
Expressing variability for design patterns re-use

Nicolas Arnaud — Agnès Front — Dominique Rieu

LSR-IMAG, équipe SIGMA

681 rue de la passerelle

BP 72 38402 Saint Martin d’Hères Cedex

{surname.name}@imag.fr

ABSTRACT. A design pattern description is much more complex than a semi-formal solution, often restricted to a class diagram.

Applying a pattern mainly depends on the solution specification but a lot of useful information can be found into other items.

Neglecting variants of the main solution the pattern engineer might explain can be detrimental to the pattern itself because, most of

the time, they affect the solution specification. We propose that the pattern engineer represents his solution as a variable mini-

system led by a use case view expressing variants. This functional model fragment is the starting point of our imitation process,

where application designer will select variants to imitate.

KEYWORDS: design patterns, variability, imitation process, UML2.

1. Introduction

The need for information systems quality implies rigour and continuity during the various phases of a development.

Thus, capitalizing knowledge and know-how in order to re-use them during other development processes is crucial. Re-

use is regarded as a pledge of this quality, and more particularly if it implements traceability of specifications. In this

way, relevant patterns systems are needed. The Gang of Four design patterns (Gamma et al., 1995) are obviously the

most famous ones and will be used to illustrate our demonstration.

The reuse process of a pattern, which we called Imitation, makes it possible to extract the pattern solution (in our

case, software specification fragments) and to apply it into a system under construction. However, a complete

specification cannot only be reached by static modelling (i.e. class diagram). Thus, functional and dynamic aspects

should be considered, as it’s done for classical information system.

Nevertheless, using three views, through a modelling language such as UML (OMG, 2005), does not allow to

specify all patterns contributions. In many cases, and particularly for GoF patterns, the pattern description contains

information expressing possible variants for the main solution, according to all aspects: functional, dynamic or static.

Our main goal is to introduce this variability into the semi-formal solution to allow the imitation process to be traceable

and directed, and to prevent bad reuse of a pattern.

We first propose (§2) a more complete specification, of a pattern into mini system in which is grafted a method for

expressing its variability (§3). The re-use of such specifications is implemented within an imitation process (§4). The

"Observer" pattern is used as an illustration throughout the paper.

2. First approach: a complete mini system

Information systems field is rich of development processes (RUP, 2TUP,…) which combine functional, dynamic and

static aspects. We propose a similar approach for specifying the solutions of design patterns as mini systems.

2.1. USE CASES VIEW : THE PATTERN FUNCTIONALITIES

A use cases model presents the system’s functionalities, their dependencies and the participative actors. This result

of requirements study leads to the whole specification. So, first of all, if a pattern solution provides several

functionalities we propose to explicit all of them in the functional view.

Let us remind the intent of the «Observer» pattern: « Define a one-to-many dependency between objects so that

when one object changes state, all its dependents are notified and updated automatically. » (Gamma et al., 1995)

Two functionalities can be extracted from the « Observer » pattern: subject modification and observers management.

The first one deals with subject state modifications and observers updates while the second allows to dynamically add or

remove observers. Figure 1 illustrates the functional view of this pattern.

Here, the Client actor squares with the « client » of GoF patterns. The latter specifies the entry points used to accede

and trigger the solution’s functionalities (see Figure 1).

Figure 1. Observer: use cases view

2.2. DYNAMIC VIEW : UML2 SEQUENCE DIAGRAMS

In the Collaborations item of « Observer », a sequence diagram is given as an example to precise what we called the

subject modification use case. Figure 2 presents this diagram with UML. The original diagram shows an Observer

modifying the Subject but, in fact, there is no particular limitation about who can use the setState method.

We propose two UML2 sequence diagrams to improve the precision of the original sequence. Thus, notify sequence

(sd notify) can be designed using a loop combined fragment. Also, subject modification sequence (sd subject

modification) uses the notify method through the gate and interaction use mechanisms. Figure 3 illustrates these new

sequences.

Our solution is completed with the updateSubjectState method (private) in order to represent the state change of

ConcreteSubject. The realization of this method is not a concern of the « Observer » pattern, but of the application

engineer who will imitate this pattern. This approach is also taken up for the observer’s state and setObserverSate

method. (see Figure 3)

We do not present the whole sequence diagrams mandatory for obtaining a complete functional view.

Figure 2. Observer: GoF original sequence diagram

Figure 3. Observer: UML2 sequence diagrams

2.3. STATIC VIEW: CLASS DIAGRAMS

Class diagrams specify entities’ structure and associations. Although they can mostly be deducted from the dynamic

view, the designer must state static features as association cardinalities or properties and methods visibility.

Most of pattern solutions are restricted to a static view, generally a class diagram. These structures often allow

textual notes expressing comments or algorithms. For example, « Observer » pattern describes that the notify algorithm

is using pseudo-code.

Considering the sequence diagrams from the above dynamic view, we propose a new structure (Figure 4, right part)

to represent the solution of the « Observer » pattern. Differences with the original solution of GoF (Figure 4, left part)

are the followings:

– In this multi-view approach, a specific algorithm is expressed using the dynamic view, as for notify method whose

explicative note is there redundant.

– Attribute subjectsate is no more represented; indeed the subject state may be expressed by many attributes, class

links or both, depending on the context. However the application engineer must be informed that he will have to realize

the state representation to make his imitation reliable. This is done using a «TODO» note which concerns both the state

itself and the associated private method.

It is important to precise that the use of our approach does not avoid original solutions which remain an excellent

didactic feature and comprehension enhancer that must be conserved.

Figure 4. Observer: static view

2.4. LIMITS OF MINI SYSTEM

Using multiple views allows us to specify a more complete semi-formal pattern solution. Such a solution could be

considered to bring to a better imitation. However, some information still cannot be expressed through our mini-system;

for example the fact that the functionalities offered by the solution are essential or secondary.

Thus, contrary to the GoF intention, the « Observer » pattern is not restricted to the observers’ notification, but also

proposes observers attaching and detaching to a subject (observers management). The solution should introduce that the

observers’ management, even if it is useful, is not mandatory for a correct imitation. The following section proposes to

express this type of variability of the pattern solution.

GoF’s static view Mini-system’s static view

3. Variability & patterns

3.1. VARIABILITY AND VARIATION POINT

Variability is defined as the system ability to be changed according to a specific context (Van Grup, 2000).

A variation point is a system place where there is a variation (Czarnecki et al., 2000), i.e. where choices have to be

made in order to identify the variants to be used.

Several types of variability exist for a variation point (Bachmann et al., 2001) :

– options: choice from zero to several variants among several,

– alternatives: choice of one variant among several,

– optional alternatives: choice from zero or one variant among several,

– alternatives set: choice of at least one variant among several.

Many approaches were proposed to represent variability in the specifications: feature diagrams of FODA (Kang and

Al, 1990), use cases of (VanDerMaβen and Al, 2002), class diagrams of (Clauss, 2001), sequence diagrams of (Ziadi

and Al, 2005), etc. The two last propose UML extensions based on stereotypes. The following sections show how we

also use stereotypes on variants from option or alternatives types.

3.2. FUNCTIONAL VARIABILITY

Let us first naturally apply variability on the use cases view. A base operator is used to express the dependency

between a variation point (<<variation>>) and one of its variants (<<variant>>). The dependency kind depends on

which variability type is required (see Figure 5).

According to the variability type’s cardinalities the following imitations are allowed in the Figure 5: [way1], [way1 +

option1], [way2 + option1 + option2]. [way1+way2] or [option1] are prohibited.

In addition, confronting the pattern intention with the suggested solution often allows to extract primary

functionalities (mandatory for imitation) and secondary ones. Two other stereotypes (<<primary>> and <<secondary>>)

are used to categorize these first-level functionalities. In Figure 5, functionality A is primary while B is secondary.

Figure 5. Functional variability

Variability on a pattern solution is generally expressed in additional information given by the pattern engineer. GoF

patterns more particularly contain an Implementation part that describes technical and conceptual variants that fit with

the variation point notion.

For example, the primary functionality of « Observer » pattern is the subject state modification including observers

automatic update, allowed by an implicit notification. However, Implementation item discusses the fact that the state

modifier (here the client) can be in charge of notifying the observers, more precisely by calling the notify method.

According to our approach we can deduct a variation point around observers notification, which distinguishes two

alternative variants: implicit notification and explicit notification. Figure 6 illustrates the « Observer » variable

functional view.

Figure 6. Observer: variable functional view

Use cases being specified, it is necessary to complete the mini-system with dynamic and static aspects, considering

the previously defined variability.

3.3. DYNAMIC VARIABILITY

UML2 allows sequence diagrams inclusion, thanks to the interaction fragment reference mechanism. This feature is

used in our work to express dynamic variability including variant sub-sequences into high-level ones, keeping an overall

visibility. It also allows expressing common parts of the dynamic view, i.e. from parts which do not correspond to

variant or variation points.

Any variation point from functional view must be represented by an interaction fragment referencing variant

interactions (and may detail common sequences). In order to guarantee a coherent specification, a sequence is

recommended to have the same name as the use case it explicits. Moreover, <<variation>> and <<variant>> stereotypes

are also transposed on the interaction fragments (see Figure 7).

Using this construction rule, a variable dynamic view of « Observer » can be realized. Figure 7 focuses on subject

modification functionality. The two variants (implicit notification and explicit notification) reference notify (see Figure

3) while the high-level sequence (subject modification) contains common messages. In this case, no specific messages

are included into the variation point (observers notification).

Figure 7. Variable sequence diagram of “subject modification”

3.4. STATIC VARIABILITY AND GENERICITY

Static contributions must be considered to complete the specification of the mini system. The proposal here is

different from a classical system construction because a static model is given for each specified use case.

Thus, the static structure is disseminated into several fragments which will be assembled to form a traditional static

view at imitation time, according to the variant choices made by the designer. Each variant considered in variation or

more generally in a functionality should be represented in the corresponding fragment, including the affected properties

(attributes, methods, associations…). Note that most of static features can be deducted from the dynamic view. To

complete « Observer »’s system, Figure 8 presents static fragments for subject modification, observers notification,

explicit notification, implicit notification and observers management.

In Figure 8, notify visibility is different regarding to the considered fragment. An explicit notification implies a

public method to allow external call (see message 4 in Figure 7). On the other hand, an implicit notification implies a

protected method. It is not possible, at observers notification level, to define this method’s visibility.

Figure 8. Observer: static fragments

These fragments can be re-used in their actual state. While choosing the implicit notification variant, notify is already

protected. During the imitation process, a merge operation between “selected” fragments can construct the re-used static

view. However, these class diagrams are not totally locked: as said in 2.3, the information system designer will have to

“fill-up” the holes specified by <<TODO>> notes, as for example the subject state properties and private methods.

Other generic properties still need to be expressed, as the fact that a designer may have to define several concrete

observer classes. A previous approach, presented in (Arnaud et al., 2004), extends UML elements with meta-properties

expressing genericity: for example, a boolean meta-property on class elements, to precise if a class can be imitated more

than once (see duplicable=true, Figure 8).

4. Imitation process

The previous section has shown how a pattern engineer can add variability and genericity to the pattern solution

within what is called an imitable model (mini-system), composed of three complementary views. We present in the

following the imitation process which will allow the application engineer to re-use this specification for the construction

of an information system.

A traceable process is proposed, which will guide the designer from pattern choice (thus imitable model) to

integration of this imitation in order to complete an information system (see. Figure 9). This process is composed of two

sub-processes: the reduction process and the application process. Thereafter, only general aspects of these two processes

are presented.

subject modification observers notification (<<variation>>)

explicit notification

(<<variant>>)
observers management

implicit notification

(<<variant>>)

Figure 9. Imitation process

4.1. REDUCTION PROCESS

The reduction process is divided into two activities:

– The Pattern choice consists in the selection of the pattern the designer wants to re-use. The solution of a pattern is

called imitable model and is composed of three variable views: functional, dynamic and static (see §3).

– The reduction activity allows the designer to choose, through the functional view, the variants he wants to imitate,

evicting the un-useful ones (Figure 10, top-left corner). This selection implies other evictions in dynamic and static view

of the imitable model (Figure 10, middle). It then allows, for each view kind, to automatically reduce the imitable

model into an imitated model (in the adaptable state) corresponding to the specific variant combination the system

designer needs (Figure 10, top right corner and bottom). We can consider the imitated model (in adaptable state) as the

pattern’s better solution for the designer problem.

4.2. APPLICATION PROCESS

This process is composed of three activities which can be iteratively executed.

– Adaptation allows the designer to adapt the imitated[adaptable] model while remaining conform with genericity

rules. For example, the class names might fit with the imitation context. In Figure 11 Subject was renamed into

Distribution and Concrete_Observer has been imitated into HistoDiag and SectorDiag (duplicable=true). The obtained

model is called imitated model, in adapted state.

– Resolution consists in TODO notes treatment. In our example it can deal with implementing the subject state and

its private modification method (see Figure 4, right part). In Figure 11, this note has been resolved thanks to four

attributes (north, south, east, west) and a complete specification of updateValues(). Figure 11 also shows that some

resolution may be realized only during integration activity.

– Integration merges imitated[adapted] model specification into the target information system. An information

system is thus seen as a whole set, but also as original specifications corresponding to the know-how of the designer.

Integration has been partially treated in (Arnaud et al., 2005) where two integration operators are proposed: by

delegation and fusion.

Reduction process

Application process

Imitated Model

[adaptable]

Imitated Model

[adapted]

Pattern system

Imitable model

pattern choice

resolution

adaptation

integration

reduction

IS Model

 [traceability end]

Figure 10. Reduction of Observer’s imitable model to an imitated[adaptable] model

Figure 11. Static view of a imitated[adapted] model

Manual choice

subject modification observers notification

explicit

notification
observers implicit

notification

Implications (deducted)

Reduction (automatic)

Imitable model

5. Related works

Works aiming at pattern solution enhancement in order to guarantee a correct re-use can be characterized among

several criteria. Three of them are presented here.

Specifications completeness. In most works (Meijler et al., 1997), (Arnaud et al., 2004), the only static aspects

(classes, attributes, associations) are focused. (Albin-Amiot et al., 2001) consider some dynamic aspects thanks to a

more pattern-specific UML-based meta-model. For instance, the meta-class PDelegatingMethod is used to specify that

a method realizes delegation. Code generation is there an assumed goal. In (France et al., 2004), static view (Structural

Pattern Specification) and dynamic view (Interaction Pattern Specification) are jointly processed.

Variability expression. (Budinsky et al., 1996), (Sunyé, 1999) and (Le Guennec et al., 2000) deal with pattern

implementation variants. These works clearly correspond to our reduction activity. Although functional variability has

not been used for pattern-based applications it is actually explored in research fields like product lines (Ziadi et al.,

2005) or requirements engineering (Bennasri, 2005),

UML metamodel extension. Due to length restrictions our UML extensions proposed to express variability and

genericity have not been detailed. Many approaches (Meijler et al., 1997), (France et al., 2004) lead to a specific

extension for each pattern. The goal here is to extend UML with general concepts to be applied on any pattern.

6. Conclusion

This paper proposes a re-use process for object-oriented design patterns considering both generic and variable

aspects of the solutions. The first benefits of our approach deals with pattern engineer’s job, allowing him to complete

the textual discussion about his pattern’s variability expressing it within the solution itself. In the other hand, he also can

specify generic aspects within the pattern solution. Theses generic and variable solutions are expressed using a three-

view (functional, dynamic, static) mini-system called imitable model.

Thanks to the functional view (a use case model) the information system designer can reduce the imitable model by

selecting some specified variants. This operation provides him a specific solution (called imitated and adaptable model)

he can apply to his context through three activities: adaptation (directed by generic properties), resolution (completing

specification holes) and integration (introducing the imitation result into a target information system).

The imitable model specification requires a notable investment from the pattern engineer. Nevertheless, it is also

profitable for identifying and structuring the variable facets of his main solution and maybe reconsidering the main

problem, enhancing the pattern reusability spectrum. From re-users side, a system designer that re-uses such patterns is

guided through a highly automatizable imitation process bringing traceability (imitable model, imitated model with

adaptable and adapted states) and allowing intelligent rollbacks.

Our further work will deal with imitation process instrumentation (using model transformation approaches) and its

generalisation to analysis and business patterns.

7. References

Albin-Amiot H., Guéhéneuc Y.G., « Meta-modeling Design Patterns : application to pattern detection and code synthesis »,

Proceedings of ECOOP Workshop on Automating Object-Oriented Software Development Methods, June 2001.

Arnaud N., Front A., Rieu D., « Deux opérateurs pour l’intégration d’imitations de patrons », Congrès INFORSID’05, Mai 2005.

Arnaud N., Front A., Rieu D., « Une approche par méta-modélisation pour l’imitation des patrons », Congrès INFORSID’04 , Mai

2004.

Bachmann F., Bass L., « Managing variability in software architecture », ACM SIGSOFT Software Engineering Notes, Volume 26,

n°3, Mai 2001

Bennasri S., Une approche intentionnelle de représentation et de réalisation de la variabilité dans un système logiciel, Thèse de

doctorat, Université de Paris I, Février 2005.

Budinsky, F.J., M.A. Finnie, J.M. Vlissides et P.S. Yu, « Automatic code generation from design patterns”. IBM Systems Journal,

1996

Clauss M., « Generic modeling using UML extensions for variability », OOPSLA 2001, Workshop on Domain Specific Visual

Languages, pages 11-18, Septembre 2001.

Czarnecki K., Eisenecker U. W., Generative Programming – Methods, Tools and Applications, Addison-Wesley, 2000.

France R.B., Dae-Kyoo K., Sudipto G., Eunjee S., « A UML-Based Pattern Specification Technique », IEEE transactions on

software engineering, vol. 30, no. 3, March 2004

Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns : Element of Reusable Object-Oriented Software, Addison-Wesley

professional computing series, 1995.

Kang K., Cohen S., Hess J., Novak W., Peterson S., Feature-Oriented Domain Analysis (FODA) feasibility study, Technical report

CMU/SEI-90-TR-21, Software Engineering Insitute, Carnegie Mellon University, Novembre 1990

Le Guennec A., Sunyé G., Jézéquel J.M., « Precise modeling of design patterns », Proceedings of UML 2000, volume 1939 of

LNCS, pages 482--496. Springer Verlag, 2000.

Meijler T.D., Demeyer S., Engel R., « Making design patterns explicit in Face », European Software Engineering Conference, 1997.

Object Management Group, « Unified Modeling Language : Superstructure », version 2.0, Août 2005.

Sunyé, G., « Génération de code à l'aide de patrons de conception », Langages et Modèles à Objets - LMO'99, Villefranche s/ mer,

1999.

Van der Maβen T., Lichter H., « Modeling variability by UML use case diagrams », International Workshop on Requirements

Engineering for Product Lines (REPL’02), pages 19-25. AVAYA labs, Septembre 2002.

Van Grup J., Variability in Software Systems, the key to software reuse, Licentiate Thesis, University of Groningem, Sweden, 2000.

Ziadi T, Jézéquel J.M., « Manipulation de lignes de produits logiciels : une approche dirigée par les modèles », Ingénierie Dirigée

par les Modèles (IDM’05), Mai 2005.

