
Design Patterns for Device Driver design 
 
 
Name 
The name of this pattern is “Three Tiered Architectural pattern for device driver design” 
 
Context 
In the world of embedded systems, device drivers have been written for a long time now. 
This is an architectural pattern for designing a device driver by giving an example of a 
serial communication driver. 
 
Problem 
An important challenge in developing them is to keep the design flexible so that any 
future changes/upgrades in hardware or the business logic in the real-time application can 
be easily done without affecting the other components of the driver. 
 
Forces 
During the development phase of a project there is always a chance of requirements 
getting changed on the business logic side and the need to make the code generic enough 
so that it can be ported to other future hardware upgrades. This presents a challenge for 
the software/firmware engineer to accommodate for these possibilities in the design on 
one hand by grouping things that could change together while avoiding code complexity, 
code bloat and system inefficiency on the other. For greater flexibility in design one has 
to group things that typically change together by creating different layers of abstraction, 
but this in turn can slow down the system because of increased number of function calls 
through different layers. Hence an optimum number of abstractions needs to provided so 
that a balance is reached between design flexibility and system efficiency in real time 
systems. 
 
Solution 
The solution is to design a three tiered architecture that divides the device driver code 
into the three abstractions or groups: Application level, System level and Low level. If 
the hardware changes then the code should be modified only at the Low level or 
conversely if the business requirements change then only the application code changes. 
The system level code provides access functions to the low level code for the application 
level code. The application level code cannot directly call the low level code. This way 
we can achieve the aim of grouping code that typically changes together. This 
architecture is shown in the Figure 1. 
 



Figure 1: Three Tiered Architectural pattern for device driver design 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Resulting Context 
This pattern divides the code into three layers so that the business logic is separated from 
the low level hardware specific code and with System level providing the necessary 
bridge in between. However the design can still be re-factored to make it more efficient 
especially at the Low level where the time sensitive interrupt handling occurs. The 
following pattern aims to address this deficiency. 
 
Pattern 
The name of this pattern is “Friendship Zone” 
 
Context 
The previous pattern showed how the architecture of the device driver could be designed 
so that we could have flexible design to accommodate potential future changes in 
business requirements and hardware. However, there are still system inefficiencies 
related to fast data access especially for code at the System level and Low level. This is 
especially a concern for parts of the code that service interrupts. Due to data 
encapsulation at the Low level additional function calls have to be made to access data 
members of other classes. This brings in additional latency and code bloat into the system 
and may be unacceptable for several real time systems. 
 
Problem 
The problem is how make the three tiered architectural pattern presented earlier more 
efficient by providing faster data access at the System level and Low level. 
 
 
 
 

Driver
<<Singleton>>

Data
Buffer

Utility

Adapter
<<Singleton>>

Application
Thread #2

Application
Thread #1

Application
Thread # N

Application Level

System Level

Low Level

Synchronized access to Driver via Adapter

Driver
<<Singleton>>

Data
Buffer

Utility

Adapter
<<Singleton>>

Application
Thread #2

Application
Thread #1

Application
Thread # N

Application Level

System Level

Low Level

Driver
<<Singleton>>

Data
Buffer

Utility

Adapter
<<Singleton>>

Application
Thread #2

Application
Thread #1

Application
Thread # N

Application Level

System Level

Low Level

Synchronized access to Driver via Adapter

 



Forces 
From a truly data encapsulation point of view each class/module should protect its data 
by either keeping it private or providing the appropriate access functions. However for 
time-critical and space starved real time embedded systems this could be a concern 
because of additional time taken to make a function call and the code bloat due to 
additional data access functions. 
 
Hence we need a pattern that addresses all the above issues for it to be successfully 
applied to the design of a device driver which has to be efficient, not take too much code 
space and at the same time be modularized enough that future changes to the code in one 
component of it can be made easily without affecting the other parts. 
 
Solution 
The solution has to balance the opposing forces of data encapsulation and system 
efficiency. This can be achieved by using the “Friend” feature in C++ which allows one 
class to access the private data of the other if the latter declares the former to be its 
“Friend”. This removes the need of having additional function calls and at the same time 
keeps the data of the class concerned hidden from all the other classes except its friends. 
In the pattern the author prescribes a “Friendship Zone” between the system level and 
Low level abstractions of the driver code. It is up to the individual firmware engineer to 
decide how exactly the friendships have to be established between the classes in these 
two levels to find an effective balance between the various competing forces mentioned 
in the earlier section. An example is presented in the section “Sample Implementation”. 
In C, one could use globals in the Friendship Zone for faster data access. 
 
Figure 2: Friendship Zone pattern overlaid on the 3 tier Device Driver pattern 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Application
Thread #2

Application
Thread #1

Application
Thread # N

Application Level

System Level

Low Level

Adapter

Driver
Data

Buffer
Utility

Friendship Zone

Friendship Zone

Friendship Zone

Friendship Zone

Synchronized Access to Driver via Adapter

<<Singleton>>

<<Singleton>>

Application
Thread #2

Application
Thread #1

Application
Thread # N

Application Level

System Level

Low Level

Adapter

Driver
Data

Buffer
Utility

Friendship Zone

Friendship Zone

Friendship Zone

Friendship Zone

Synchronized Access to Driver via Adapter

<<Singleton>>

<<Singleton>>

 



 
 
Resulting Context 
The Friendship Zone pattern balances the remaining inefficiencies that persist after 
implementing the three tiered architectural pattern. 
 
Sample Implementation 
Figure 3 presents an object-oriented design for a serial communication Driver which 
implements this pattern. The LTBDriver is a Singleton class, which declares LTB 
Adapter to be its “Friend”. Since LTBDriver class implements the Singleton pattern, it 
guarantees that there will be one and only instance of it. Hence for the LTB hardware 
resource there is only one driver and access to that driver is through the LTBAdapter 
class. The LTBAdapter class controls all access to the LTB Hardware resource and 
implements both the Adapter and Singleton pattern. Other application classes like the 
tFrameBuilder class, tLTBAcquisition class and the tToolscopeComm class use it to 
access the LTB resource. They do not have direct access to the LTB driver. All methods 
of the LTB Driver are private and can only be accessed by its “Friend” the LTBAdapter. 
This guarantees that if by any chance some piece of code maliciously tries to call a 
function on the LTBDriver, it would cause a compile-time error, which is better than a 
run-time error. The LTBAdapter class uses a semaphore to synchronize access to the 
shared LTB resource by all the application threads. The LTB driver uses a Utility class 
Endian and a Data Buffer class LTBCommBuffer to perform its task.  
 
Figure 3: Class Diagram to show the design pattern for the Serial Communication Driver 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LTBDriver
«Singleton»

ltb_in_sem:TX_SEMAPHORE=0
ltb_out_sem:TX_SEMAPHORE=0

GetInstance():LTBDriver

tFramebuilder
«Singleton»

ltb_adap:LTBAdapter

tLTBAcquisition
«Singleton»

ltb_adap:LTBAdapter

tToolscopeComm
«Singleton»

ltb_adap:LTBAdapter

LTBCommBuffer
«Singleton»

GetInstance():void

Friend61

Endian
«Singleton»

read2Bytes():void
write2Bytes():void

1

LTBAdapter
«Singleton, Adapter»

ltb_resource:TX_SEMAPHORE=1

GetInstance():LTBAdapter

1

1

1

1

1

1

Friend4

1

1

Friend5

1

1

 

Application 
Level Code 

System 
Level Code 

Low-Level 
Code 



 
LTBCommBuffer class encapsulates the buffer used to hold sent and received messages. 
Endian class encapsulates the various utility functions to convert from Big Endian to 
Little Endian format, compute checksum, and compute CRC etc. 
 
Figure 4: Sequence Diagram to show the working for the Serial Communication 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

:tToolscopeC
omm

:LTBAdapter

GetLTBResource()

sendLTBCommand( )

response()

releaseLTBResource()

tx_semaphore_put()

tx_semaphore_get(0)

:LTBDriver

StartTX( )

GetResponse( )

response()

:LTBCommBu
ffer

CheckLTBMsgQuality()

OK()

:Endian

write2bytes()

read2bytes()

 



 
NOTE: LTB is Schlumberger’s proprietary serial communication protocol. 
 
The Sequence Diagram in Figure 4 shows the sequence of events that happen in a typical 
function call made by the tToolscopeComm application thread on the LTBAdapter. 
Figures 3 and 4 were made using Rhapsody 6.0 for C++ by Ilogix (www.ilogix.com). As 
is evident from these UML diagrams, the low-level implementation details of the serial 
communication protocol like sending and receiving messages with predefined timeouts, 
retires, inter-character delays and checks for the message quality are completely 
transparent to the application level classes. Hence they do not know any more than they 
need to. However, at the low-level quick access to data is more important and hence 
“Friend” classes are used to save a time taken to make function call to access another 
class’s data. 
 
A different approach to this issue could be to add another class called LTBProtocol which 
has all the LTB protocol specific information encapsulated in it and making the 
LTBDriver more generic by changing it to just send and receive bytes. Strictly from an 
Object Oriented Analysis and Design (OOAD) point of view that would be a better 
approach. However from a more practical point of view we would not be having several 
protocols that are going to be supported by the system being developed. There are only 
two protocols being supported and there is a very slim probability that there are going to 
be several more in future. Hence the otherwise valid concern of code duplication since 
each protocol has its own driver is really not that critical in this case. Also at the end of 
the day by adding another class to encapsulate the Serial Communication Protocol 
definition is akin to just adding another layer of abstraction between the system and the 
low level code. There is theoretically no limit to how abstract and generic we may make 
our code and the decision to stop at a particular level of abstraction is typically governed 
by practical project related considerations. In this case having three layers of abstraction 
i.e. Application level code, System level code and Low-level code was considered 
appropriate by the author. 
 
References 
 

1. Internal Schlumberger technical literature. 
2. E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of 

Reusable Object-Oriented Software” 
3. “Singleton Pattern & its implementation with C++” by vsrajeshvs, Link: 

http://www.codeproject.com/cpp/singletonrvs.asp  (accessed on 1st June 2006) 


