
A pattern system for aspect-oriented design
 Ouafa Hachani

LSR-IMAG
Grenoble, France
+33 476 827 264

OuafaHachani@imag.fr

ABSTRACT
Aspect orientation can be used to evolve and improve object-
oriented design patterns. However, the newly proposed patterns
are generally specific to a particular aspect-oriented programming
language (such as AspectJ, Hyper/J, etc). In order to mitigate this
limit, we proposed a general aspect-oriented design modeling
language that we used to express the aspect-oriented structures of
all the GoF design patterns. This research led us to define a
system of eight original patterns that capitalize expertise related to
aspect-oriented design. The proposed patterns are coordinated and
treated on a hierarchical basis that makes it possible to offer a
method to carry out aspect-oriented design and programs with
good quality. This paper presents the 8 new aspect-oriented
design patterns.

Keywords
Aspect-orientation, aspect-oriented design, design patterns, aspect
pattern description formalism, GoF patterns.

1. INTRODUCTION
Aspect-oriented design is a relatively young area, and
design knowledge is expected to emerge as practice
advances. Some aspect-oriented design refactorings,
directives and guidelines have already emerged [3, 13, 19].
However, there is some other useful knowledge in software
engineering, currently recommended for the design of
reusable object-oriented systems, which may be affected by
the aspect orientation. Design patterns are examples of such
well-used knowledge. Several works are done on object-
oriented design patterns and aspect-oriented programming.
The motivation of these works, as well as our own work on
this topic, is to provide aspect-oriented implementations of
object-oriented design patterns. The proposed
implementations have better properties: explicit separation
of the base and the code induced by the pattern
instantiation, more readability of the code and traceability
of the patterns, ease of reusability, modularity and evolution
of both the base code and the pattern instantiation. The
newly proposed pattern solutions are nevertheless language-
specific, because aspect-oriented programming models and
languages still lack a consensus on their basic concepts and
mechanisms.

In order to mitigate this limit, we proposed an approach
based on meta-modeling and model transformations for
expressing language-independent aspect-oriented designs,
and we used it to express the aspect-oriented structures of

all of the 23 GoF patterns. This led us, by studying the
analogies appearing in the obtained pattern structures, to
isolate 8 new aspect-oriented patterns. The main
contribution of this paper resides in the identification,
specification and organisation of these new patterns, as well
as, in the proposition of an aspect pattern description
formalism. Though the patterns presented in this paper
derive from the GoF design patterns, they aim therefore to
be general-purpose. Moreover, as the 23 GoF patterns
illustrate a variety of designs that provided us with a rich
source of design knowledge, the new patterns capitalize
useful expertise that allows aspect-oriented design and
program with good software engineering quality attributes.

The rest of this paper is organized as follows. Section 2
presents the background of our work in order to easily
understand the new patterns. Section 3 introduces the aspect
pattern description formalism which is illustrated by the
GoF Strategy pattern. Section 4 introduce the 8 new aspect
patterns and details their relations. Section 5 considers
some related works; it provides a discussion and serves as a
first validation effort. Section 6 concludes this paper.

2. BACKGROUND
The effort leading to the identification of the 8 new aspect-
oriented patterns documented in this paper was carried out
through studies based on our previous work: the review of
the 23 GoF design patterns in the light of aspect-orientation
and the proposal of an aspect-oriented modeling language.
We propose here to briefly recall this research work.

2.1 Aspect orientation and object-oriented
design patterns
Object-oriented design patterns [1, 6, 7] are known to be
helpful to design reusable components or, more generally,
software. However, since they are generally defined by
collaborations between several classes, it is difficult to
identify where and how they have been applied in the
source code of a large piece of software. Moreover, we
have more precisely shown that several problems are
related to the use of design patterns in their original object-
oriented solutions: confusion, indirection, breaching of
encapsulation and inheritance problems [9]. These four
problems can be further considered as special cases of the
two recurrent problems of “code scattering” and “code
tangling” [18] that are addressed by several aspect-oriented

programming models and languages. Indeed, aspect-
oriented concepts and mechanisms allow for new program
designs that are out of reach of strict object-orientation and
can (not surprisingly) improve the structures and
implementations that were initially proposed in object-
oriented design patterns. In this way, several works such as
[14, 16, 20, 21, 22] have been made to evolve some
existing object-oriented design patterns into aspect-oriented
design patterns. These works, as well as our own work [9,
10, 11] on this topic, mainly intend to provide aspect-
oriented implementations of object-oriented design
patterns. Without harming the benefits of the initial
patterns, such evolved design patterns have several
additional benefits coming from the use of aspect-oriented
mechanisms and techniques: explicit separation of the base
code and the pattern instantiation, ease of evolution, less
dependencies, traceability of patterns.

For instance we have worked on AspectJ [17] and Hyper/J
[23] implementations1 for the 23 GoF patterns [7] and
explained how these solutions can avoid the patterns
problems [10]. For this purpose we did not systematically
mimic the original object-oriented structure (as proposed in
[14]), but we rather were inspired by the patterns intents. As
our main goal in this work was to improve the traceability
of design patterns, we chose to end with exactly one aspect
(respectively one hyperslice) for each pattern instantiation,
so that it be easy to identify them in the code. This also
improves readability, traceability, adaptability and
evolution of both the code relative to the pattern and the
one relative to the classes on which it is applied.
Furthermore, the number of participants involved in a
pattern is significantly reduced.

To illustrate the approach we proposed above, we explain
below how AspectJ (the AOP programming language) can
be used to implement and improve the GoF Strategy
pattern. We first provide a concise comprehensive overview
of what AOP is: we briefly recall its basic concepts.

2.1.1 Aspect-oriented programming key concepts
AOP [18] aims at organizing programs by decomposing
them into aspects and classes. An aspect is a software
decomposition unit that encapsulates a concern which is
transversal to the application considered split into classes.
“Code scattering” and “code tangling” problems may be
resolved with the help of such a dual decomposition in
aspects and classes: one can define as many aspects related
to a class as it is necessary to put in them the code that
would be otherwise mixed with the code which is very

1 Source files for these implementations, along with other

materials (detailed specifications of the meta-models, models of
the GoF patterns) related to the work we present in this paper
are available from [27].

relevant to the class, and an aspect can hold all the code
that would be otherwise scattered in several classes.
Interacting between classes and aspects can be defined
using join points and pointcuts (i.e. collections of joint
points), some points of the execution flow of an application.
One can for instance consider as join points, in AspectJ
[17], calls to an operation, return from its execution, or read
or write access to an attribute [17]. Crosscutting codes that
execute when an application reaches a join point are
defined within advices. Aspects can also affect the static
type hierarchy of program classes. They can add new
operations and attributes to a class (introduction), or
declare that a class extends a new super-class [17] (parent
declarations). Composition of aspects and components is
called weaving [18] and it generally takes place at compile
time. To delay this composition until compilation, rather
than to have it done at code writing, reduces the coupling of
aspects and classes and provides new reuse perspectives.

2.1.2 AspectJ implementation of Strategy
Strategy’s intent is to define a family of interchangeable
encapsulated algorithms [7]. In other words, it allows
giving polymorphic definitions of a method for the
instances of the same class. Figure 1 shows the object-
oriented structure of this pattern.

 strategy Context

+ contextInterface ()

Strategy.algorithmInterface ()

Strategy

+ algorithmInterface ()

ConcreteStrategyA

+ algorithmInterface ()

ConcreteStrategyB

+ algorithmInterface ()

ConcreteStrategyC

+ algorithmInterface ()

Each subclass of the Strategy abstract class holds a different
definition of a method named algorithmInterface() that is
supposed to be applied on instances of Context. We propose
to define a hook operation algorithmInterface() within the
Context class (line 0 - Figure 2), that does nothing by
default. We then propose to gather the various definitions of
the polymorphic behavior (named defaultAlgorithm(),
algorithm1(), algorithm2(),… lines 3-6 in Figure 2) in one
crosscutting concern ContextStrategies for each instance of
the Strategy pattern.

Figure 1. Strategy object-oriented structure [7].

 0 privileged aspect ContextStrategies pertarget (target (Context) && call (void Context.algorithmInterface ())) {
1 private int Context.strategy = 0;
2 public Context.new(int strategy) { this.strategy=strategy ; }
3 private defaultAlgorithm() { // the default algorithm }
4 private algorithm1() { … };
5 …
6 private algorithmn() { … };
7 pointcut performAlgorithm (Context c): target (c) && execution (void Context.algorithmInterface ())
8 void around (Context c): performAlgorithm (c){
9 switch (c.strategy) {
10 case 1: algorithm1(); break;
11 case 2: algorithm2(); break;
12 …
13 default: defaultAlgorithm(); }
14 }
15 }

Figure 2. Outline of the AspectJ code for the
ContextStrategies aspect [7].

.

ContextStrategies also introduces an attribute strategy
(line 1) and a parameterized constructor Context(int stg)
(line 2) in the Context class. The strategy attribute is used
for the internal representation of the chosen strategy in each
instance of Context. A named pointcut PerformAlgorithm
(line 7) intercepts all calls to the Context’s
algorithmInterface() method, in order to replace each of its
invocations by the invocation of the appropriate algorithm.
An advice (lines 8-14) is then defined so that it invokes, in
its turn, one of the definitions of the polymorphic behavior,
depending on the actual value of the strategy attribute hold
by the receiver.

2.2 A general meta-model for aspect-oriented
design modeling
Aspect orientation can be used to improve object-oriented
design patterns. However, due to a certain lack of
consensus on what are the basic aspect-oriented concepts
and mechanisms and the diversity of the aspect-oriented
programming languages, most of the aspect-oriented design
modeling languages proposed today are specific to a
particular programming technique (AOP [2], Composition
patterns [4], Aspectual collaborations [15]…) or language
(AspectJ [25], [26], Hyper/J [24]…). This makes it difficult
to express new pattern structures in a way that is not
dependent from a specific programming language. We
argue that a more abstract design modeling language is
needed to fully express design patterns in a programming
language independent manner.

In [12] we propose an extension of the UML meta-model
for aspect-oriented concepts and relations that allows for
the expression of language-independent aspect-oriented
design patterns. We worked out this general meta-model by
identifying the common concepts and relations of both
AspectJ/UML [12] and HyperJ/UML [12], two specific
meta-models that we propose respectively to AspectJ and
Hyper/J. Transformation rules can then be applied for
migrating models that are instances of the general meta-
model to the instances of one of the specific meta-models
[12]. We applied the general meta-model on the 23 GoF
design patterns and noticed similarities between most of
their aspect-oriented structures. The analysis of these
similarities led us to identify new aspect-oriented design
patterns that are organized in a smaller set of 8 patterns.
This encouraged us to work further on the categorization
and description of such “aspect aware” design patterns. We
propose here to briefly recall the concrete syntax of
Aspect/UML that we use to describe the aspect pattern
structures. Table 1 summarizes the main presentation
elements of the concrete syntax: graphical presentations of
Aspect/UML model elements.

2.2.1 Crosscutting Concern
Crosscutting concerns are units encapsulating concerns that
cannot be modularized using traditional programming

techniques. Like classes in UML, each crosscutting concern
is represented as a rectangle with three compartments
including respectively its name, attributes and operations
(cf. Table 1(a)). The name of a crosscutting concern is yet
prefixed by the stereotype «crosscuttingConcern». In
addition, a new symbol representing an eye can be used to
indicate that a crosscutting concern is privileged (cf. Table
1(a)). A crosscutting concern may be drawn showing only
its name; it can also be declared as abstract (Table 1(b)).

Table 1. Aspect/UML notation

(a) (b)

« crosscuttingConcern »

ACrosscuttingConcern

 « crosscuttingConcern »

 ACrosscuttingConcern

 attributes

 operations

 isPrivileged

Crosscutting Concerns

« crosscuttingConcern »
ACrosscuttingConcern

SuperClass

TargetC1 TargetC2 (c)
Parent Declarations

« introduction »
 attributes

 operations
TargetC1 TargetC2

« introduction »

 attributes

 operations

« crosscuttingConcern »
aCrosscuttingConcern

« introduction »

 attributes

 operations

« abstract »
InnerClass

« crosscuttingConcern »
ACrosscuttingConcern

(d)

(e)
Introduction and Crosscutting relationship

 before

« altering »
spec : call

 « crosscuttingConcern »
ACrosscuttingConcern

- cCMethod()

AClass

 + method()

 cCmethod() (f)

Crosscutting Specifications and Altering Elements

2.2.2 Parent Declaration
Parent declarations may add super classes to one or more
existing ones, by using generalization/specialization
relationships. As well as, they can add several realization
relationships between one interface and one or more
existing classes. We choose to represent parent declarations
by simply drawing crosscutting relationships between the
crosscutting concern that declares them, and the added
generalization/specialization or realization relationships, as
shown in Table 1(c).

2.2.3 Introduction and Crosscutting relation
Crosscutting concerns can introduce one or more features
(attributes and operations) in several target types. To
represent such introductions, we choose to gather them by
target. Each introductions group is rendered as a rectangle
with three compartments, including respectively the
stereotype «introduction» (introductions are anonymous),
the newly added attributes, and operations (Table 1(d)). It is
attached to its crosscutting concern by using a simple solid
line, and to its target type by using a solid line with a square
that contains a cross pointing the target. Such a line
represents the crosscutting relationship. Table 1(e) shows
some examples of introductions in an inner class.

2.2.4 Crosscutting Specification and Altering
Element
Crosscutting specifications indicate when (i.e. call or
initialization) and where (i.e. target behavioural features)
altering elements (i.e. features of crosscutting concerns that
affect the behaviour of base classifier) have to take places.
Each crosscutting specification and its associated altering
elements are represented together as rectangle with two
compartments. The first compartment represents the
crosscutting specification; it contains the stereotype
«altering» as well as the description of the crosscutting
specification in the form:
[crosscuttingSpecification_name]:
 crosscuttingSpecification_type
with crosscuttingSpecification_type::=call|initialization.
Crosscutting specifications are attached to their crosscutting
concerns with a simple solid line and to their target
behavioural features through their altering elements (cf.
Table 1(f)). A crosscutting specification may be declared
abstract. In such a case it is rendered by its name in italics
and an undefined type. The second compartment of an
«altering» bloc specifies the set of the altering elements (cf.
Table 1(f)). The syntax we retain to describe the altering
elements is as follows.
alteringElement_type [“(” arguments “)”][‘:’ return_type]
with arguments ::= argument_name ‘:’ argument_ type

 [‘,’ arguments]
 alteringElement_type ::= before | after | combination |

 replacement | narrowing

3. AN ASPECT PATTERN DESCRIPTION
FORMALISM
In order to retain complete description of aspect-oriented
design patterns (in a way similar to the description
formalism used in [7]), we adapted P-Sigma [5], a general
purpose pattern description formalism that was defined in
our research team, into AP-Sigma. We just extend it with
some keywords directly related to aspect-orientation that we
use for the description of the pattern’s intent and forces.
The main objective of such formalism is to normalize
patterns description in order to ease their reuse and allow

organizing them by characterizing their relations. AP-Sigma
is composed of three parts: Interface, Realization and
Relations. Those parts are detailed below with some
excerpts of the description of Strategy.

3.1 Pattern Interface
A pattern interface is composed of five items aimed to ease
pattern selection. Table 2 illustrates these items.

Table 2. Interface of the Strategy pattern

3.1.1 Identifier
The identifier item holds the name of the pattern.

3.1.2 Classification
The classification item defines the pattern intent through a
collection of domain keywords (terms of the application
domain of the patterns). It provides an intuitive domain
classification. It is constructed as a logical expression.
Example keywords are: (1) Class and Object, specify
whether the pattern applies to classes or objects, (2) Add
and Alter, indicates if the pattern deal with the structures of
base classes or with their behaviors. If the impact type is
Alter we also use the following keywords for extra
precision: before, after, combination, narrowing or
replacement, in addition to instantiation and execution
keywords that specify the dynamic context of altering.

3.1.3 Problem
The problem item specifies in details the problem addressed
by the pattern.

3.1.4 Context
The pattern context is subdivided into two fields:
Applicability and Pre-condition. The former field identifies,
the typical situations in which the pattern can be applied but
that are special cases of the problem addressed by the
pattern. The latter field specifies the eventual pre-condition
that have to be verified prior to the application of the
pattern. Such pre-conditions are in general defined by
models.

3.1.5 Forces
The pattern forces item consists of two fields. It mainly
specifies the pattern contributions through a collection of

Identifier Strategy
 Classification object ^ alter ^ replacement ^ instantiation
 Problem Define a family of algorithms, encapsulate each

one, and make them interchangeable. Strategy
lets the algorithm vary independently from
clients that use it.

 Context Applicability. Use the strategy pattern when:
- many related classes differ only in their

behavior,
- we need different variants of an algorithm…

 Forces Forces. Ease the adaptation and evolution of
algorithm…
Qualities.
readability ^ encapsulation ^ evolution

quality criteria. The two fields are: Forces and Qualities.
Forces is a text field that discusses the pros and cons of
applying the pattern. Qualities holds a logical expression
based on one or more criteria denoting the intended benefits
of the pattern solution (i.e. code reuse, traceability…).

3.2 Pattern Realization
While the interface part of a pattern description focus more
on the problem description, the realization part is devoted
to the description of the pattern solution. Its four items are
detailed below (see also Table 3 for the Strategy’s solution
description).

Table 3. Realization of the Strategy pattern

3.2.1 Solution
The solution item consists of two fields (Solution and
Concern Diagram) describing the pattern solution in terms

of the result. The first field is a text, while the second is an
instance diagram of the Aspect/UML meta-model.

3.2.2 Application case
The application case item gives an example of the pattern
application. It is optional, but recommended in order to
facilitate the understanding of the pattern solution.

3.2.3 Consequences
The consequences item is a text that discusses the
consequences induced by the patterns application.

3.2.4 Alternatives
The alternatives item specifies the possible alternative
solutions.

3.3 Pattern Relations
The pattern relations part is composed of three items
corresponding to the three types of relations between
patterns: uses, refines and alternativeOf. For each relation,
the item holds a list of related patterns. In the case of
Strategy we can identify, for example, a refines relation
with Class Polymorphic Behavior (see section 4.1) and two
uses relations with Add Features and Alter Bahaviors (see
section 4.3).

4. ABSTRACTING GOF PATTERNS INTO
ASPECT-ORIENTED PATTERNS
While expressing the newly proposed aspect-oriented
structures of the GoF design patterns, based on the
implementations that were proposed in both our previous
work and those of [14], with respect to our general meta-
model, we have noticed similarities between several pattern
structures. This is not very surprising in the sense that
differences between related artefacts tend to disappear
when described at higher level of abstraction. Indeed a
pattern structure expressed as an instance diagram of the
general meta-model is more abstract than those expressed in
instance diagrams of language-specific meta-models. We
also noticed that appearing similarities were due to the use
of aspect-orientation as they were not so obvious in the
corresponding strictly object-oriented structures. We thus
begin to compare more thoroughly the aspect-oriented
structures we have in order to abstract the 23 existing
design patterns to 8 more general ones. As examples, we
detail here four of the newly proposed Aspect patterns:
Class Polymorphic Behavior, Class/Instance Polymorphic
Behavior with Standalone Classes and Add New Role. After
that, we briefly describe the four others while presenting all
relations that exist between the whole 8 patterns.

4.1 Class Polymorphic Behavior
We consider here the Class Polymorphic Behavior (CPB)
pattern that we identify as an abstraction of the GoF
Strategy, Template Method, Factory Method and Abstract
Factory patterns when considered in an aspect-oriented
context.

 Solution Solution. Define in a crosscutting concern:
- an introduction of an attribute used for the

internal representation of the actual
strategy, to the class Context,

- a second introduction to the same class of a
parameterized constructor to set the actual
strategy,

- the different variants of the considered
behavior,

- an altering element that overrides the
impacted behavioral feature with the
adequate variant,

- a crosscutting specification specifying the
impacted operation in the class Context.

Class/Aspect diagram

Context

 + algorithmInterface()

« introduction »

 - strategy : int = 0

 + Context(int stg)

 switch(strategy) {
case 1: algorithm1() ;
 …
case n: algorithmn() ;
default: defaultAlgorithm();

 }

« altering »

PerformAlgorithm : call

 replacement

 « crosscuttingConcern »
ContextStrategies

- defaultAlgorithm()
- algorithm1()
- algorithm2()
- …
- algorithmn()

Figure 3. Strategy aspect-oriented structure.

 Application
case

An example of the pattern application
illustrated with the corresponding instances
diagram and the sample code.

 Consequences One of the main advantages of this pattern
solution is that the common code of the
different variants of the behavior is gathered
out in a common sub-operations/methods...

The problem addressed by the Strategy pattern is defined
by the problem item in table 2. Its aspect-oriented structure
is as well specified in figure 3 (see table 3). The Template
Method pattern’s intent is to define the skeleton of an
algorithm in an operation, while deporting some parts of it
into subclasses. Template Method lets subclasses redefine
certain parts of the algorithm without changing the
algorithm’s structure [7]. The figure 4 shows the aspect-
oriented structure that we propose for this pattern.

AClass

 + templateMethod()
 + primitiveMethod1()
 + primitiveMethod2()

« introduction »

 - strategy : int

 + AClass(int stg)
« altering »

PerformPrimitiveMethod1 : call

 replacement

 « crosscuttingConcern »
 AClassPrimitiveMethods

 - defaultPrimitiveMethod1()
- primitiveMethod11()
- …
- primitiveMethod1n()

- defaultPrimitiveMethod2()
- primitiveMethod21()
- …
- primitiveMethod2n()

« altering »

PerformPrimitiveMethod2 : call

 replacement

Although the two patterns address different problems, by
comparing their proposed aspect-oriented structures we can
observe several similarities. These similarities also concern
the aspect-oriented structures that are respectively proposed
for the GoF Factory Method and Abstract Factory patterns.
Factory Method defines an interface for creating an object,
but lets subclasses decide which class to instantiate [7].
Abstract Factory provides an interface for creating families
of related or dependent objects without specifying their
concrete classes [7]. Figures 5 and 6 give the aspect-
oriented structures that we propose respectively for Factory
Method and Abstract Factory.

In the four structures (figures 3, 4, 5 and 6) we can
distinguish the following elements:

• a crosscutting concern and a context class,
• an introduction of an attribute specifying the

appropriate behavior of each context class
instance,

• an introduction of a new parameterized constructor
for setting the introduced attribute,

• different variants of the different affected
operations,

• one or more crosscutting specifications specifying
the affected operations,

• one or more altering element that have to perform
in the place of the affected behavioral operations.

All these similarities occult the different intents of these
four patterns, making it possible to define a more general
aspect-oriented design pattern that address a more general
problem: “give a polymorphic behavior to the instances of a
given context class, while keeping unchangeable the context
class definition”. This is the problem addressed by the
Class Polymorphic Behavior pattern that we propose.
Table 4 briefly describes this pattern with respect to the
AP-Sigma formalism.

 « instantiate »

« instantiate »

Creator

 + factoryMethod()

« introduction »

 - strategy : int

 + Creator(int stg)

 switch (strategy) {
 case 1: factoryMethod1() ;
 …
 case n: factoryMethodn() ;
 default: defaultFactoryMethod();

 }

« altering »

PerformFactoryMethod : call

 replacement

 « crosscuttingConcern »
 CreatorFactoryMethods

- defaultFactoryMethod()
- factoryMethod1()
- factoryMethod 2()
- …
- factoryMethod n()

Product

ProductA ProductB

Factory

 + createProduct()
 + createProductA()
 + createProductB()

« introduction »

 - product : int

 + Factory(int stg)
« altering »

PerformCreateProductA : call

 replacement

 « crosscuttingConcern »
 FactoryCreateMethods

 - defaultCreateProductA()
- createProductA1()
- …
- createProductAn()

- defaultCreateProductB()
- createProductB1()
- …
- createProductBn()

« altering »

PerformCreateProductB : call

 replacement

ProductA

ProductA1 ProductAn …

ProductB

ProductB1 ProductBn …

« instantiate »

« instantiate »

4.2 Instance/Class Polymorphic Behavior
with Standalone Classes
4.2.1 Class Polymorphic Behavior with Standalone
Classes
Figure 7 shows the aspect-oriented structure of the GoF
Builder pattern. Builder proposes to separate the
construction of a complex object from its representation so
that the same construction process can create different
representations [7].

Figure 4. Template Method aspect-oriented structure.

Figure 5. Factory Method aspect-oriented structure.

Figure 6. Abstract Factory aspect-oriented structure.

Table 4. Description of the Class Polymorphic Behavior pattern

Identifier Class Polymorphic Behavior
Classification object ^ alter ^ replacement ^ instantiation
Problem Give a polymorphic behavior to the instances of a given context class, while keeping unchangeable the class

definition. The involved behavior can either concern one or more operations of the context class.
Each instance of the context class has to be configured, at the instantiation time, with the appropriate variant of
the polymorphic behavior.

Context Applicability. Use the Class Polymorphic Behavior pattern in the following cases:
- a given class must offer different variants of a specific behavior for its instances. Such behavior cans either

involves one or more hook operations of the context class (Hook operations are concrete operations that
provide default definition for the involved polymorphic behavior. A hook operation often does nothing by
default).

- we need different variants of a given behavior.
Forces - Let the definition of the context class safe. The context class defines the default behavior of its involved

operations. All the other variants are gathered out and encapsulated separately within a crosscutting concern.
- An alternative to sub-classing. Inheritance offers another way to support all various behaviors of the involved

hook operations. You can always directly subclass the context class to define its different behaviors within its
subclasses. But, this increases the number of classes in the system. In addition, this alternative mixes the hook
operation’s various methods with the primary class’s concern, making the class hard to understand, to maintain
and to extend. The same way, the different various methods are scattering all over the subclasses so what they
are not easy to maintain. Encapsulating all these specific behaviors in a crosscutting concern lets you maintain
and extend independently the class’s primary concern and the various methods of the hook operations.

- The Various behaviors are encapsulated separately, allowing gathering out their common functionalities. The
various behaviors are completely defined and encapsulated within the crosscutting concern. This makes it easy
to gather out all common functionalities of the different behaviors.

Solution Solution.

1. Identify which hook operations (method1(), method2()…) of the Context class are designed for altering.
2. Define a crosscutting concern (ContextBehaviors) that has to include the definition of an attribute

introduction (switcher) and a parameterised constructor introduction (Context (int swt)), in the Context
class. The switcher attribute is used for the internal representation of the appropriate variant of the involved
behavior for each instance of the Context class. The parameterised constructor has to take the value to assign
to the switcher attribute at the instantiation time.

3. For each hook operation that must be altered:
- gather out and encapsulate within the crosscutting concern all various definitions of the hook operation
(defaultMethodk(), methodk1(), methodk2()…), devoted for all specific Context’s instances.
- define within the crosscutting concern, a crosscutting specification (PerformMethodk…) that has to
intercept all calls to the hook operation.
- define as well a replacement altering element based on the crosscutting specification. This altering element
has to replace every invocation of the hook operation with the invocation of exactly one of its various
definitions, depending on the assigned value of the switcher attribute hold by the receiver instance.

Class/Aspect Diagram.

Context

 + method1()
 + method2()
 ;;;

« introduction »

 - switcher : int

 + Context(int swt) « altering »

PerformMethod1 : call

 replacement

 « crosscuttingConcern »
 ContextBahaviors

 - defaultMethod1()
- method11()
- …
- method1n()

- defaultMethod2()
- method21()
- …
- method2n()

« altering »

PerformMethod2 : call

 replacement

Consequences - Common sub-behaviors of the various definitions of the polymorphic behavior can be gathered out in common
sub-operations.

 + construct()
 + buildP1()
 + buildP2()

Director

« introduction »

 - builder : Builder

 + Director(Builder bld)

 builder.buildP1()

« altering »

PerformBuildP1 : call

 replacement

 « crosscuttingConcern »
 DirectorBuilders

+ buildP1()
+ buildP2()

Builder

 + buildP1()
 + buildP2()

ConcreteBuilder

 builder.buildP2()

« altering »

PerformBuildP2 : call

 replacement

« uses »

The GoF Command pattern proposes to encapsulate a
request as an object, thereby letting you parameterise
clients with different requests, queue or log requests, and
support undoable operations [7]. Figure 8 gives the aspect-
oriented structure of the Command pattern.

 + request()

Invoker

« introduction »

 - command : Command

 + Invoker(Command cmd)

 command.execute()

« altering »

PerformRequest : call

 replacement

 « crosscuttingConcern »
InvokerCommands

+ execute()

Command

 + execute()

ConcreteCommand
+ action()

Receiver

 receiver.action()

 « uses »

While comparing the aspect-oriented structures of these two
patterns, we can also observe several similarities. In fact,
Builder and Command propose in general to mainly adapt
one or more operations (buildP1(), buildP2()... and
request()) of a context class (Director in Builder and
Invoker in Command), while giving a polymorphic behavior
to the instances of this class. To do this, they propose, in
opposite to the previous four patterns, to gather out the
various alternatives of the impacted operations in several

behavioral classes (ConcreteBuilder in the Builder pattern
and ConcreteCommand in the Command pattern). They
propose then to associate a behavioral delegate object (i.e.
an instance of a certain behavioral class) with each instance
of the context class at the instantiation time, thereby each
instance can automatically forward all the requests from
their clients to its delegate object. The collaborations
between the context class’s instances and their delegate
behavioral objects are possible thanks to an attribute
introduction (builder in Builder and command in
Command), as well as an introduction of a new
parameterised constructor (Director(Builder bld) in Builder
and Invoker(Command cmd) in Command). Crosscutting
specifications (PerformRequest, PerformBuildP1…)
intercept all calls to the context class’s affected operations,
in order to replace each of their invocations by the
invocation of the appropriate variant hold by the delegate
objects. Altering elements are then defined so that they
invoke, in their turns, one of the definitions of the
polymorphic behavior, depending on the actual delegate
object.

All these similarities make it possible to define a new
aspect-oriented design pattern, the Class Polymorphic
Behavior with Standalone Classes (CPB-SC). Figure 9
shows the aspect-oriented structure of this newly identified
pattern (see [27] for a complete description of this pattern).
Note that Class Polymorphic Behavior with Standalone
Classes proposes an alternative solution to the Class
Polymorphic Behavior pattern, with different forces and
consequences. We thus identify an alternativeOf
relationship between these two patterns.

 « uses »

 + method1()
 + method2()

Context

« introduction »

 - delegate : Delegate

 + Context(Delegate dlg)

 delegate.method1()

« altering »

PerformMethod1 : call

 replacement

 « crosscuttingConcern »
 ContextAggregates

 + method1()
 + method2()

Delegate

 + method1()
 + method2()

ConcreteDelegate

« altering »

PerformMethod2 : call

 replacement

 delegate.method2()

4.2.2 Instance Polymorphic Behavior with
Standalone Classes
As we proceeded for Command and Builder, we considered
in the same way State and Bridge patterns to define the
Instance Polymorphic Behavior with Standalone Classes
(IPB-SC) pattern (see figure 10).

Figure 7. Builder aspect-oriented structure.

Figure 8. Command aspect-oriented structure.

.

Figure 9. Class Polymorphic Behavior with Standalone
Classes aspect-oriented structure.

 + method1()
 + method2()

 …

Context

« introduction »

 - delegate : Delegate

 + Context(Delegate dlg)
 + setDelegate(Delegate dlg)

 delegate.method1()

« altering »

PerformMethod1 : call

 replacement

 « crosscuttingConcern »
 ContextDelegates

 + method1()
 + method2()
 …

Delegate

 + method1()
 + method2()
 …

ConcreteDelegate

 delegate.method2()

« altering »

PerformMethod2 : call

 replacement

 « uses »

State and Bridge propose, as well, to give a polymorphic
behavior to the instances of a given context class, while
gathering out and encapsulating all various definitions of
the involved behavior in additional standalone behavioral
classes. They make it possible, however, to change the
delegate object of a given instance during its execution. To
do this, the aspect-oriented structures of the two considered
patterns propose to define new setter operations (setState()
in State and setImplementor() in Bridge) designed to be
introduced in the context classes (Context in State and
Abstraction in Bridge). Such operations make it possible to
change the delegate objects at the execution time. State and
Bridge differ however by the way in which the behavioral
delegate objects are changed. State pattern proposes, for
example, to define the criteria for delegate state object
transitions in the crosscutting concern. This is possible
since such criteria are fixed in advance, whereas they
depend on client in the case of the Bridge pattern and they
can’t therefore be implemented within the crosscutting
concern.

4.3 Other patterns
To cover the GoF pattern catalogue, we also analyzed all
the aspect-oriented structures of the remainder patterns. We
mainly identified three “primitive” patterns: Add Features,
Alter Behaviors and Add New Role. We also defined two
other patterns: Add New Functionalities and Encapsulate
Complex Functionality that are added to the patterns that
we detailed into 4.1 and 4.2, as well as, to the three
“primitive” ones. Figure 11 outlines all relations that exist
between the whole 8 new Aspect patterns.

We propose in what follows to briefly describe the last five
new patterns. We mainly clarify their problems, contexts,
and often their solutions, as well as we specify the GoF
patterns from which they result.

 refines

alternativeOf

 uses uses

uses

 uses
 uses

Add Features Alter Behaviors Add New Role

Class Polymorphic
Behavior

Class Polymorphic Behavior
with Standalone Classes

Instance Polymorphic Behavior
with Standalone Classes

Encapsulate Complex
Functionalities

Add New
Functionalities

 uses

4.3.1 Add Features (AF)
Add Features allows adding new properties (i.e. attributes)
and/or behaviors (i.e. operations) to a given concrete or
abstract class, while keeping unchangeable its definition.
We use such a pattern when a non-central concern has to
interfere with a given class, dictating that one or more new
features have to be added to the former class without
changing its definition. We defined the pattern by
abstracting similarities that exist between the GoF Adapter
and Visitor patterns, which are mainly and exclusively
concerned by the Add Features’s intention.

4.3.2 Alter Behaviors (AB)
Alter Behaviors adapts the behavior of a given class that
must interfere with a concern other than its primary
concern, by dynamically and transparently altering one or
more of its involved behavioral features (i.e. operations).
The class’s definition must be unchanged. We identified
Alter Behaviors by considering commonalities that exist
between the GoF Singleton, Proxy and Decorator patterns,
which address the same problem that the Alter Behaviors
pattern.

4.3.3 Add New Role (ANR)
Add New Role allows adding common behavior (that can
take the form of one or more behavioral features) and/or
properties (i.e. attributes) to one or more different classes
without changing their definitions. Figure 12 shows the
aspect-oriented structure of the pattern.

We obtained this pattern by abstracting similarities that
exist between the GoF Composite and Prototype patterns.
Add New Role pattern is designed to be used when different
objects should have common features from a certain
perspective or a subjective view on their system. Note that
the needed additional features are not intrinsic to the
involved classes and their objects. To do this, Add New
Role proposes to define within a crosscutting concern an
abstract class (Role) that is designed to be inherited by all
of the involved classes (Context1, Context2…). The needed

Figure 10. Instance Polymorphic Behavior with
Standalone Classes aspect-oriented structure.

Figure 11. Cartography of the 8 new aspect-oriented patterns.

common features are therefore introduced into the abstract
super-class, by using the Add Features pattern. Added
behavioral features can then be eventually redefined by
several concrete operations that have to be introduced into
the involved classes.

 «crosscuttingConcern»

AddRole
« introduction »

 - attribute

 + method()
 + operation()

Role

« introduction »

 + operation()

Context1

« introduction »

 + operation()

Context2

 + method1()

 + method2()

 «crosscuttingConcern»

AcrosscuttingConcern

4.3.4 Add New Functionalities (ANF)
Add New functionalities proposes to add new functionalities
to one or more existing classes, without modifying their
primary behaviors. This is the implied intention, for
example, of the GoF Memento and Iterator patterns. Each
of the aspect-oriented structures of these two patterns is
mainly based on the definition of new additional concrete
class that holds the needed functionalities for the existing
one. Such a class is defined within a crosscutting concern
that has to abstract coupling between the newly added class
and the existing one. To do this, Add New Functionalities
uses the Add New Role pattern for defining two additional
abstract classes that are designed to be inherited
respectively by the two former classes.

4.3.5 Encapsulate Complex Functionality (ECF)
Encapsulate Complex Functionality proposes to carry out a
complex functionality defined by collaborations between
several existing classes that play different roles in the
context of this functionality. This is the implied intention of
the GoF patterns that mainly deal with collaborations
between several classes, such as, Chain of Responsibility,
Mediator, Observer and Flyweight. All aspect-oriented
structures of the four patterns use the Add New Role pattern
in order to extend the involved classes, and provide them all
features they need to complete their common complex
functionality. They also use the Alter Behaviors pattern,
thereby altering the basic behaviors of the concerned
classes and completely define the collaboration protocol of
the needed functionality.

5. DISCUSSION AND ANALYSIS OF THE 8
NEW PROPOSED PATTERNS
We presented throughout the previous sections 8 new
Aspect patterns: 3 “primitive” patterns and 5 “advanced”
ones, all of them worked out from the aspect-oriented
structures of the GoF design patterns [7]. The 8 new

patterns aim therefore to be general-purpose rather than
case specific or pattern specific. Still, what about the
relevance of their addressed problems and proposed
solutions?
A certain shortage of available Aspect applications makes it
difficult to find out in which extent the newly proposed
patterns are used in aspect-oriented software developments.
In order to mitigate this problem, we propose here to
identify all relations that exist between the newly proposed
patterns and all of the GoF design patterns. In fact, although
each one of the 8 new Aspect pattern was exclusively
abstracted from some of the GoF design patterns (in
particular from those who are primarily concerned by its
specific intention), some of the newly proposed patterns
(especially the primitive ones) have close connections with
almost all of the 23 GoF patterns. Indeed, such example
relations make it possible to concrete the utility of the new
patterns, and to confirm the importance of their problems
and solutions. Table 5 shows all relations that exist between
the 8 new patterns and the aspect-oriented structures of the
GoF patterns that we propose in our own work (line 1), but
also those proposed by [14] (line 2). Note that the 3
“primitive” patterns are largely used by almost all of the 23
GoF patterns, whereas, the 5 “advanced” ones are less
related to the 23 GoF patterns because they deal with more
specific problems (contrary to the 3 “primitive” patterns).

In the same way, we have considered some other related
works which deal with discovering new problems and
solutions that are useful in aspect-oriented design and
implementation. We mainly aim to analyze the relations that
exist between these problems and solutions and the 8 new
patterns. Table 6 summarizes, for instance, the relations that
exist between 5 of our newly proposed patterns and the
refactorings of [19], as well as the directives of [3].

[19] proposes to review traditional object-oriented codes in
the light of aspect-orientation. They propose a collection of
aspect-oriented refactorings covering both the extraction of
aspects from object-oriented legacy code and the
subsequent tidying up of the resulting aspects. Our Add
Features, Alter Behaviors, Add New Role and Add New
Functionalities patterns belong to the set of the proposed
refactorings. They are in fact used by most of all the
refactorings in order to completely or partially resolve their
problems. Move Field from Class to Inter-type and Move
Method from Class to Inter-type use, for example, the Add
Features pattern. The Extract Fragment into Advice uses
however the Alter Behaviors pattern, while Extract
Features into Aspect uses in its solution both the Add
Features and Alter Behaviors patterns. Besides, Extract
Inner Class to Standalone uses in it turn the Add New
Functionalities pattern. Finally, Generalise Target Type
with Marker Interface proposes the same solution that our
Add New Role pattern.

Figure 12. Add New Role aspect-oriented structure.

–

Table 5. Relations between the newly proposed patterns and the aspect-oriented structures of GoF patterns

 Patterns AF AB ANR CPB CPB-SC IPB-SC ANF ECF

uses uses uses Abstract
Factory uses alternativeOf alternativeOf

uses uses uses
 Builder

uses alternativeOf alternativeOf

uses uses uses Factory
Method uses alternativeOf alternativeOf

uses uses
 Prototype

uses alternativeOf

uses uses
 Singleton

 uses uses
uses/may

refines
 Adapter

refines

uses uses Uses
 Bridge

uses

uses uses
 Composite

uses alternativeOf

may uses uses
 Decorator

may uses uses

uses uses uses uses
 Flyweight

uses alternativeOf

may uses uses uses
 Proxy

may uses uses uses

uses uses uses uses Chain of
 Responsibility uses uses alternativeOf

uses uses uses uses
 Command

uses uses uses alternativeOf

uses
 Interpreter

uses

uses uses uses
 Iterator

uses alternativeOf

uses uses uses uses
 Mediator

uses uses alternativeOf

uses uses uses
 Memento

uses alternativeOf

uses uses uses uses
 Observer

uses uses alternativeOf

uses uses Uses
 State

uses uses

uses uses uses
 Strategy

uses uses uses alternativeOf

uses uses uses Template
Method uses alternativeOf alternativeOf

uses
 Visitor

uses uses

Table 6. Relations between 5 of the newly proposed patterns, the directives of [3] and the refactorings of the [19]

 Patterns AF AB ANR ANF ECF

Aspects for Collaboration alternativeOf

Aspects for Evolution extends

Aspects for Views uses

D
ir

ec
tiv

es
 o

f [
3]

Aspects and Obliviousness uses uses

Move Field from Class to Inter-type uses

Move Method from Class to Inter-type uses

Extract Fragment into Advice uses

Extract Feature into Aspects uses uses

Extract Inner Class to Standalone uses R
ef

ac
to

ri
ng

s
of

 [1
9]

Generalise Target Type with Marker Interface uses

[3] propose some preliminary directives for good aspect-
oriented design, based on the aSideML language [2]. The
directives they propose are mainly derived from their
AspectJ applications (such as Portalware MAS [8]), but
also from several other applications. We can distinguish for
example the Aspects for Collaboration directive, which
proposes to encapsulate crosscutting concerns that are
defined as collaborations between several classes within an
aspect. Note that this directive deals thus with the same
problem that Encapsulate Complex Functionality, it
proposes however an alternative solution to this pattern.
Another directive that we can consider here is Aspects for
Evolution; it proposes to extend an existing class by adding
new features so that this class can play a new role. Our Add
New Role pattern refines the intention of this directive; it
allows in fact adding new role to several classes at the same
time. He can thus be used to address the problem of the
Aspects for Evolution directive. The Aspects for Views
directive proposes to offer several interfaces to a given
class, which must be used by different clients in different
contexts. This directive uses our Add Features pattern in its
solution. Finally we can consider the Aspects and
Obliviousness directive that uses in its solution the Alter
Behaviors and Add Features patterns.

All these relations help to approve the utility of the whole
patterns that we propose. We do not claim however these
patterns are complete, but we believe they extend the
existing proposals [2, 4] thus contributing to further mature
the Aspect approach. The analysis of all of the aspect-
oriented structures we considered in this section allowed us,
in addition, to identify new alternative solutions to some of
the 8 newly proposed patterns advancing thereby the new
pattern’s descriptions (see [27] for a complete description
of all of the 8 proposed patterns).

6. CONCLUSION
In order to validate our aspect-oriented modeling approach,
we used it for expressing and providing aspect language-
independent structures of the 23 GoF patterns. These
structures, being more general than their corresponding
language-specific ones, helped us in identifying new 8
aspect patterns that are more general than are those of [7].
We then proposed an aspect pattern description formalism
that we have used to completely describe the newly
proposed patterns and organize them in a patterns system
(interested readers may eventually check more complete
descriptions in [27] as well as get more details on the
abstract and concrete syntaxes, well-formedness rules and
semantics of our three UML extensions). It is no wonder
that the number of significant patterns is reduced. This
comes from the higher abstraction level of the new aspect
GoF pattern structures description.

We think that the proposed patterns can be considered as a
first step in identifying new aspect-oriented design patterns,

though they are exclusively based on the review of the
object-oriented design patterns and not on analysis of
existing aspect-oriented software developments. In fact, we
argue that the identification of the recurring problems and
their possible solutions in aspect-oriented design remains a
significant work. We think consequently, in particular, that
other aspect-oriented design patterns remain to be
discovered. The identification of such Aspect patterns
requires a different approach from that which we adopted,
such as detailed and exhaustive analysis of several Aspect
systems, that still today difficult because of the low number
of existing aspect-oriented applications. Our approach
being however based on the transformation of Object
patterns, the newly proposed Aspect patterns can therefore
be used within the evolution of an object-oriented design
towards an aspect-oriented design. Such an evolution makes
it possible to mitigate the consequences of “code scattering”
and “code tangling” problems that characterize Object
systems, in order to facilitate their evolution and to increase
their reusability. Now that we have thoroughly defined a
system of aspect-oriented design patterns, we still need to
integrate the new patterns in an engineering method. We
think, in fact, that it is important to produce new process
patterns so that our proposals facilitate the use of the newly
introduced aspect-oriented design patterns.

7. REFERENCES
[1] Buschman, F. What is a pattern?. Object Expert, vol. 1, n°3,

(1996), 17–18.

[2] Chavez C., A Model Driven Approach to Aspect-Oriented
Design. PhD thesis, Brazil, 2004.

[3] Chavez C., Lucena C. Guidelines for Aspect-Oriented
Design. Primeiro Workshop Brasileiro de Desenvolvimento
de Software Orientado a Aspectos (WASP'04), Brasília.
Anais do Primeiro, 2004.

[4] Clarke S. Composition of Object-Oriented Software Design
Models. PhD Thesis, Dublin City University, 2001.

[5] Conte A., Fredj M., Hassine I., Giraudin J.P., Rieu D. A Tool
and a Formalism to Design and Apply Patterns. In
Proceedings of the 8th international conference OOIS 2002,
Montpelier, France, September 2002.

[6] Gamma, E. Object-Oriented Software Developments based
on ET++: Design Patterns, Class Library, Tools. PhD
thesis, University of Zürich, 1991.

[7] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[8] Garcia A., Silva V., Chavez C., Lucena C., “Engineering
Muti-Agent Systems with Patterns and Aspects”. Journal of
the Brazilian Computer Society, 2002, 8(1):57-72.

[9] Hachani, O. Utilisation de la programmation par aspects
dans l’implémentation de patrons de conception. Mémoire
de DEA, Université Grenoble 1, 2002.

[10] Hachani, O., Bardou, D.: Using Aspect-Oriented
Programming for Design Patterns Implementation. OOIS
2002 Workshop on Reuse in Object-Oriented Information
Systems Design, 2002.

[11] Hachani O., Bardou, D. : On Aspect-oriented Technology
and Object-Oriented Design Patterns. ECOOP 2003
Workshop on Analysis of Aspect-Oriented Software, 2003.

[12] Hachani, O. Gaining language independency in AOD though
meta-modeling and model transformation. 2èmes journées
sur l’ingénierie dirigée par les modèles (IDM), 2006.

[13] Hanenberg S., Oberschulte C., Unland R. Refactoring of
Aspect-Oriented Software. Net.ObjectDays 2003, Erfurt,
Germany, September 2003.

[14] Hannemann, J., Kiczales, G. Design Pattern Implementation
in Java and AspectJ. In Proceedings of the 2002 ACM
SIGPLAN Conference on OOPSLA 2002, SIGPLAN Notices,
Vol. 37, N°11, ACM (2002), 161–173.

[15] Hermann, S. Composable design with UFA. 1st International
workshop on Aspect-Oriented Modeling with UML in AOSD
2002, Enschede, The Nethetlands, April 2002.

[16] Hirschfeld, R., Lämmel, R., Wagner, M. Design Patterns and
Aspects – Modular Designs with Seamless Run-Time
Integration. The 3rd German Workshop on Aspect-Oriented
Software Development (AOSD-GI 2003), 2003.

[17] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
Griswold, W.G. An Overview of AspectJ. In Proceedings of
ECOOP 2001, LNCS, Vol. 2072, Springer (2001), 327–353.

[18] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., Irwin, J. Aspect-Oriented
Programming. In Proceedings of ECOOP’97, LNCS, Vol.
1241, Springer (1997), 220–242.

[19] Monteiro M.P.. Catalogue of Refactorings for AspectJ.
Technical Report UM-DI-GECSD-200402, Universidade do
Minho, Portugal, December 2004.

[20] Noda, N., Kishi, T. Implementing Design Patterns Using
Advanced Separation of Concerns. In OOPSLA 2001
Workshop on AsoC in OOS, 2001.

[21] Nordberg, M.E. Aspect-Oriented Dependency Inversion.
OOPSLA 2001 Workshop on Advanced Separation of
Concerns in Object-Oriented Systems, 2001.

[22] Nordberg, M.E. Aspect-Oriented Indirection – Beyond
Object-Oriented Design Patterns. OOPSLA 2001 Workshop
“Beyond Design: Patterns (mis)used”, 2001.

[23] Ossher H., Tarr P.L. Hyper/JTM: Multi-dimensional
separation of concerns for JavaTM, In Proceedings of the
ICSE 2000, International Conference on Software
Engineering, Limerick, Ireland, June, 2000.

[24] Philippow I., Riebisch M., Boellert K. The Hyper/UML
Approach for Feature Based Software Design. UML’03 4th
Workshop on Aspect-Oriented Modeling with UML, 2003.

[25] Stein D. An Aspect-Oriented Design Model Based on
AspectJ and UML. Master Thesis, University of Essen,
Germany, 2002.

[26] Suzuki, J., Yamamoto, Y. Extending UML with Aspects:
Aspect Support in the Design Phase. ECOOP’99 Workshop
on Aspect-Oriented Programming, 1999.

[27] http://www-
lsr.imag.fr/Les.Personnes/Ouafa.Hachani/works.html.

