
 1

Even more patterns for secure operating systems

Eduardo B. Fernandez, Tami Sorgente, and Maria M Larrondo-Petrie
Dept. of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL

{ ed, tami, maria@cse.fau.edu}

Abstract
An operating system (OS) interacts with the hardware and supports the execution of all the
applications. As a result, its security is very critical. Many of the reported attacks have occurred
through the OS (kernel and utilities). The security of individual execution time actions such as
process creation, memory protection, and the general architecture of the OS are very important
and we have previously presented patterns for these functions. We present here patterns or the
representation of processes and threads, emphasizing their security aspects. We also present a
pattern to control the use of commands by administrators.

1 Introduction
The operating system (OS) acts as an intermediary between the user of a computer and its
hardware. The purpose of an OS is to provide an environment in which users can execute
programs in convenient and efficient manner [Sil05]. OSs control and coordinate the available
resources to present to the user an abstract machine with convenient features. Clearly, the
security of operating systems is very critical since the OS supports the execution of all the
applications as well as access to persistent data.

We have presented several patterns for different aspects of the security of operating systems
[Fer02, Fer03, Fer05, Fer06a, Sch06]. These are patterns intended for designers of such systems
but clearly are useful for teaching security, we use these patterns in our security courses and in a
coming textbook [Fer06b]. We present here security patterns for three additional aspects. We
assume the reader to be familiar with basic security concepts [Fer06b, Gol06, Pfl03]. Figure 1
shows the relationships of the new patterns with respect to each other and with respect to some
previously presented patterns (the patterns presented here are shown with double margins). Their
thumbnail descriptions are given below, starting with the three new patterns:

Secure Process /Thread. How do we make the execution of a process secure? A process is a
program in execution and the unit of execution in some operating systems. A secure process is
also a unit of execution isolation as well as a holder of rights to access resources. A variant
describes how to make secure the execution of a thread. A thread is a lightweight process. A
secure thread is a thread with controlled access.

Virtual Address Space Structure. How do we select the virtual address space for OSs that
have special security needs? Some systems emphasize isolation, others information sharing,
others good performance.

 2

Administrator Hierarchy. How do we limit access rights for administrators? Define a hierarchy
of system administrators with controlled rights using a Role-Based Access Control (RBAC)
model.

Secure Process

Controlled Process
Creator

Controlled
Virtual Address Space

Secure Thread

Authorization

RBAC
(Role Based Access Control)

Administration
Hierarchy

executes in
defines access

faster context switch

authorized by

specializes

define rights

created by

Reference
Monitor enforced by

Virtual Address Space
Structure

uses

Figure 1. Pattern diagram for the patterns discussed here and their relationship to past patterns

Controlled Virtual Address Space [Fer02]. How to control access by processes to specific
areas of their virtual address space (VAS) according to a set of predefined rights? Divide the
VAS into segments that correspond to logical units in the programs. Use special words
(descriptors) to represent access rights for these segments.

Controlled-Process Creator [Fer03]. How to define the rights to be given to a new process?
Define rights as part of its creation. Give it a predefined subset of its parent’s rights.

Authorization [Sch06]. How do we describe who is authorized to access specific resources in a
system? Keep a list of authorization rules describing who has access to what and how.
Authorization describes the rules of an Access matrix model.

Role-Based Access Control [Sch06]. How do we assign rights to people based on their
functions or tasks? Assign people to roles and give rights to these roles so they can perform their
tasks.

Reference Monitor [Sch06]. How to enforce authorizations when a process requests access to
an object? Define an abstract process that intercepts all requests for resources from processes
and checks them for compliance with authorizations.

 3

Section 2 presents the Secure Process pattern and its variant the Secure Thread. The Virtual
address space structure is described in Section 3, while Administrative roles are presented in
Section 4.

2 Secure Process
How do we make the execution of a process secure? A process is a program in execution and the
unit of execution in some operating systems. A secure process is also a unit of execution
isolation as well as a holder of rights to access resources.

2.1 Example
A group of designers in Company X built an operating system and did not put any mechanisms
to control the actions of processes. This resulted in processes being able to access the address
space and other resources of the other processes. In this environment we cannot protect the
shared information nor assure the correct execution of any process (their code and stack sections
may be corrupted by other processes).

2.2 Context
Typically, OSs support a multiprogramming environment with several user-defined processes
active at a given time. During execution it is essential to maintain all information regarding the
executing process, including its current status (the value of the program counter), the contents of
the processor’s registers, and the process stack containing temporary data (subroutine
parameters, return addresses, temporary variables, and unresolved recursive calls). All this
information is called the process context. When a process needs to wait, the OS must save the
context of the first process and load the next process for execution, this is a context switch. The
saved process context is brought back when the process resumes execution.

2.3 Problem
We need to control the resources accessed by a process during its execution and protect its
execution data from other processes. Proper maintenance of process execution is essential not
only for context switching, but also for security in maintaining a separate structure for each
execution.

The possible solution to this problem is constrained by the following forces:
• If processes have unrestricted access to resources they can interfere with the execution of

other processes. We need to control what resources they can access. Processes should be
given only the rights they need to perform their functions (need to know principle [Gol06,
Fer06b]).

• Each process requires some data, a stack, space for temporary variables, keeping status of its
devices and other information. All this information resides in its address space and needs to
be protected.

2.4 Solution
Assign to each process a set of rights to access the resources they need. Assign also a unique
address space to store all the data it needs during execution as well as data shared with other
processes. This protects processes from interference from the other processes, assuring
confidentiality and integrity of the data. In the ProcessDescriptor, a data structure containing all

 4

the information a process needs for its execution, add functions to make execution secure,
specifically access to any resource must be explicitly authorized. It may also be possible to add
resource quotas to avoid denial of service problems but this requires some global resource usage
policies.

Structure
Figure 2 shows a ProcessDescriptor that contains the status of a process. Each
ProcessDescriptor has a Subject as owner with predefined rights for specific Resources (these
rights are defined by the Authorization pattern). More than one ProcessDescriptor can be created,
corresponding to multiple executions of ProgramCode, and describing different processes. A
unique VirtualAddressSpace is associated with each process (defined by the Controlled Virtual
Address Space pattern). The process Code as well as the process Stack and any temporary data
are stored in the VirtualAddressSpace of the process. The Process Descriptor defines explicit
rights for the process to access resources (these rights must be a subset of the subject’s rights).
These accesses are enforced by the Reference Monitor pattern.

Dynamics
Figure 3 shows a sequence diagram for the use case “Access a resource”. The process request is
intercepted by the Reference Monitor which determines if it is authorized (checkAccess
operation in the Right). If it is, the access proceeds.

2.5 Implementation
The Process Descriptor is typically called Process Control Block (PCB), or Task Control Block
(TCB), and includes references (pointers) to its code section, its stack, and other needed
information. There are different alternatives to implement data structures in general [Nyh05].
Records (structs in C) are typically used for the Process descriptor. The Process Descriptors of
the processes in the same state are usually linked together in a double-linked list. The hardware
may include registers for some of the attributes of the ProcessDescriptor. For example, the Intel
X86 Series includes registers for typical attributes. There are different ways to associate virtual
address space to a process [Fer06b]. There are also different ways of associating rights with a
new process, see the Controlled Process Creator in [Fer03]. The hardware architecture should
also restrict access to memory within the predefined ranges for each process.

The pattern models as shown describe directly models where subjects have rights such as the
Access Matrix and Role-Based Access Control [Fer01, Sch06]. Some operating systems use
Multilevel (typically mandatory) models where the access of a process is decided by its level
with respect to the accessed resource [Sch06]. In the latter case, the process instead of being
given a right has a tag or label that indicates its level. Resources have similar tags and the
Reference Monitor compares both tags.

2.6 Example resolved
After adding rights to a process representation each process is constrained to access only those
resources for which it has rights. This protects each process from each other as well as their
virtual address spaces. The confidentiality and integrity of shared data is protected as well.

 5

Subject

id

* 1

Resource

Right

VirtualAddressSpace

boundaries

1

ProgramCode

ProcessRight

ProcessDescriptor

id
program_counter (pc)
data
open_files
registers
stack
child_processes
pending_events
accounting_info
security_info
state

create
delete
store
resume

* *

*

*

1

ReferenceMonitor
pattern

Authorization pattern

executes
from

{subset}

checkAccess

enforces

Controlled
Virtual
Address
Space pattern

Figure 2.Class diagram for Secure Process

:Resource:ReferenceMonitor :ProcessRight

requestResource()

<<actor>>
aProcess:

checkAccess()

yes

requestResource()

Figure 3. Sequence diagram for use case “Access a resource”.

.

 6

2.7 Variant
Secure Thread. How do we make the execution of a thread secure? A thread is a lightweight
process. A secure thread is a thread with controlled access to some resources. Figure 4 represents
the addition of the ThreadDescriptor to the secure process. One Process may have multiple
threads of execution. Each thread is represented by a ThreadDescriptor. A unique
VirtualAddressSpace is associated with a process ad shared by peer threads. ThreadRights
define access rights to the VAS.

Threat status includes typically a stack, a program counter, and some status bits. There are
different ways to associate threads with a process [Sil05]. Typically, several threads are collected
into a process. Threads can be created with special packages, e.g., POSIX in Unix, or through
the language, as in Java or Ada. Rights can be added explicitly or we can use the hardware
architecture enforcement of the proper use of the process areas (see Known Uses).

2.8 Known uses
• Linux uses records for process descriptors. One of the entries defines the process credentials

that define its access to resources [Nut03, Sil05]. Other entries describe its owner (subject)
and process id.

• Windows NT and 2000. Resources are defines as objects (really classes). The process id is
used to decide access to objects [Sil05]. Each file object has a security descriptor which
indicates the owner of the file and an access control list that describes the access rights for
the processes to access the file.

• Solaris threads have controlled access to resources defined in the application, e.g. when using
the POSIX library [Sil05].

• Operating systems running on Intel architectures can protect thread stacks, data, and code by
placing them in special segments of the shared address space (with hardware-controlled
access).

2.9 Consequences
This pattern has the following advantages:.
• It is possible to give specific rights for resources to each process which makes it possible to

apply the least privilege principle.
• The process’ resources can be protected from other processes, because they are restricted to

access only authorized resources.

This pattern has the following disadvantage:
• There is some overhead in using a Reference Monitor to enforce accesses.
• It may not be clear what rights to assign toeach process.

2.10 Related patterns
• Controlled Process Creator [Fer03]. This is the closest related pattern. At process creation

time rights are assigned to the process.
• Controlled Virtual Address Space [Fer02]. A VAS is assigned to each process that can be

accessed according to the rights of the process.
• Authorization [Sch06]. Defines the rights to access resources.
• The Reference Monitor pattern, used to enforced the defined rights [Sch06].

 7

*

ProcessDescriptor

data
open_files
child_processes
pending_events
accounting_info
security_info

ThreadDescriptor

id
pc
registers
stack

ProgramCode

*

1

Resource

VirtualAddressSpace

boundaries

* 1
ThreadRight

ProcessRight

*

*

*

Figure 4. Class diagram for Secure Thread

3 Virtual address space structure
Virtual memory allows the total size of the memory used by processes to exceed the size of
physical memory. Upon use, the virtual address is translated by the Memory Management Unit
(MMU) to obtain a physical address that is used to access physical memory. As indicated earlier,
to execute a process, the kernel creates a per-process virtual address space. The organization of
each process’ virtual address space (VAS) has an effect on performance and security. The
organization of the VAS is defined by the hardware architecture. How do we select an
appropriate virtual space structure to obtain specific security features?

3.1 Example
We have a system running applications using images requiring large graphic files. The
application also has stringent security requirements. We need to decide on an appropriate VAS
structure

3.2 Context
Multiprogramming systems with a variety of users and applications. Each process runs in its own
address space. Processes execute on behalf of users and at times must be able to share memory
areas, other times must be isolated, and in all cases we need access control. Performance is also
an issue.

 8

3.3 Problem
We need to select the virtual address space for processes depending on the majority of
applications. Otherwise, we can have mismatches that may result in poor security or
performance.

The possible solution is constrained by the following forces:
• Each process needs to be assigned a relatively large VAS to hold its data, stack, space for

temporary variables, variables to keep the status of its devices, and other information.
• In multiprogramming environments processes have diverse requirements; some require

isolation, others information sharing, others good performance.
• Data typing is useful to prevent errors and improve security. Several attacks occur by

executing data and modifying code [Gol06].
• Sharing between address spaces should be convenient. Otherwise performance may suffer.

3.4 Solution
Select from four basic approaches that differ in their security features:
• One address space per process (Figure 5). The supervisor and each user process get their

own address spaces.

kernel users

User

Process Descriptor
VAS

Supervisor

Process Descriptor

a) Idea

b) UML

Figure 5. One address space per process

• Two address spaces per process (Figure 6). Each process gets a data and a code virtual
address space.

 9

User

Process Descriptor

VAS

Supervisor

Process Descriptor

a) Idea

b) UML

program data program

data
kernel

users

VAS

programprogram

datadata

Figure 6. Two address spaces per process

• One address space per user process, all of them shared with one address space for the OS

(Figure 7). The OS (supervisor) can be shared between all processes.

Process Descriptor

VAS

Supervisor

a) Idea

b) UML

users
…

kernel

VAX/VMS

Intel 286...486

User

1

1

{1/2 size}

Figure 7. One address space per user process, all of them shared with one address space for the

OS

• A single-level address space (Figure 8). Everything, including files, is mapped to this
memory space.

 10

a) Idea b) UML

user

kernel

user

Single-level Space

Process Descriptor VAS

SupervisorUser

1

Resource
*

Figure 8. A single-level address space

Use of one VAS per process has the following tardeoffs:
• Good process isolation
• Some protection against the OS
• Simplicity
• Sharing is complex (special instructions to cross spaces are needed).

Use of two VAS per process has the following tradeoffs:
• Good process isolation
• Some protection against the OS
• Data and instructions can be separated for better protection (some attacks take advantage of

execution of data or modification of code). Data typing is also good for reliability.
• A disadvantage is complex sharing plus rather poor address space utilization.

Use of one address space per user process, all of them shared with one address space for the OS
has the following tradeoffs:
• Good process isolation
• Good sharing of resources and services (browsers, media players).
• This is not the best with respect to security (the supervisor has complete access to the user

processes and it must be trusted).
• Another disadvantage is that the address space available to each user process has now been

halved

Use of a single-level address space has the following tradeoffs:
• Good process isolation
• Logical simplicity
• Uniform protection (all I/O is mapped to memory)
• This is the most elegant solution (only one mechanism to protect memory and files), and

potentially the most secure if capabilities are also used.

 11

• It is hard to implement in hardware due to the large address space required.

3.5 Implementation
The VAS is implemented by the hardware architecture. The OS designer can choose one of the
architectures based on the requirements of the applications according to the tradeoffs discussed
above. In a particular case, the choice may be influenced by company policies, cost,
performance, and other factors as well as security.

3.6 Known uses
• One address space per process. The NS32000, WE32100, and Clipper microprocessors.
• Two address spaces per process. This is used in the Motorola 68000 series.
• One address space per user process, all of them shared with one address space for the OS.

This is used in the VAX series and in the Intel processors.
• A single-level address space. Multics, IBM S/38, IBM S/6000, and HP’s PA-RISC use this

approach.

3.7 Consequences
In addition to the specific consequences described as part of the solution we have the following
general consequence:
• Without hardware support it is not feasible to separate the virtual address spaces of the

processes. Most processors use register pairs or descriptors that indicate the base (start) of a
memory unit and its length or limit. [Sil05].

3.8 Related patterns
• Secure Process
• Controlled Virtual Address Space [Fer02, Sch06]. A VAS is assigned to each process that

can be accessed according to the rights of the process. The Virtual Address Space Structure
complements that pattern.

4. Administrator Hierarchy
How do we limit the access rights of administrators? Define a hierarchy of system administrators
with rights controlled using a Role-Based Access Control (RBAC) model.

4.1 Example
Unix defines a superuser who has all possible rights. This is convenient, for example, when
somebody forgets a password, but allows hackers to totally control the system through a variety
of implementation flaws. Through gaining access to the Administrator interface by logging
through an account assigned the Administrator role, an individual can create new Administrator
and User accounts, restrict their privileges and quotas, access their protected areas, and remove
their accounts.

4.2 Context
An operating system with a variety of users, connected to the Internet. There are commands and
data that are used for system administration and access to their use needs to be protected. This
control is usually applied through special interfaces. There are at least two roles required to
properly manage privileges, Administrator and User.

 12

4.3 Problem
Usually, the administrator has rights such as creating accounts and passwords, installing
programs, etc. This brings upon a series of security problems. A rogue administrator can do all
the usual functions and even erase the log to hide his tracks. A hacker that takes over
administrative power can do similar things. How do we curtail the excessive power of
administrators to control rogue administrators or hackers?

The possible solution is constrained by the following forces:

• Administrators need to use commands that permit management of the system, e.g., define
passwords for files, define quotas for files, and create user accounts. We cannot eliminate
these functions.

• Administrators need to be able to delegate domain of responsibilities and privileges to
manage those domains. They also need the right to take back these delegations.
Otherwise, the system is too rigid.

• Administrators should have no control of system logs or no valid auditing would be
possible.

• Administrators should have no access to the operational data in the users’ applications.

4.4 Solution
Use the principle of separation of duty, where a user cannot perform critical functions unless in
conjunction with others. Separate the different administrative rights into several hierarchical
roles. The rights for these roles allow the administrators to perform their administrative functions
and no more. Critical functions may require more than one administrative role to participate.

Structure
Figure 9 shows a hierarchy for administration roles. This follows the Composite pattern
[Gam95], i.e., a role can be simple or composed of other roles, defining a tree hierarchy. The
top-level administrator can add or remove administrators of any type and initialize the system but
should have no other functions. After that, administrators in the second level control different
aspects, e.g. security or use of resources. Administrators can further delegate their functions to
lower-level administrators. Some functions may require two administrators to collaborate.

 13

CompositeAdministrator

init
addAdministrator
removeAdministrator

Administrator

addAdministrator
removeAdministrator *

SimpleAdministrator

Figure 9. Class diagram for Administrator Structure

4.5 Implementation
Define a top administrative role to with the only function of setting up and initializing the
system. This includes definition of roles, assignment of rights to roles, and assignment of users to
roles. Separate the main administrative functions of the system and define an administrative role
for each one of them. These define the second level of the hierarchy. Define further levels to
accommodate administrative units in large systems. Figure 10 shows a typical hierarchy. Here
the system administrator starts the system and does not perform later actions, the second-level
administrator can perform set up and other functions, the security administrator defines security
rights. Security Domain administrators define security in their domains. Other examples are
shown in Section 4.7.

4.6 Example resolved
Some secure Unix versions such as Trusted Solaris use this approach. Now the superuser only
starts the system. During execution time the administrators have restricted powers. If a hacker
takes over his functions he can do only limited damage.

4.7 Known uses

• AIX [Cam90] reduces the privileges of the system administrator by defining five
partially-ordered roles: Superuser, Security Administrator, Auditor, Resource
Administrator, and Operator.

• Windows Windows NT uses four roles for administrative privileges: standard,
administrator, guest, and operator. A User Manager has procedures for managing user
accounts, groups, and authorization rules.

• Trusted Solaris [Sun04] This is an extension of Solaris 8. They use the concept of
Trusted Roles with limited powers.

• Argus Pitbull [Arg] Least privilege applied to all processes, including the superuser. The
superuser is implemented using three roles: Systems Security Officer, System
Administrator, and System Operator.

4.8 Consequences

 14

The Administrator Hierarchy pattern has the following advantages:
• If an administrative role is compromised, the attacker gets only limited privileges. The

potential damage is limited.
• The reduced rights also reduce the possibility of misuse by the administrators.
• The hierarchical structure allows taking back control of a compromised administrative

function.
• The advantages of the RBAC model apply: simpler and fewer authorization rules, flexibility

for changes, etc. [Sch06].

Possible disadvantages include:
• Extra complexity for the administrative structure.
• Less expediency. Performing some functions may involve more than one administrator.
• Many attacks are still possible; if someone misuses an administrative right this pattern only
limits the damage. Logging can help misuse detection.

SecurityAdministrator
addSecurityDomainAdministrator
removeSecurityDomainAdministrator

*

SystemAdministrator
init
addSecurityAdmin
addResourceAdmin
addOperator
removeSecurityAdmin
removeResourceAdmin
removeOperator

ResourceAdministrator Operator

SecurityDomainAdministrator

Figure 10. A typical administration hierarchy.

4.9 Related Patterns
This pattern applies the principles of least privilege and separation of duty (some people consider
them patterns also). Each administrator role is given only the rights it needs to perform its duties
and some functions may require collaboration.

Administrative rights are usually organized according to a RBAC model, a pattern for this model
is given in [Fer01, Sch06].

 15

Acknowledgements
Our shepherd, Juha Parssinen, provided valuable suggestions that considerably improved this
paper. Paris Avgeriou gave valuable comments to an early version of this pattern.

References
[Arg] Argus Systems Group, “Trusted OS security: Principles and practice”,
http://www.argus-systems.com/products/white_paper/pitbull

[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-
Oriented Software Architecture: A System of Patterns, Volume 1. J. Wiley, 1996.

[Cam90] N.A.Camillone , D.H.Steves, and K.C.Witte, “AIX operating system: A trustworthy
computing system”, in IBM RISC System/6000 Technology, SA23-2619, IBM Corp., 1990, 168-
172.

[Fer02] E.B.Fernandez, "Patterns for operating systems access control", Procs. of PLoP
2002, http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

[Fer03] E. B. Fernandez and J. C. Sinibaldi, “More patterns for operating system access
control”, Proc. of the 8th European conference on Pattern Languages of Programs, EuroPLoP
2003, http://hillside.net/europlop, 381-398.

[Fer05] E.B.Fernandez and T. Sorgente, "A pattern language for secure operating system
architectures” , Procs. of the 5th Latin American Conference on Pattern Languages of Programs,
Campos do Jordao, Brazil, August 16-19, 2005.

[Fer06a] E.B.Fernandez, “Operating system access control”, Chapter 10 in [Sch06].

[Fer06b] E.B.Fernandez, E. Gudes, and M. Olivier, The design of secure systems, to be
published by Addison-Wesley.

[Fri98] A. Frisch, Essential Windows NT System Administration, O’Reilly and Associates, Inc.,
Sebastopol, California, 1998.

[Gam95] E. Gamma, R. Helm,R. Johnson, and J. Vlissides, Design patterns –Elements of
reusable object-oriented software, Addison-Wesley 1995.

[Gol06] D. Gollmann, Computer security, 2nd Ed., Wiley, 2006.

[Nut03] G. Nutt, Operating systems (3rd Ed.), Addison-Wesley, 2003.

[Nyh05] L. Nyhoff, C++: An introduction to data structures (2nd Ed.), Prentice-Hall 2005.

[Pfl03] C.P.Pfleeger, Security in computing, 3rd Ed., Prentice-Hall, 2003.
http://www.prenhall.com

 16

[Sch00] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-oriented software
architecture, vol. 2 , Patterns for concurrent and networked objects, J. Wiley & Sons, 2000.

[Sch06] M. Schumacher, E.B. Fernandez, D. Hybertson, F. Buschmann, and P.
Sommerlad, Security Patterns: Integrating security and systems engineering, J. Wiley & Sons,
2006.

[Sil05] A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts (7th Ed.), John Wiley
& Sons, 2005

[Sun04] Trusted Solaris Operating System, http://www.sun.com/software/solaris/trustedsolaris/

[Sym01] http://www.symbian.com/developer/

