Design Patternsfor Device Driver design

Name
The name of this pattern is “Three Tiered Architectpedtern for device driver design”

Context

In the world of embedded systems, device drivers have begenifor a long time now.
This is an architectural pattern for designing a device doyeiving an example of a
serial communication driver.

Problem

An important challenge in developing them is to keep tlsggddlexible so that any
future changes/upgrades in hardware or the business ldge iral-time application can
be easily done without affecting the other componentiseofiriver.

Forces

During the development phase of a project there is @haaghance of requirements
getting changed on the business logic side and the needéotiheacode generic enough
so that it can be ported to other future hardware upgratespresents a challenge for
the software/firmware engineer to accommodate foretpessibilities in the design on
one hand by grouping things that could change together whildiag@ode complexity,
code bloat and system inefficiency on the other. Fortgrdaxibility in design one has
to group things that typically change together by crgaifferent layers of abstraction,
but this in turn can slow down the system becausecoéased number of function calls
through different layers. Hence an optimum number sfrabtions needs to provided so
that a balance is reached between design flexibility gstes efficiency in real time
systems.

Solution

The solution is to design a three tiered architectutedik@es the device driver code
into the three abstractions or groups: Applicatiorle8ystem level and Low level. If
the hardware changes then the code should be modifie@tothig Low level or
conversely if the business requirements change thgrtlmnbpplication code changes.
The system level code provides access functions t@thél/el code for the application
level code. The application level code cannot directlytba low level code. This way
we can achieve the aim of grouping code that typicaiyngbs together. This
architecture is shown in the Figure 1.

Figure 1: Three Tiered Architectural pattern for device driver design

Application
Thread #1

Application
Thread #2

Application
Thread # N

Application Level

Synchronized access to Driver via Adapter

Adapter

<<Singleton>>

System Level

- Driver Data
Utlllty <<Singleton>> Buffer

Low Level

Resulting Context

This pattern divides the code into three layers sothigabusiness logic is separated from
the low level hardware specific code and with Systesallproviding the necessary
bridge in between. However the design can still blactsred to make it more efficient
especially at the Low level where the time sensitnterrupt handling occurs. The
following pattern aims to address this deficiency.

Pattern
The name of this pattern is “Friendship Zone”

Context

The previous pattern showed how the architecture of theeldviver could be designed
so that we could have flexible design to accommodate fité&riure changes in
business requirements and hardware. However, therélbsgstem inefficiencies

related to fast data access especially for code &ystem level and Low level. This is
especially a concern for parts of the code that semieerupts. Due to data
encapsulation at the Low level additional functiorischéve to be made to access data
members of other classes. This brings in additionahdgtand code bloat into the system
and may be unacceptable for several real time systems.

Problem
The problem is how make the three tiered architecturtdnogpresented earlier more
efficient by providing faster data access at the Systesl And Low level.

Forces

From a truly data encapsulation point of view each bfasdule should protect its data
by either keeping it private or providing the appropriate adoessions. However for
time-critical and space starved real time embedded sygtesncould be a concern
because of additional time taken to make a functidracal the code bloat due to
additional data access functions.

Hence we need a pattern that addresses all the alsoes ir it to be successfully
applied to the design of a device driver which has to heesit, not take too much code
space and at the same time be modularized enough thatdbaurges to the code in one
component of it can be made easily without affectimgather parts.

Solution

The solution has to balance the opposing forces ofafai@psulation and system
efficiency. This can be achieved by using the “Friend”uesatn C++ which allows one
class to access the private data of the other if ttex ld¢clares the former to be its
“Friend”. This removes the need of having additional fiomctalls and at the same time
keeps the data of the class concerned hidden from allliee daisses except its friends.
In the pattern the author prescribes a “Friendship Zbaeiieen the system level and
Low level abstractions of the driver code. It is up ®itidividual firmware engineer to
decide how exactly the friendships have to be estadliseBveen the classes in these
two levels to find an effective balance between th@uarcompeting forces mentioned
in the earlier section. An example is presented irs¢fation “Sample Implementation”.
In C, one could use globals in the Friendship Zonedstef data access.

Figure 2: Friendship Zone pattern overlaid on the 3 tier Device Driver pattern

Application Application Application
Thread #1 Thread #2 Thread # N

Application Level

Synchronized Access to Driver via Adapter

Adapter

e
one <<Singleton>> . 10“
65‘(\‘\? PRY 5‘(\\Q
g\e“ e System Level
- - - - - R T R - - -~ - - - -
_700° 9 19¢
e oS
. e . ! Data
Utility Driver
_ Buffer
<<Singleton>>

Low Level

Resulting Context
The Friendship Zone pattern balances the remaining irféies that persist after
implementing the three tiered architectural pattern.

Sample | mplementation

Figure 3 presents an object-oriented design for a semaimzinication Driver which
implements this pattern. The LTBDriver is a Singlettass, which declares LTB
Adapter to be its “Friend”. Since LTBDriver class implents the Singleton pattern, it
guarantees that there will be one and only instance ldéitce for the LTB hardware
resource there is only one driver and access to that dsitlerough the LTBAdapter
class. The LTBAdapter class controls all accessead B Hardware resource and
implements both the Adapter and Singleton pattern.r@ghglication classes like the
tFrameBuilder class, tLTBAcquisition class and the t$oopeComm class use it to
access the LTB resource. They do not have direcsad¢oehe LTB driver. All methods
of the LTB Driver are private and can only be accesseatslifFriend” the LTBAdapter.
This guarantees that if by any chance some piece of cddagounsly tries to call a
function on the LTBDriver, it would cause a compilee error, which is better than a
run-time error. The LTBAdapter class uses a semapha@ynthronize access to the
shared LTB resource by all the application threads. TIH& driver uses a Utility class
Endian and a Data Buffer class LTBCommBuffer to perfasntask.

Figure 3: Class Diagram to show the design pattern for the Serial Communication Driver

«Singleton» k=3 «Singleton» = «Singleton»
tFramebuilder tLTBAcquisition tToolscopeComm
& Itb_adap:LTBAdapter &l Itb_adap:LTBAdapter Itb_adap:LTBAdapter
Application
Level Code
1 1 1
1
«Singleton, Adapter»
LTBAdapter
1 & Itb_resource:TX SEMAPHORE=1 1
= System
Getlnstance():LTBAdapter
Level Code
1 1
Fr‘endS Friend4
1 1
«Singleton» «Singleton» «Singleton» _
Endian LTBDriver LTBCommBuffer Low-Level
Code

Itb_in_sem:TX_SEMAPHORE=0
Itb_out_sem:TX_SEMAPHORE=0

Friend6

& Getinstance():wid

E read2Bytes():void & Getinstance():LTBDriver
write2Bytes():void

LTBCommBuffer class encapsulates the buffer used w $erit and received messages.
Endian class encapsulates the various utility funstio convert from Big Endian to
Little Endian format, compute checksum, and compute €RC

Figure 4: Sequence Diagram to show the working for the Serial Communication

‘tToolscopeC :LTBAdapter :LTBDriver :LTBCommBu :Endian
omm ffer

GetLTBResource() ‘

tx_semaphore_get(0)

sendLTBCommand() ‘

|
|
T |

read2bytes() ‘

CheckLTBMsgQuality ()
OK()

—
—

‘ response()
oV

——]

-

response()

-
I
P

L
releaseL TBResource()

|

|

|
| |
1 1 1

tx_semaphore_put()

"

|

|

|

|

|
1

NOTE: LTB is Schlumberger’s proprietary serial communasaprotocol.

The Sequence Diagram in Figure 4 shows the sequence of thagrftappen in a typical
function call made by the tToolscopeComm applicatioeatiron the LTBAdapter.
Figures 3 and 4 were made using Rhapsody 6.0 for C++ by llegiw(logix.com). As
is evident from these UML diagrams, the low-level innpdstation details of the serial
communication protocol like sending and receiving messagbgpredefined timeouts,
retires, inter-character delays and checks for tresagge quality are completely
transparent to the application level classes. Hdmegdo not know any more than they
need to. However, at the low-level quick access toidatere important and hence
“Friend” classes are used to save a time taken to makédu call to access another
class’s data.

A different approach to this issue could be to add anothss called LTBProtocol which
has all the LTB protocol specific information encaptedan it and making the
LTBDriver more generic by changing it to just send and vechkytes. Strictly from an
Object Oriented Analysis and Design (OOAD) point of vidsat would be a better
approach. However from a more practical point of viewweeld not be having several
protocols that are going to be supported by the system beretpded. There are only
two protocols being supported and there is a very slim priitlyabat there are going to
be several more in future. Hence the otherwise valideronof code duplication since
each protocol has its own driver is really not thatoad in this case. Also at the end of
the day by adding another class to encapsulate the Ser@hunication Protocol
definition is akin to just adding another layer of aligtom between the system and the
low level code. There is theoretically no limit tovinabstract and generic we may make
our code and the decision to stop at a particular levebstiaction is typically governed
by practical project related considerations. In this t@aséng three layers of abstraction
i.e. Application level code, System level code and level code was considered
appropriate by the author.

References

1. Internal Schlumberger technical literature.

2. E. Gamma, R. Helm, R. Johnson and J. Vlissides, tipeBatterns: Elements of
Reusable Object-Oriented Software”

3. “Singleton Pattern & its implementation with C++” fagrajeshvs, Link:
http://www.codeproject.com/cpp/singletonrvs. a@ecessed orJune 2006)

