruzzo, J. Ullman, “Protection in Operating Systems”, Comm. of the ACM,

Vol. 19, No 8, August 1976.

[Lam71] Butler W. Lampson, “Protection”, Proceedings of the 5th Princeton Conference on

Information Sciences and Systems, Princeton, 1971

[LaM02] B.A.LaMacchia, S. Lange, M. Lyons, R. Martin, and K.T.Price, NET framework security,

Addison-Wesley, 2002.

[Mor06] P. Morrison and E.B. Fernandez, “The Credentials Pattern”, submitted to PLoP 2006.

[OAS03] eXtensible Access Control Markup Language (XACML), Version 1.1. OASIS Community

Specification, August 2003. http://www.oasis-open.org/committees/xacml/

[Opp00] R.Oppliger, G. Pernul, and C. Strauss, “ Using Attribute Certificates to implement Role-

Based Authorization and Access Control”, Proc. of the 4th Conference on "Sicherheit in
Informationssystemen" (SIS 2000), Zürich (Switzerland), October 5 - 6, 2000, vdf
Hochschulverlag.

[Par04] J.Park, J., and R.Sandhu,” The UCONABC usage control model”, ACM Transactions on

Information Systems Security, 7(1), pp. 128-174, February 2004.

[Pri04] T. Priebe, E.B.Fernandez, J.I.Mehlau, and G. Pernul, "A pattern system for access control",

in Research Directions in Data and Applications Security XVIII, C. Farkas and P. Samarati
(Eds.), Procs of the 18th. Annual IFIP WG 11.3 Working Conference on Data and
Applications Security, Sitges, Spain, July 25-28, 2004.

 15

[Pri05] T. Priebe, W. Dobmeier, B. Muschall, and G. Pernul, „ ABAC – Ein Referenzmodell für

attributbasierte Zugriffskontrolle“, Proc. Sicherheit 2005, 2. Jahrestagung des
Fachbereichs Sicherheit der Gesellschaft für Informatik, Regensburg, April 2005.

[Pry00] N. Pryce, “Abstract session: An object structural pattern”, Chapter 7 in Pattern Languages

of Program Design 4 (N. Harrison, B. Foote, and H. Rohnert, Eds.). Also in Procs. of
PLoP’97.

[San96] R. Sandhu, E.J.Coyne, H.L.Feinstein, and C.E.Youman., "Role-based access control

models", Computer , vol. 29 , No2, February 1996, 38-47.

[Sch06] M. Schumacher, E.B. Fernandez, D. Hybertson, F. Buschmann, and P. Sommerlad,

Security Patterns: Integrating security and systems engineering, J. Wiley & Sons, 2006.

[Shi] Shibboleth Project, http://shibboleth.internet2.edu

[Sum97] R. C. Summers, Secure Computing: Threats and Safeguards, McGraw-Hill, 1997

[Yod97] J. Yoder and J. Barcalow, “Architectural Patterns for Enabling Application Security,” Proc.

of the 4tth Conference of Pattern Languages of Programs (PLoP’97).Also, Chapter 15 in
Pattern Languages of Program Design, vol. 4 (N. Harrison, B. Foote, and H. Rohnert,
Eds.), Addison- Wesley, 2000.

