Even more patter nsfor secure oper ating systems

Eduardo B. Fernandez, Tami Sorgente, and Maria M Larr&atioe
Dept. of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL
{ed tami, maria@cse.fau.eglu

Abstract

An operating system (OS) interacts with the hardwai@ supports the execution of all the

applications. As a result, its security is very catidMany of the reported attacks have occurred
through the OS (kernel and utilities). The security ofviddial execution time actions such as

process creation, memory protection, and the generaitesture of the OS are very important

and we have previously presented patterns for these foscide present here patterns or the
representation of processes and threads, emphasizingébearity aspects. We also present a
pattern to control the use of commands by administrators

1 Introduction

The operating system (OS) acts as an intermedianyelet the user of a computer and its
hardware. The purpose of an OS is to provide an environment chwisers can execute
programs in convenient and efficient manner [Sil05]. OSdroband coordinate the available
resources to present to the user an abstract machineceorntrenient features. Clearly, the
security of operating systems is very critical sinbke ©S supports the execution of all the
applications as well as access to persistent data.

We have presented several patterns for different aspédte security of operating systems

[Fer02, Fer03, Fer05, FerO6a, Sch06]. These are patterndedtéor designers of such systems
but clearly are useful for teaching security, we use thatterns in our security courses and in a
coming textbook [FerO6b]. We present here security pettéar three additional aspects. We
assume the reader to be familiar with basic securibgejts [FerO6b, Gol06, Pfl03]. Figure 1

shows the relationships of the new patterns with respeeach other and with respect to some
previously presented patterns (the patterns presentedrbeskoavn with double margins). Their

thumbnail descriptions are given below, starting withttiiee new patterns:

Secure Process /Thread. How do we make the execution of a process secure? AgsreEe
program in execution and the unit of execution in someabipgr systems. A secure process is
also a unit of execution isolation as well as a holderigifts to access resources. A variant
describes how to make secure the execution of a thredlkeAd is a lightweight process. A
secure thread is a thread with controlled access.

Virtual Address Space Structure. How do we select the virtual address space for OSs that
have special security needs? Some systems emphasagoigoothers information sharing,
others good performance.

Administrator Hierarchy. How do we limit access rights for administratde&?ine a hierarchy
of system administrators with controlled rights usadRole-Based Access Control (RBAC)
model.

Virtual Address Space
Structure

uses Controlled
Virtual Address Space

executes in)
defines access

Administration

faster context switch H ierarchy
\ 7

Secure Thread

Secure Process

authorized by

created by

RBAC

(Role Based Access Control)

define rights

LControlled Process}

Creator
Reference
Monitor

Figure 1. Pattern diagram for the patterns discussed hetbeinrelationship to past patterns

specializes

Authorization

enforced by

Controlled Virtual Address Space [Fer02]. How to control access by processes to specific
areas of their virtual address space (VAS) according det af predefined rightsPivide the
VAS into segments that correspond to logical units in phegrams. Use special words
(descriptor$ to represent access rights for these segments.

Controlled-Process Creator [Fer03]. How to define the rights to be given to a naacess?
Define rights as part of its creation. Give it a prewaf subset of its parent’s rights.

Authorization [SchO06]. How do we describe who is authorized to acg@ssific resources in a
system? Keep a list of authorization rules describing Wwhe access to what and how.
Authorization describes the rules of an Access matagel.

Role-Based Access Control [Sch06]. How do we assign rights to people based on their
functions or tasks? Assign people to roles and ggresito these roles so they can perform their
tasks.

Reference Monitor [Sch06]. How to enforce authorizations when a procegsests access to
an object? Define an abstract process that interediptequests for resources from processes
and checks them for compliance with authorizations.

Section 2 presents the Secure Process pattern and astwe Secure Thread. The Virtual
address space structure is described in Section 3, whilerfsdrative roles are presented in
Section 4.

2 Secure Process

How do we make the execution of a process secure? &ggdg a program in execution and the
unit of execution in some operating systems. A secureepsots also a unit of execution
isolation as well as a holder of rights to accessue®s.

21 Example

A group of designers in Company X built an operating systesndad not put any mechanisms

to control the actions of processes. This resulted acgsses being able to access the address
space and other resources of the other processes. lanfirenment we cannot protect the
shared information nor assure the correct executiomypeocess (their code and stack sections
may be corrupted by other processes).

2.2 Context

Typically, OSs support a multiprogramming environment withess user-defined processes
active at a given time. During execution it is essgiti maintain all information regarding the
executing process, including its curretatus(the value of the program counter), the contents of
the processor’'s registers, and the process stack wcmigtatemporary data (subroutine
parameters, return addresses, temporary variables, andgolvece recursive calls). All this
information is called th@rocess contextWhen a process needs to wait, the OS must save the
context of the first process and load the next profmssxecution, this is a context switch. The
saved process context is brought back when the prosessas execution.

2.3 Problem

We need to control the resources accessed by a procasg tisirexecution and protect its
execution data from other processes. Proper mainterdnu®cess execution is essential not
only for context switchingbut also for security in maintaining a separate structoweséch
execution.

The possible solution to this problem is constrained byaile@ving forces:

» If processes have unrestricted access to resourcgsdheinterfere with the execution of
other processes. We need to control what resources #megpacess. Processes should be
given only the rights they need to perform their fioret (need to know principle [GolO6,
Fer06D]).

» [Each process requires some data, a stack, space foréeynpariables, keeping status of its
devices and other information. All this information residle its address space and needs to
be protected.

24 Solution

Assign to each process a set of rights to acceseeimirces they need. Assign also a unique
address space to store all the data it needs during exeeastioell as data shared with other

processes. This protects processes from interferenca th® other processes, assuring
confidentiality and integrity of the data. In tReocessDescriptor, a data structure containing all

the information a process needs for its execution, addtibns to make execution secure,
specifically access to any resource must be expliaiibhorized. It may also be possible to add
resource quotas to avoid denial of service problems butdtpsres some global resource usage
policies.

Structure

Figure 2 shows aProcessDescriptor that contains the status of a process. Each
ProcessDescriptor has aSubject as owner with predefined rights for speciesources (these
rights are defined by the Authorization pattern). Morethiae ProcessDescriptor can be created,
corresponding to multiple executions BfogramCode, and describing different processes. A
uniqueVirtualAddressSpace is associated with each process (defined by the Cont\diltachl
Address Space pattern). The proc€ssle as well as the process Stack and any temporary data
are stored in the VirtualAddressSpamiethe process. The Process Descriptor defines explicit
rights for the process to access resources (theds righst be a subset of the subject’s rights).
These accesses are enforced by the Reference Monitempat

Dynamics

Figure 3 shows a sequence diagram for the use case “Accessurce”. The process request is
intercepted by the Reference Monitor which determinest ifsiauthorized (checkAccess
operation in the Right). If it is, the access prasee

2.5 Implementation

The Process Descriptor is typically called Processti@bBlock (PCB), or Task Control Block
(TCB), and includes references (pointers) to its codeiosecits stack, and other needed
information. There are different alternatives tlement data structures in general [NyhO5].
Records (structs in C) are typically used for the PB®akescriptor. The Process Descriptors of
the processes in the same state are usually linked togethelouble-linked list. The hardware
may include registers for some of the attributes ofRtecessDescriptor. For example, the Intel
X86 Series includes registers for typical attributes.r@lzge different ways to associate virtual
address space to a process [FerO6b]. There are alscediffvays of associating rights with a
new process, see the Controlled Process Creator i03Ferhe hardware architecture should
also restrict access to memory within the predefinegasifor each process.

The pattern models as shown describe directly modelsewswdjects have rights such as the
Access Matrix and Role-Based Access Control [FerOhO&c Some operating systems use
Multilevel (typically mandatory) models where the @ss of a process is decided by its level
with respect to the accessed resource [Sch06]. In ttex lzdse, the process instead of being
given a right has a tag or label that indicateseat®ll Resources have similar tags and the
Reference Monitor compares both tags.

2.6 Exampleresolved

After adding rights to a process representation eaatepsois constrained to access only those
resources for which it has rights. This protects eadegss from each other as well as their
virtual address spaces. The confidentiality and integrishafed data is protected as well.

enforces l Authorization pattern

]

ReferenceMonitor !
pattern | o ____ ¢ L_%_ ______ f Right *
soboooaod 1

' -
ProcessDescriptor 1 J_
U
id {subset}
program_counter (pc) ProcessRight | ---
data Controlled
open_files checkAccess Virtual
registers Address
stack Space pattern
child_processes L e T
pending_events ' !
accounting_info : 1 | VirtualAddressSpace 1
security_info o :
state | | boundaries I
1
1
1
create ' I
delete | TTTTTTTTOT 17T
store
resume . 1| ProgramCode
from

Figure 2.Class diagram for Secure Process

<<actor>> ‘ReferenceMonitor :ProcessRight ‘Resource
aProcess:

requestResource()

checkAccess()

yes

<
<

requestResource()

Figure 3. Sequence diagram for use case “Access a resource

2.7 Variant

Secure ThreadHow do we make the execution of a thread secure? gadhis a lightweight
process. A secure thread is a thread with controlleelsado some resources. Figure 4 represents
the addition of theThreadDescriptor to the secure process. One Process may have multiple
threads of execution. Each thread is represented byhieeadDescriptor. A unique
VirtualAddressSpace is associated with a process ad shared by peer thfEadsadRights
define access rights to the VAS.

Threat status includes typically a stack, a program couatel some status bits. There are
different ways to associate threads with a procef35]STypically, several threads are collected
into a process. Threads can be created with speakhges, e.g., POSIX in Unix, or through
the language, as in Java or Ada. Rights can be addedityxmicwe can use the hardware
architecture enforcement of the proper use of the pr@ress (see Known Uses).

2.8 Known uses

* Linux uses records for process descriptors. One ddritvées defines the process credentials
that define its access to resources [Nut03, Sil05]. Gehteries describe its owner (subject)
and process id.

* Windows NT and 2000. Resources are defines as objects (c&ebes). The process id is
used to decide access to objects [Sil05]. Each file obggta security descriptor which
indicates the owner of the file and an access cofistolhat describes the access rights for
the processes to access the file.

» Solaris threads have controlled access to resourcedeffii the application, e.g. when using
the POSIX library [SilO5].

* Operating systems running on Intel architectures can prbieetd stacks, data, and code by
placing them in special segments of the shared address (spdt hardware-controlled
access).

2.9 Consequences

This pattern has the following advantages:.

* ltis possible to give specific rights for resouraeeach process which makes it possible to
apply the least privilege principle.

* The process’ resources can be protected from other precbssause they are restricted to
access only authorized resources.

This pattern has the following disadvantage:
* There is some overhead in using a Reference Monitor twaen&ccesses.
It may not be clear what rights to assign toeach process

2.10 Related patterns

» Controlled Process Creator [Fer03]. This is the closslated pattern. At process creation
time rights are assigned to the process.

* Controlled Virtual Address Space [Fer02]. A VAS is asdiljtee each process that can be
accessed according to the rights of the process.

* Authorization [Sch06]. Defines the rights to accessusses.

* The Reference Monitor pattern, used to enforced the defiglets [Sch06].

Resource

ProcessDescriptor

data | __——=---1

fil ProcessRight
« | open_files

child_processes *

pending_events VirtualAddressSpace
accounting_info > :

security_info boundaries

!

ThreadDescriptor

""" ThreadRight
1

id

pc ProgramCode
registers

stack

Figure 4. Class diagram for Secure Thread

3 Virtual address space structure

Virtual memory allows the total size of the memorydudy processes to exceed the size of
physical memory. Upon use, the virtual address is trandtgtede Memory Management Unit
(MMU) to obtain a physical address that is used to aqaegscal memory. As indicated earlier,
to execute a process, the kernel creates a per-procesd address space. The organization of
each process’ virtual address space (VAS) has an effepedarmance and security. The
organization of the VAS is defined by the hardware architectHow do we select an
appropriate virtual space structure to obtain specifiaréggdeatures?

3.1 Example

We have a system running applications using images requiaigge graphic files. The
application also has stringent security requirementsnééel to decide on an appropriate VAS
structure

3.2 Context

Multiprogramming systems with a variety of users and apptins. Each process runs in its own

address space. Processes execute on behalf of usetstemels must be able to share memory
areas, other times must be isolated, and in all casaseed access control. Performance is also
an issue.

3.3 Problem
We need to select the virtual address space for procespesdd® on the majority of
applications. Otherwise, we can have mismatches thay result in poor security or
performance.

The possible solution is constrained by the followingdsrc

» [Each process needs to be assigned a relatively lar@tv'/Aold its data, stack, space for
temporary variables, variables to keep the status ofvisake and other information.

* In multiprogramming environments processes have diversereeggnts; some require
isolation, others information sharing, others good perfoo@a

» Data typing is useful to prevent errors and improve sgcuBieveral attacks occur by
executing data and modifying code [Gol06].

» Sharing between address spaces should be convenient. B¢éhpenformance may suffer.

3.4 Solution
Select from four basic approaches that differ in theaurity features:
* One address space per procégggure 5). The supervisor and each user process get their

own address spaces.

kernd users

a) ldea
User Supervisor
@ | VAs — @
Process Descriptor Process Descriptor
b) UML

Figure 5. One address space per process

 Two address spaces per procgfsgure 6). Each process gets a data and a code virtual
address space.

programdata progral
kernel
users data

a) ldea
rogram rogram
prog VAS prog
User T Supervisor
Process Descriptor ’ Process Descriptor
VAS
data data
b) UML

Figure 6. Two address spaces per process

* One address space per user process, all of them shared with one asjsthessor theéDS
(Figure 7). The OS (supervisor) can be shared betweeroaédgzes.

] s [
VAX/VMS

Intel 286...486

kernd

a) ldea

{1/2 size}

Process Descriptor

VAS

User Supervisor

b) UML
Figure 7. One address space per user process, all of hhesd svith one address space for the
oS

* A single-level address spac€igure 8). Everything, including files, is mapped to this
memory space.

Process Descriptorp— VAS
T
T*

User Supervisor

Resource

b) UML

Figure 8. A single-level address space

Use of one VAS per process has the following tardeoffs:

Good process isolation

Some protection against the OS

Simplicity

Sharing is complex (special instructions to cross spaeasegded).

Use of two VAS per process has the following tradeoffs

Good process isolation

Some protection against the OS

Data and instructions can be separated for better pangsibme attacks take advantage of
execution of data or modification of code). Data typsglso good for reliability.

A disadvantage is complex sharing plus rather poor addpas® utilization.

Use of one address space per user process, all of Haedsvith one address space for the OS
has the following tradeoffs:

Good process isolation

Good sharing of resources and services (browsers, meger$.

This is not the best with respect to security (the suparas complete access to the user
processes and it must be trusted).

Another disadvantage is that the address space avddaddeh user process has now been
halved

Use of a single-level address space has the followaupoffs:

Good process isolation

Logical simplicity

Uniform protection (all 1/0 is mapped to memory)

This is the most elegant solution (only one mechanismrotect memory and files), and
potentially the most secure if capabilities are also used.

10

» Itis hard to implement in hardware due to the largeestdspace required.

3.5 Implementation

The VAS is implemented by the hardware architecture. TBal€signer can choose one of the
architectures based on the requirements of the apphsaticcording to the tradeoffs discussed
above. In a particular case, the choice may be infeetnby company policies, cost,
performance, and other factors as well as security.

3.6 Known uses

* One address space per proceBee NS32000, WE32100, and Clipper microprocessors.

* Two address spaces per proceBsis is used in the Motorola 68000 series.

* One address space per user process, all of them shared with one agjthessor theDS.
This is used in the VAX series and in the Intel processor

* A single-level address spaddultics, IBM S/38, IBM S/6000, and HP’s PA-RISC use this
approach.

3.7 Consequences

In addition to the specific consequences described a®ptme solution we have the following

general consequence:

* Without hardware support it is not feasible to separagevitiual address spaces of the
processes. Most processors use register pairs or desiipat indicate the base (start) of a
memory unit and its length or limit. [Sil05].

3.8 Related patterns

* Secure Process

« Controlled Virtual Address Space [Fer02, Sch06]. A VAS sgmed to each process that
can be accessed according to the rights of the proTess/irtual Address Space Structure
complements that pattern.

4. Administrator Hierarchy
How do we limit the access rights of administratdd&®ne a hierarchy of system administrators
with rights controlled using a Role-Based Access CoRBIAC) model.

4.1 Example

Unix defines a superuser who has all possible rights. iEhec®nvenient, for example, when
somebody forgets a password, but allows hackers toytatatitrol the system through a variety
of implementation flaws. Through gaining access to tldenifistrator interface by logging
through an account assigned the Administrator role, amichail can create new Administrator
and User accounts, restrict their privileges and quotagsa their protected areas, and remove
their accounts.

4.2 Context

An operating system with a variety of users, conneci¢de Internet. There are commands and
data that are used for system administration and atzéssir use needs to be protected. This
control is usually applied through special interfaceler@& are at least two roles required to
properly manage privilegeddministratorandUser.

11

4.3 Problem

Usually, the administrator has rights such as crgatincounts and passwords, installing
programs, etc. This brings upon a series of security @nal A rogue administrator can do all
the usual functions and even erase the log to hide higstrac hacker that takes over
administrative power can do similar things. How do wetall the excessive power of
administrators to control rogue administrators or ha¢kers

The possible solution is constrained by the followingdsrc

* Administrators need to use commands that permit managertdre system, e.g., define
passwords for files, define quotas for files, and create arcounts. We cannot eliminate
these functions.

* Administrators need to be able to delegate domain of regdplites and privileges to
manage those domains. They also need the right to takk these delegations.
Otherwise, the system is too rigid.

* Administrators should have no control of system logs@ valid auditing would be
possible.

* Administrators should have no access to the operatitatalin the users’ applications.

4.4 Solution

Use the principle of separation of duty, where a useratgoerform critical functions unless in
conjunction with others. Separate the different adstrative rights into several hierarchical
roles. The rights for these roles allow the adniiaters to perform their administrative functions
and no more. Critical functions may require more tha@ administrative role to participate.

Structure

Figure 9 shows a hierarchy for administration roles. Tbi®ws the Composite pattern

[Gam95], i.e., a role can be simple or composed aofrotbles, defining a tree hierarchy. The
top-level administrator can add or remove administraibesy type and initialize the system but
should have no other functions. After that, administiain the second level control different
aspects, e.g. security or use of resources. Administraem further delegate their functions to
lower-level administrators. Some functions may regjtwo administrators to collaborate.

12

Administrator

addAdministrator %
removeAdministrator

. - m iteAdministrator
SimpleAdministrator CompositeAd N

init
addAdministrator *

removeAdministrator

Figure 9. Class diagram for Administrator Structure

4.5 Implementation

Define a top administrative role to with the only fuant of setting up and initializing the
system. This includes definition of roles, assignmemighits to roles, and assignment of users to
roles. Separate the main administrative functiorth@fsystem and define an administrative role
for each one of them. These define the second leviieohierarchy. Define further levels to
accommodate administrative units in large systems. Figdrehows a typical hierarchy. Here
the system administrator starts the system and doegentorm later actions, the second-level
administrator can perform set up and other functidres security administrator defines security
rights. Security Domain administrators define secuiritytheir domains. Other examples are
shown in Section 4.7.

4.6 Example resolved

Some secure Unix versions such as Trusted Solaris use th@aelppNow the superuser only
starts the system. During execution time the admindgiaiave restricted powers. If a hacker
takes over his functions he can do only limited damage.

4.7 Known uses

* AIX [Cam90] reduces the privileges of the system admirimtrdy defining five
partially-ordered roles: Superuser, Security Administratgkuditor, Resource
Administrator, and Operator.

* Windows Windows NT uses four roles for administrativevifgges: standard,
administrator, guest, and operator. A User Manager haseguoes for managing user
accounts, groups, and authorization rules.

» Trusted Solaris [Sun04] This is an extension of Soldris They use the concept of
Trusted Roles with limited powers.

» Argus Pitbull[Arg] Least privilege applied to all processes, including $bperuser. The
superuser is implemented using three roles: Systems ®§edDfficer, System
Administrator, and System Operator.

4.8 Consequences

13

The Administrator Hierarchy pattern has the followattyantages:

* If an administrative role is compromised, the attagiets only limited privileges. The
potential damage is limited.

* The reduced rights also reduce the possibility of misugsbdgdministrators.

* The hierarchical structure allows taking back control cb@promised administrative
function.

» The advantages of the RBAC model apply: simpler and fewdorization rules, flexibility
for changes, etc. [Sch06].

Possible disadvantages include:

» Extra complexity for the administrative structure.

» Less expediency. Performing some functions may involgee than one administrator.

* Many attacks are still possible; if someone misusedamnastrative right this pattern only
limits the damage. Logging can help misuse detection.

SystemAdministrator
init
addSecurityAdmin
addResourceAdmin
addOperator
removeSecurityAdmin
removeResourceAdmin
removeOperator

!

SecurityAdministrator ResourceAdministrator Operator
addSecurityDomainAdministrator
remove SecurityDomainAdministrator

!

SecurityDomainAdministrator

Figure 10. A typical administration hierarchy.

4.9 Related Patterns

This pattern applies the principles of least privilege separation of duty (some people consider
them patterns also). Each administrator role isrgmaly the rights it needs to perform its duties
and some functions may require collaboration.

Administrative rights are usually organized according RBAC model, a pattern for this model
is given in [Fer01, SchO06].

14

Acknowledgements
Our shepherd, Juha Parssinen, provided valuable suggestibreomisaderably improved this
paper. Paris Avgeriou gave valuable comments to an eandjow of this pattern.

References
[Arg] Argus Systems Group, “Trusted OS security: Principled practice”,
http://www.argus-systems.com/products/white_paper/pitbull

[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Sotachevl. Stal. Pattern-
Oriented Software Architecture: A System of Pattevitdume 1. J. Wiley, 1996.

[Cam90] N.A.Camillone , D.H.Steves, and K.C.Witte, “Aterating system: A trustworthy
computing system”, ilBM RISC System/6000 Technolp§A23-2619, IBM Corp., 1990, 168-
172.

[Fer02] E.B.Fernandez, "Patterns for operating systesesa control'Procs. of PLoP
2002 http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

[Fer03] E. B. Fernandez and J. C. Sinibaldi, “More pastéor operating system access
control”, Proc. of the 8 European conference on Pattern Languages of Programs, EuroPLoP
2003 http://hillside.net/europlop381-398.

[Fer05] E.B.Fernandez and T. Sorgente, "A pattern languagedure operating system
architectures” Procs. of thésth Latin American Conference on Pattern Languages of Programs,
Campos do Jordao, Brazil, August 16-19, 2005.

[FerO6a] E.B.Fernandez, “Operating system accessatgri@hapter 10 in [Sch06].

[Fer06b] E.B.Fernandez, E. Gudes, and M. Olivigre design of secure systenasbe
published by Addison-Wesley.

[Fri98] A. Frisch,Essential Windows NT System AdministratiofReilly and Associates, Inc.,
Sebastopol, California, 1998.

[Gam95] E. Gamma, R. Helm,R. Johnson, and J. Vlissidlesign patterns —Elements of
reusable object-orientesbftware Addison-Wesley 1995.

[Gol06] D. GollmannComputer security?™ Ed., Wiley, 2006.
[Nut03] G. Nutt,Operating system& Ed.), Addison-Wesley, 2003.
[NyhO5] L. Nyhoff, C++: An introduction to data structures T2Ed.), Prentice-Hall 2005.

[PfI03] C.P.PfleegerSecurity in computingjsrd Ed., Prentice-Hall, 2003.
http://www.prenhall.com

15

[Sch00] D. Schmidt, M. Stal, H. Rohnert, and F. BuschmBattern-oriented software
architecture,vol. 2, Patterns for concurrent and networked objedtsyiley & Sons, 2000.

[Sch06] M. Schumacher, E.B. Fernandez, D. HybertSsorBuschmann, and P.
Sommerlad,Security Patterns: Integrating security and systems engineelingfiley & Sons,
2006.

[Sil05] A. Silberschatz, P. Galvin, G. Gagr@perating System Conceptd' [#d.),John Wiley
& Sons, 2005

[Sun04] Trusted Solaris Operating Systéip://www.sun.com/software/solaris/trustedsolaris/

[SymO01] http://www.symbian.com/developer/

16

