
A Pattern Language for Extensible Program

Representation

−Id: ModelExtensions.tex,v 1.131 2006/09/25 07:33:39 black Exp −

Daniel Vainsencher
The Technion

danielv@techunix.technion.ac.il

Andrew P. Black
Portland State University

black@cs.pdx.edu

September 25, 2006

Note to PLOP Participants

We are aware that this paper is too long to be considered in its
entirety in a writers’ workshop. We suggest that the workshop focus
on the first 20 pages (up to the end of section 3.2) since this part is
the most polished. This unfortunately omits Section 3.3, starting on
21, which in some ways is the heart of the paper. General feedback
on the rest of section 3 would be welcome, but significant changes
are already planned.

Abstract

For the last 15 years, implementors of multiple view programming en-
vironments have sought a single code model that would form a suitable
basis for all of the views and tools that might be applied to the code. They
have been unsuccessful. The consequences are a tendency to build mono-
lithic, single-purpose tools, each of which implements its own specialized
and optimized representation. This limits the usefulness of the analyses
embedded in those representations, and also limits their reusability by
other tool builders. Unintegrated tools also produce inconsistent views,
which reduce the value of multiple views.

This paper describes an architecture that allows a single, minimal
representation of program code to be extended as required to support new
tools and program analyses, while still maintaining a simple and uniform
interface to program properties. We present architectural patterns that
address efficiency, correctness and the integration of multiple analyses and
tools in a modular fashion.

1



1 Introduction

We are trying to build better programming environments. Along the way, we
think that we have discovered some interesting things about representing a
program inside a modern programming environment. The purpose of this paper
is to share these discoveries with you, in the form of a pattern language for
representing programs.

Our view of programs is that they are complex, multi-dimensional structures,
not linear text [5]. Our view of programming environments is that they are
tools to reveal and elucidate that structure. This is not a new view. Even the
most conservative of programmers now expects features such as syntax coloring
and parenthesis matching; these are views that reveal and elucidate the fine-
grained context-free syntactic structure of procedures, modules, methods and
classes. Less conservative programmers also expect context-sensitive command
completion and the ability to navigate from uses to definitions of a program
component, and back again; these are views that expose some of the context-
sensitive syntax of the program. However, we aim to push this point of view
further than others have done, by making available a wide range of views of
the program, some of which are derived from various kinds of program analysis.
We also want to make it easy to extend our environment with new views, as
a demand for them emerges. We are thus faced with a difficult engineering
problem. Whose responsibility is it to perform the code analyses that the views
require? Should each view be created and maintained by a dedicated tool that
operates on a shared collection of text files, or on a shared program database?
Or should there be a “universal” shared code model that is general enough to
directly provide the data for all views? Such a shared model would need to make
available not only all the information directly present in the code base, but also
all of the indirect information that can be inferred from it, just in case some
view might ask for it. This sounds difficult, but has the important advantage
of ensuring that all of the views are consistent.

Our pattern language advocates such a shared code model. We are by no
means the first to have done so; as long ago as 1991 Scott Meyers wrote: “many
problems . . . would be solved if all the tools in a development environment shared
a single representation . . . Unfortunately, no representation has yet been devised
that is suitable for all possible tools.” [25].

In three years of work, we also failed to devise a general, abstract and efficient
shared code model suitable for all possible tools. With the benefit of hindsight,
we believe that the task is impossible: generality and efficiency are almost always
at odds with each other. It now seems obvious that what we need instead is an
extensible code model, so that generality can be added when it is found to be
needed, but not before. Moreover, by focussing the computationally expensive
analyses on those parts of the code base that the programmer actually finds
interesting, we can avoid wasting cycles computing information that will never
be used.

2



1.1 The Pattern Language

Index to patterns

Alternative Representation 16
Bulk Calculation 28
Canonical Implementation 31
Explicit Interest 23
Formal Definition 33
Generic Tools 14
Inverse Mapping 18
Layered Extensions 20
Lazy Update 29
Life-long Interest 26
Minimal Calculation 27
Model Extension 10
Shared Code Model 8

The main contribution of this paper is a
pattern language for an abstract, extensi-
ble and efficient shared code model. The
patterns are presented in four groups. The
first group, described in Section 3.1, an-
swers the primary question posed above:
how should the responsibilities of a multi-
view programming environment be di-
vided among the code model and the
view maintainers? The second group
(Section 3.2) presents some common cat-
egories of information that are strong
candidates for integration into the code
model. The third group is devoted to per-
formance considerations, and how these
affect the proposed design (Section 3.3).
One unfortunate consequence of performance work is to add difficult-to-find
bugs; the fourth group of patterns (Section 3.4) is about removing them.

The essence of the pattern language that we propose here is to apply the
model-view architecture to program development environments. The code —
and all of the interesting analyses on it — become the model; the various tools
in the environment do nothing more than ask the model for the data that
they need, using Observer in the usual way, and present it on the screen. We
accommodate all of those interesting analyses in the model— including the ones
that we haven’t yet realized that we need —by making the model extensible.
Some of these analyses will be complex, and will expose global properties of the
code. And yet: each model extension must be able to answer, at any moment,
any sequence of questions about the code model that a tool might ask, and
must do so quickly, so that the view can respond in real-time as the code is
modified. This is why we pay such attention to performance; without a solution
to this challenge, our pattern language would be nothing more than a hollow
shell, attractive in the abstract, but completely infeasible in practice.

In the next section (Section 2) we introduce a particular code model ex-
tension that we have implemented, and then use it throughout the paper as a
running example to demonstrate the issues and how the patterns address them.
But first, we offer an apology.

1.2 Patterns or Proto-patterns?

In the introduction to Linda Rising’s collection Design Patterns in Communi-
cations Software [30], Douglas Schmidt writes:

Patterns represent successful solutions to challenges that arise when

3



building software in particular contexts. When related patterns are
woven together, they form a pattern language that helps to (1) define
a vocabulary for talking about software development and integration
challenges and (2) provide a process for the orderly resolution of
these challenges. [30, p. xii].

While there is no one definition of what makes a design pattern, as Schmidt
indicates, a useful rule of thumb is that patterns present a solution to a problem
in a context. Another criterion is that patterns should not seem startlingly new
to practitioners: on the contrary, the expected response to a pattern is: “how
elegant; I might have thought of that myself, if I had been faced with that
problem” or “right; I have done that before in other contexts, and I see that it
might be useful here too”. The purpose of presenting design ideas in pattern
form is to define a language for architectures in a common domain and to open
a dialog in and around it.

By all of these criteria, the pattern form is appropriate for this work. How-
ever, there is commonly also an expectation that a pattern distills from multiple
experiences. For example, Buschmann et al. [8] propose finding at least 3 ex-
amples of an idea when pattern mining, and Gamma et al. [15] offer at least
two examples of each pattern. By this criterion, the strategies that we propose
do not yet qualify as patterns because we cannot offer evidence that they are
currently in wide use. We have implemented these ideas in the context of the
Smalltalk programming toolset, but have not yet seen most of them adopted
in other environments, for example, Eclipse. However, we feel that presenting
these proto-patterns at this stage will enable more development environments to
build on this architecture in the future, and in the process extend and evolve our
contributions into a full-fledged pattern language. In this spirit, we particularly
welcome additional examples for, or counterexamples to, our putative patterns.

Having raised this issue, for conciseness we will nevertheless refer to a specific
proposed solution as a pattern in the remainder of this paper.

2 Motivating example

Our implementation of these patterns has so far taken place in Squeak Smalltalk,
where we have been working on tools to support traits [6, 35]. Although
Smalltalk has no explicit syntactic marker that identifies an abstract class,
abstract classes are widely used in practice. They can be identified because
they are missing critical methods. An example is the class Collection, which
is the abstract superclass of many of the concrete kinds of collection, such as
Sets, Bags and Dictionaries. Collection is abstract because it does not pro-
vide implementations for add:, remove:ifAbsent:, or do:; it is the responsibility
of its subclasses to provide these methods. This is indicated by the existence
of explicit marker methods on these messages, i.e., methods with the body self
subclassResponsibility, which serve to mark the method as abstract. Collection

4



Figure 1: The Smalltalk browser showing abstract classes and required methods. In
the method list pane (at the top, on the far right), all of the required methods of
class Collection are listed. In the class pane (at the top, second pane from the left),
abstract classes are highlighted in blue. The fact that they are abstract is deduced by
the browser when it finds that they have a non-empty set of required methods.

does provide concrete methods for addAll:, remove:, collect:, select: etc., which
are implemented in terms of the abstract methods.

However, not all abstract methods are indicated by marker methods like sub-
classResponsibility. An examination of the methods provided by class Collection
also reveals that atRandom: is sent to self in another method, even though it
is not explicitly marked as abstract: atRandom: is an implicit abstract method.
To recap: an analysis of the whole of the class Collection can reveal that the
class is abstract, and can also infer the names of the four abstract methods that
are required to make it concrete. However, this analysis can be computationally
intensive for a large class or a deep inheritance hierarchy.

While programming in Smalltalk, we have found it very useful to show, in
real time, which classes are abstract. When viewing a particular class, it is
also useful to show a list of the abstract methods — which are known as its
requirements [34]. It is particularly important to infer the implicit requirements
because this supports “programming by intention” [19]: the constant display
of the required methods acts as a “to do list” for the programmer. In figure 1
the Smalltalk browser is showing the required methods of Collection. We call
this the “requires view”; it is an example of a view that reflects the result of an
extensive non-local analysis of the code base.

In seeking to implement the requires view, we started out with Schärli’s ef-
ficient algorithm for determining if a particular method is required by a specific
class and its subclasses [32, 34]. Our problem, then, was to construct from
this algorithm a practical browser that would indicate which classes in a (pos-

5



sibly long) list of classes were abstract, and which methods were required by a
particular class.

It turns out that when programmers use browsers they frequently change the
display of the list of classes. The näıve approach of running Schärli’s algorithm
on every defined selector on every class in a long list was far too slow: the results
were not available within the 100 ms time box that is the norm for interactive
response. Our problem was how to efficiently reify the information needed for
the requirements calculation in the code model so that this information could
be shared amongst various tools, without repeatedly recalculating it.

By “reify” we mean “make the information concrete”. In a sense, the im-
plicit information is there in the code model all of the time, but a lot of com-
putation is required to extract it. Reified information, in contrast, is directly
available through an appropriate method with little computational overhead.
An additional problem was that Schärli’s algorithm itself required walking the
inheritance hierarchy, and obtained part of its efficiency from the careful use
of caches to avoid recalculating on behalf of a subclass that which had already
been calculated for its superclass. We hoped to be able to reuse these caches in
a more general setting, so that the cached information would become available
to other tools as part of the model, rather than being the exclusive property of
one algorithm.

3 The Patterns

We have arranged our description of the patterns into four groups. The first
group (section 3.1) describes the division of responsibilities between the code
model and the IDE tools that use it, and the interfaces needed to support this
division. The basic concepts are a code model that is shared by different tools,
and enriched over time by different model extensions. The value of new model
extensions is increased by the presence of some generic tools that leverage them
with little investment.

The second group (section 3.2) addresses the content of the extended model,
by suggesting a number of categories into which model extensions may fall,
and how extensions can build upon other extensions. The third group (sec-
tion 3.3) provides guidance on making the extensible model fast enough while
maintaining the cleanliness of the interface and correctness of implementation.
The fourth and final group (section 3.4) addresses correctness. Figure 2 shows
the relationships between the patterns and the problems that they address.

3.1 A Code Model supporting Multiple Views

Underlying any development environment is a representation of the code of the
program under development. A very common scheme for this representation
is code files in directories, possibly with additional files for metadata about

6



Shared Code 
Model

Model Extension

Explicit Interest

Generic Tools

Life-long Interest

Minimal 
Calculation

Bulk Calculation

Lazy Update

Inverse Mapping

Formal Definition

Layered Extension

Alternate 
Representation

Canonical 
Implementation

Independent 
tools access 
code model

New tool 
needs new 
information

Calculating 
new 

information 
is complex

find 
candidate 
extensions

cost of 
computing 

extension is 
too high

present 
information 

to user

one 
extension 
depends 

on another

When does 
interest end?

Figure 2: Text in rounded rectangles summarizes a problem. Shaded ellipses name
patterns discussed in the body of the paper. Arrows show how problems are addressed
by the patterns, and how the use of the patterns gives ride to new problems.

the project. In contrast, we implemented the requirements browser on top of
Squeak Smalltalk [18], which uses a rather different code model, common in
Smalltalk environments. Our first pattern describes the structure of this code
model and some of the features that contribute to its extensibility. The existence
of these features in Smalltalk systems is not coincidental: there has been a long
tradition in the Smalltalk community of programmers augmenting the set of
available programming tools. Shared Code Model , described on the following
page, provides the foundation for programming tools that display information
that is available explicitly in the model.

7



Shared Code Model

Context. You are designing, refactoring or extending a program development
environment that contains several independent tools giving different views on
the same code.

Problem. How can you ensure that each tool is up-to-date regarding all of the
changes made in every other tool, and that the tools are consistent with one
another in their interpretation of the code?

Forces. The tools are written by different developers. Multiple representations
of the code lead to high maintenance costs, and to inconsistencies between
the tools. The model needs to be complete so that all tools can be based on
it. The whole development environment needs to be responsive for common
actions, so requests on the model should be sufficiently cheap. The tools may
live in separate address spaces, in which case communication between the tools
and the model will be costly. When one tool changes the model, other tools
examining the model need to be able to reflect the change promptly

Solution. Maintain a single direct representation of the high-level syntax of
the program as a graph of objects, organized to permit efficient browsing and
searching. Lower levels of syntax need not be built as object structures; instead
they can be kept as text.

Keep the shared code model minimal to avoid redundancy, and the complex-
ity and inconsistencies that result from it. This means that information that can
be calculated from the model should not be cached in the model. Some other
reasons for minimality are that specialized information is likely to be useless to
most of the tools, and that a minimal model is simple to understand.

In order to keep the tools and other clients up to date, the code model
must implement a notification mechanism, such as an Observer pattern. The
notification events should include enough information for a tool to update the
relevant parts of its output efficiently. In Squeak this information includes the
identity of the code model element (e.g., the method or class) that changed,
and the nature of the change (addition, removal, or modification).

Consequences. The fact that the code model is shared and the use of Observer
allows multiple tools to remain synchronized and oblivious to one another.

The representation of the high levels of code as objects makes common nav-
igation tasks easy, for example, it is easy to access the superclass of a class, or
to enumerate the methods of a class.

8



One of the decisions that must be made when applying Shared Code Model
is which parts of the code to represent as structured objects and which parts
as linear text. Another is when to ignore the minimality rule, and store both.
Sometimes there are good reasons to duplicate information, since some formats
are more convenient for specific tasks. An obvious example is compiling source
code into byte-coded methods to speed execution. The source and the byte-code
are essentially two representations of the same information, and the code model
must go to some lengths to keep them consistent.

It would be much simpler to execute the text directly, or to re-compile it
whenever needed, and this is in fact what most Ruby and Python implementa-
tions do. An alternative way of achieving minimality would not to keep the
source code in the model at all, and instead to re-generate it from the byte-code
when necessary. However, discarding the source would also discard layout and
comments — the so called “documentary structure” of the code [40], which is
usually considered important for methods. We have seen that there exist cases
in which some duplication is warranted inside the Shared Code Model . But in
most cases it is not necessary; Alternative Representation, described on page 16,
explains how multiple representations can be used conveniently, without making
them part of the Shared Code Model .

Note that although Squeak does redundantly store both source text and byte
code for methods, it does not preserve the source text when the documentary
structure is deemed unimportant. For example, the text of class definitions,
whose formatting is stylized, is not preserved.

A second decision is what to put in main memory, and what to leave on the
disk. Along with the choice of representation, this will obviously dictate the
memory footprint of the model, and thus the scalability of the environment.

The two decisions are not entirely independent, because the operation of
following an object reference on the disk is roughly 10 000 times slower than
following a reference in main memory, and so disk storage is much more suitable
for sequential representations, and main memory for linked ones. In Squeak,
the class hierarchy and compiled methods are stored as an object graph in main
memory, whereas method bodies are represented by pointers to text on the disk.
An environment for the manipulation of very large programs might be forced
to keep more information on disk; in this case various kinds of database index
structure could be used to improve access times.

Related patterns and variants. Riehle et al. [29] present the Tools and Materials
metaphor, which motivates the distinction between the application (a tool) and
the model on which it operates (the materials). Other patterns such as MVC [8]
have also made this distinction. In terms of the metaphor, our pattern language
aims to improve the stock of readily available materials so that the work that
must be performed on them using tools is reduced, or eliminated altogether.
(The Tools and Materials metaphor is discussed further in Section 5: Related
Work.)

9



We have already mentioned the role of the Observer pattern in connecting
the code model to the tools that operate on it.

�

It was our goal to implement a tool that uses some information that the
Squeak code model does not provide explicitly: the requirements of a class. We
wanted to access the requirements in at least two places: first, to annotate a
class as being abstract when its name appears in the browser’s list of classes, and
second, to display the requirements of a class when the programmer browses that
class. In addition, because there were other kinds of code browser that might be
extended to use the requirements property, we wanted to make it very easy to
access this property — as easy as it is to access the base properties of the code
model. For example, getting the names of the instance variables of the class
Morph in Smalltalk is very simple, because instance variables are explicit in the
base model: the programmer merely issues the query Morph instVarNames. Our
goal was to provide access to the requirements of a class using an equally simple
query: Morph requiredMethods.

However, our starting point was quite different: Schärli’s algorithm, for good
performance reasons, was implemented to update a global cache of requirements.
So, getting up-to-date values required first updating the cache for the class in
question, and only then accessing it. So, if we were interested in the requirements
of class Morph, the code was

Morph updateRequiredSelectors.
requirements := Morph requiredSelectors.

Thus, clients had responsibility of ensuring that the cache was up to date,
which was both inconvenient and error-prone. We felt that this was the wrong
trade-off, and that simplicity of interface was more important than simplicity of
implementation. The next pattern, Model Extension, deals with this trade-off.

Model Extension

Context. A development environment uses a Shared Code Model to represent
the code and includes several tools that operate on it.

Problem. How do the tools access properties that are not stored in the code
model, but are calculated from it?

Forces. Many of the tools in an IDE exist to access properties and structures
that are implicit in the code, and therefore not present in a minimal shared code

10



Class

superclass
name
classVarNames
instanceVarNames
…
requiredMethods
    helperMethod1
    helperMethod2

(b) extend 
model by 

adding the 
whole 

implementation 
of the new 

property to an 
appropriate 
class in the 

model

Class

superclass
name
classVarNames
instanceVarNames
…

RequiredMethods

computeFor: aClass
computerForAllsubcla
ssesOf: aClass
    helperMethod1
    helperMethod2

(a) put new property in its own class.  There may be 
multiple interfaces for performance or convenience

Class

superclass
name
classVarNames
instanceVarNames
…
requiredMethods

RequiredMethods

computeFor: aClass
computerForAllsubcla
ssesOf: aClass
    helperMethod1
    helperMethod2de

leg
at

es

(c) Model Extension: put interface to the new 
property in the appropriate class in the model, but 

put calculation of new property in its own class

Figure 3: Here we show diagrammatically various alternatives for enriching a shared
code mode. In (a), Class is part of the shared code model, shaded buff. The algorithm
to compute the required methods of the class has been added in a separate class, shaded
blue. The means that the user of each extension must be aware of a non-uniform
interface to that extension, and may also have to be concerned with initializing and
finalizing the classes that implement it.
In (b), the whole of the implementation of the extension had been placed in the
existing model class. This makes it possible to present a uniform interface, but fails to
encapsulate the new algorithm, and makes it hard to provide potentially more efficient
alternative interfaces. It also demands that the programming language provide a very
complete implementation of class extension.
Alternative (c) exploits the Model Extension (p. 10) pattern; the interface to the ex-
tension is in the appropriate code class, but the implementation is encapsulated in its
own class. Only the most modest class extension mechanism is required.

model. Nevertheless, users of the code model would like to be able to interrogate
these properties and structures through a simple and concise interface.

Despite the fact that several tools may wish to access the same properties
and structure, multiple implementations must be avoided.

One of the ways in which a new tool can add value is by defining new
properties or making visible a new level of structure, so these parts of the code
model should be open to extension.

11



The implementation of a tool may be complex, and should be encapsulated
and kept separate from the core of the model.

Solution. Express each new property as an extension to the interface of an
appropriate class in the Shared Code Model . Implement the calculation of this
property as a Model Extension, that is, place it outside the Shared Code Model
itself.

In our running example, the interface that we desire is myClass required-
Methods, since this will make requirements accessible as directly as any other
properties of the code model. To the tool writer, extensions like requiredMeth-
ods add richness to the otherwise minimal code model, making it a more useful
representation of the code. By accessing all aspects of the code through the
code model, we make the implementations of different tools simpler, and the
tools more similar to each another. This makes it easier to use, understand and
maintain different tools.

However, the implementation of the logic necessary to implement the new
interface should be placed in its own class (or classes), and the extensions to
the model classes should delegate all of their responsibilities to this new class.
This arrangement is illustrated in Figure 3(c). For authors of model extensions,
the separation of the implementation from the interface enables them to address
the complexities of correct and efficient computation of each property without
increasing the complexity of the code model.

The interface extensions should be class extension methods if the implemen-
tation language supports them, or Extension Objects [14] otherwise.

Consequences. Model extensions provide the flesh to the Shared Code Model ’s
skeleton. Tools can now push all responsibility for interpretations of the code
model into extensions, where they are available to any new tools.

Many programming languages do not recognize the importance of open
classes [9]; they make it hard to extend classes that have already been writ-
ten by another programmer or obtained from an outside organization. In Java
and C++, for example, any change to the interface of a standard class library
requires a change in its implementation, which is often not under the control
of the tool writer. Some Java variants such as MultiJava [9] and AspectJ [20]
recognize the value of open classes and do provide for class extensions; program-
mers using ordinary Java can fall back on the Extension Object pattern [14].

Smalltalk supports open classes, so the Smalltalk programmer can extend the
interface of the code model by adding new methods in a separate code package
containing a class extension. However, the Squeak class extension mechanism
is not well-suited to modifying the structure of existing class definition; for
example, it is impractical to change the representation of the code model by
adding some instance variables to a class.

Because this pattern places all of the logic of the model extension in new
classes, the only class extension facility that is needed is the ability to add a

12



new stateless method to an existing class. This mitigates the impact of any
deficiency of the chosen implementation language.

Related patterns and variants. This pattern specifies the mechanism of inter-
face extension, and the separation of interface from implementation, but says
nothing about the form of the implementation itself. This is important: al-
though the architecture that we have specified so far is functionally complete,
it is insufficient to allow implementations to obtain reasonable performance on
code models of any significant size. Later we will describe the performance is-
sues, and some patterns that help resolve them. The most important of these is
Explicit Interest, which describes a simple interface addition that allows various
implementation strategies, including the well known Caching [21].

�

Using the patterns that we have described, we implemented a requirements
browser for Squeak, which flags abstract classes and displays their requirements.
In the process we also implemented a reusable model extension, which is thus
available to existing Smalltalk browsers — if they are extended to use it. How-
ever, implementing a simple interface that answers a useful question can be
more rewarding than that: it should be possible to make use of a model ex-
tension even without requiring that the environment developer write new tools
or modify old ones. From the perspective of the user, discovering the existence
and usefulness of a code analysis of which he had not previously been aware
should not require him to learn to use a new tool. We can lower the costs of
using model extensions to both tool developers and users by providing Generic
Tools that are easily adapted to make use of new model extensions.

What do we mean by a “generic tool” and how could one have helped us with
the requirements analysis? To answer this question, consider a generalization of
the requirements browser. Our requirements browser displays in blue the names
of classes that respond positively to the message isAbstract. It could easily be
modified to use some other predicate to decide which classes to color. With a
little more work, the browser could be made to show the programmer a list of all
of the predicates on classes, and allow him or her to decide which predicate will
determine class coloring. Then, every new model extension that is a predicate
would be added to this list automatically, making the extension immediately
usable, even before a tool tailored to take advantage of the extension has been
written. Even after tailored tools have been developed, any programmer opening
the configuration dialog of the generic tool will see all the predicates defined on
classes, and can choose to explore their usefulness, without having to learn the
more specialized tools.

Of course the idea of Generic Tools is not limited to model extensions that
are predicates. Ducasse and Lanza [10] describe a tool that allows for the ad
hoc definition of code visualizations based on code metrics. In their tool, a
code element is represented by a rectangle, and the values of different metrics

13



determine its height, width and color. These metrics can be implemented as
model extensions whose values are numeric.

Thus, a new code analysis, if given a sufficiently abstract interface, provides
us not with one new tool or view, but with a new kind of information that can
be used from many existing and familiar views and the tools that implement
them. We capture this idea in the pattern Generic Tools, described below.

Generic Tools

Context. A development environment exists, various Model Extensions are im-
plemented, and specialized tools use them.

Problem. How can you make the views of the program corresponding to these
model extensions as accessible as possible?

Forces. Many known and useful code analyses are understood by few practi-
tioners and used by even fewer. This is true even though tools exist to apply
them, because activating a specialized tool just to access an analysis takes time,
and thus makes the analysis less valuable. If the programmer must learn a new
tool in order to access a new analysis, he is less likely to ever use it.

For the developer of a code analysis, being forced to also create a tool that
displays the results of that analysis raises the barrier to entry, and provides a
disincentive to making the analysis reusable.

While some code analyses result in specialized models of the code, many oth-
ers result in representations of the code in terms of ordinary data types such as
booleans, numbers, collections and graphs. There are sophisticated techniques
for visualizing and manipulating this kind of data that are not dependent on
their particular meanings.

Solution. Instead of creating tools that are specialized to show a specific model
extension to best effect, create generic tools that allow a programmer to make
opportunistic use of a variety of model extensions. Such tools should provide
a generally useful mechanism for using information about code. Generic tools
should be extensible to use information from different sources.

Note that the requirement here is extensibility by a programmer, which can
be achieved at different levels by different means. An tool framework might
be extended to use a new Model Extension by coding a simple plugin. In some
cases, a configurable tool might be extended without any programming, by
merely specifying the name of an extension. The main requirement is that the
writer of a Model Extension can make it visible from tools with small amounts

14



of effort.

Consequences. A development environment with a suite of Generic Tools en-
courages the writing of reusable code analyses; exposing the outputs of code
analyses also encourages the addition of new specialized tools that make use of
them.

Note that Generic Tools are likely to sacrifice some aspects of usability. This
is because they give the programmer a generic user interface rather than one
specialized to a particular task. Generic tools are therefore are more likely to
complement than to replace more specialized tools.

Related patterns and variants.

We present two more examples of Generic Tools.

First, we observe that a unit testing framework such as SUnit [3] can be
thought of as a generic tool. SUnit allows convenient, reproducible checking
of assertions about code. The assertions are usually about code functionality,
and are checked by running application code on examples with known desired
results. However, the assertions can also be about structural properties of the
code, in which case they can be checked by sending messages to the objects
in the Shared Code Model . Any new model extension can be used in this way
immediately, without writing any new tools.

For example, unless one is building a framework extensible by inheritance,
it is reasonable to expect that any abstract classes will have at least one con-
crete subclass. Leveraging the requirements model extensions and SUnit, this
assertion can be expressed as follows.

(MyPackage allClasses) do: [ :each |
self deny: (self subclasses isEmpty and: [self isAbstract])]

A suite of SUnit tests containing assertions like this may be thought of as turning
the SUnit test browser into a general tool for maintaining invariants about the
structure of the code. Naturally, such structural test suites complement, rather
than replace, conventional test suites that check the function of the code.

The second example is the StarBrowser [41], which was designed by Wuyts et
al. specifically to allow unanticipated integration of new properties. It displays
a tree of nodes that can represent different types of objects, including code
model elements. The StarBrowser can be made to display a specific set of child
nodes, for example the required methods of a class, in an ad hoc fashion: one
passes it an anonymous function that returns the set of nodes. It can also
be customized more systematically, by creating a glue class that defines a new
menu item on the appropriate node type to do the same thing. The latter type
of customization can be done by a tool integrator who is the author of neither
the StarBrowser nor the model extension. Thus, the working programmer can
be exposed to the model extension through the StarBrowser without having to
do the integration work.

15



�

3.2 Differentiating Model Extensions

This section presents two general situations in which application of Model Ex-
tension (p. 10) can help to resolve a design problem; the patterns discuss the
concerns specific to each, and how different Model Extensions may be composed.
The discussion is heavy with performance concerns, because experience (both
personal and vicarious) shows that performance can be quite critical in smart
development environments. In each pattern we therefore mention the perfor-
mance problems typical to each kind of model extension and reference solutions.
However, the reader might prefer to ignore this discussion on the first reading
and focus on the effects of applying each pattern, rather than the details of its
efficient implementation.

Alternative Representation

Context. The development environment has a specific representation for each
kind of element in the shared code model.

Problem. This representation is not the most appropriate for the specific tool
that you are implementing. For example, the representation of a method might
be textual; if you are implementing parenthesis matching, an Abstract Syntax
Tree representation would be more convenient.

Forces. We cannot change the shared code model representation to fit our
application. Nevertheless, because the shared code model is complete, the in-
formation we need is in it somewhere: it is implicit where we would like it to be
explicit.

Solution. Define the representation that you prefer as a model extension. Cal-
culate it when required in the conventional way, for example, build an Abstract
Syntax Tree by running a parser on the textual representation of the code.
Efficiency may require the use of Caching [21].

Consequences. There is inevitably a cost in providing an alternative repre-
sentation: time to compute it when needed, or space if it is to be cached, or
possibly code complexity if a more efficient (but elaborate) solution is found.
However, some of these costs are inevitable as soon as an IDE needs to expose
aspects of the code that are implicit in the primary representation, and explicit

16



in the alternative representation. For example, when implementing parenthesis
matching, if we do not introduce the alternative syntax tree representation, we
would instead need to do some form of ad-hoc parsing to find the parenthe-
sis. This ad-hoc parsing has an execution cost, may need to be cached, etc..
Moreover, the ad-hoc solution would to some extent duplicate the normal pars-
ing code that exists elsewhere. Applying this pattern allows us to avoid such
duplication.

Related patterns and variants. It is worth noting that many alternative rep-
resentations exist and are commonly used, and while they might be useful to
programmers seeking to better understand their programs, these representa-
tions are rarely shown to them. Some of the representations used by compilers
to optimize code include control flow graphs (CFG), single static assignment
(SSA) form, various intermediate languages and finally the compiler’s target
language. While the programmer often works with higher-level representations,
sometimes these low-level ones are of interest, for example when investigating
the performance of specific bits of code. Compilers often allow the programmer
to see at least part of the representations that they use, but most IDEs do not
make them readily visible. Compilers are only one source for potentially useful
alternate representations; the program analysis literature has many more.

�

A very common activity while reading code is navigating through references.
In a procedural language, a procedure call is linked to the definition of a proce-
dure by the scoping rules of the language. It is common for IDEs to automate
this navigation, allowing the programmer to navigate from the call site to the
definition with a single click. In an object-orinetd language, an IDE may pro-
vide a pop-up menu on a message-send that allows the programmer to choose
between the different relevant method bodies. This functionality is not particu-
larly difficulty to implement; it is enough to parse the particular method being
browsed (possibly this would be an Alternative Representation (p. 16)) and keep
track of relevant procedure and method definitions in the program. It isn’t hard
to keep this information current: when a procedure or a method is changed, the
IDE needs to update the parse tree of that procedure or method only.

Our next pattern is motivated by a related feature: the ability to navigate
in the other direction, from a procedure to its call sites or from a method to
the senders of the corresponding message. Navigating in this direction is useful
when attempting to understand how a procedure or method is used, or when
considering a refactoring such as adding a parameter. Note that answering the
query in the näıve way (by searching for all calls to the procedure) would be
expensive even if the parse tree of whole program were available, so an Alternative
Representation is not the solution. The solution that we propose is captured in
the pattern Inverse Mapping , described on the next page.

17



Inverse Mapping

Context. The code model has various natural reference structures. These are
accessible via the Shared Code Model or by Alternative Representations, and
used by programmers and tools.

Problem. Can we allow efficient navigation in the opposite direction?

Forces. Because the shared code model is minimal, many mappings that it
supports directly will be one-way. For example, a class might have a direct ref-
erence to its superclass, but not to its subclasses. Programmers and higher-level
model extensions may both wish to use these mappings in the other direction.
Traversing the code base to search for such references is expensive.

Solution. As we will see, efficient implementation of inverse mappings can
be complex. Provide each inverse mapping as a Model Extension, so that the
implementation details are hidden from clients.

The basic difficulty in the efficient implementation of an Inverse Mapping is
that finding all references to a code model element is a non-local task, because
references can be anywhere in the code base. This means that traversing the
whole code base at each request is expensive. Caching the precomputed inverse
mapping allows us to avoid multiple traversals of the whole code base for mul-
tiple queries. Then the basic difficulty shows up in a different way: to correctly
answer queries about arbitrary reference targets this cached inverse mapping
has to be of the whole code model, making it expensive in space for references
that are common, such as procedure calls or message sends.

Assuming a cache is used, what does updating the cache for an Inverse
Mapping entail? Suppose that the part of the code model that has been modified
corresponds to a procedure definition. We have to remove from the cache those
entries related to references that the procedure used to make, and add entries for
the references that it now makes. The latter is straightforward, but the former
poses a potential problem: how do we find the references that the previous
version of a procedure used to make? Sometimes this problem is solved by the
change notification mechanism providing access to the previous definition of
the changed element as well as the new one. If this is not the case, it may be
necessary to keep a separate record of all references in the ordinary direction,
just for this purpose, or, in the worst case, to rebuild the cache from scratch by
exhaustive search.

Some ways to reduce the cost of providing an Inverse Mapping in this case
are described in the efficiency patterns in Section 3.3.

18



An example: it is easy to find the set of classes referenced by a class, but
harder to find all the classes that reference a particular class. So if this pattern
were used in a Smalltalk environment, c referencedClasses would answer the set
of classes referenced by c. The inverse mapping would be c referringClasses,
which would answer all of the classes that refer to c. Whereas referencedClasses
can be evaluated locally, by scanning the names referred to by all of c’s methods,
a näıve implementation of referringClasses would require a global traversal of all
of the classes in the environment, searching for classes that refer to c.

The Smalltalk environment does not presently adopt this pattern. Indeed,
it the base system does not put either enquiry in the code model; instead the
functionality to find all references to a class is implemented in the SystemNaviga-
tion tool (using global search). The Refactoring Browser implements the same
functionality again. This illustrates the sort of problem that extensible code
models will help to avoid.

Consequences. The maintenance of an Inverse Mapping might be expensive
even with a sophisticated implementation. There is usually a tradeoff between
space and time: making an inverse mapping available quickly will cost space
(for a cache of an inverted index).

Related patterns and variants. As we mentioned above, the efficient implemen-
tation of an inverse mapping will sometimes require more than just a general
cache. Explicit Interest makes it possible to maintain a more selective cache, for
example with information only about references to specific code model elements.
Bulk Calculation and Lazy Update show how to make the most of each non-local
scan.

�

Calculating the inverse mappings we mentioned above, we assumed that the
references made in a method are available. In turn, these might be found in
an Alternative Representation implemented by parsing the source code, or by
abstract interpretation of the byte code. We now return to our motivating
example, the task of listing the methods required by a class.

A method m can be required either because m is explicitly marked as such,
or because a m is not implemented by a class or its superclasses, but m is
sent to self in a method of that class. Because self sends can be conservatively
estimated statically, m is definitely used but not implemented, and therefore its
implementation is required to make the class complete.

How can we determine whether a method is required in a class? The simplest
thing that could possibly work would be: for every selector s that may be
required, scan every method implementation m to see if it self-sends s. This
defines a mapping self sends from methods to sets of selectors. This is a poor
implementation technique: it would scan every method in every class many
times. What we need here is the Inverse Mapping self senders of which provides,

19



for each selector, the methods that self send it. Thus, we find that we have quite
naturally partitioned the complex computation of required methods into three
layers of Model Extensions, each built on a simpler one. This leads us to our
next pattern: Layered Extensions, described below.

Layered Extensions

Context. You have a definition of an interesting and complex model extension.

Problem. How do you implement it efficiently, while at the same time promoting
reusability?

Forces. Calculating this model extension requires as input other, expensive
to compute information. The other computation might itself be useful as a
property. The complicated property calculation can be broken down into a
series of smaller, loosely coupled definitions.

Solution. Define each complex Model Extension on top of simpler ones, in layers.
A higher-level property expresses Explicit Interest in the lower-level extensions
that it requires. Note that layering model extensions requires us to be careful in
ordering recalculations. For example, we do not want to recalculate the require-
ments property before we have recalculated the self senders of mapping for the
methods in the relevant classes. This ordering requirement can be addressed by
Lazy Update, described on page 29.

Consequences. When implementing Layered Extensions, a number of compet-
ing forces come into play. For reusability, it is tempting to break the definition
of an extension into small fragments. For performance, one needs to take care
that each layer encapsulates a sufficiently expensive calculation to warrant the
existence of that layer. For example, we found that in Squeak, caching the in-
formation “which superclass of C implements a method on selector s” is useless,
because the dictionary lookups required to access the cache were about as ex-
pensive as traversing the superclass chain to recalculate the information. While
this might be regarded as commentary on a specific dictionary implementation,
the larger lesson should be clear: application of these patterns complements,
rather than replaces, good engineering and performance-oriented design.

Related patterns and variants. Note that this pattern is a specialization of the
Layers [8] pattern.

�

20



In our work, we have also created a Model Extension for the required methods
of a class. We expect that as other code analyses are presented this way, more
Patterns will emerge, enriching our language for discussing the design of program
analyses.

3.3 Making it fast enough

This subsection is devoted to performance, a topic we have mentioned several
times, but haven’t yet tackled seriously. A very important rule of thumb for
optimization, codified in Lazy Optimization [1], is to avoid it until it proves
necessary. This rule certainly applies here, and we advocate adhering to it.

Why then does performance play such a major role in our pattern language?
It is our belief that efficiency considerations are an inherent part of this domain.
Before we dive into detail, we will use an analogy to explain why performance
is a pervasive problem, and how we alleviate it. The analogy is with the model-
view architecture for graphical interfaces and the role that the Observer pattern
plays in making that architecture feasible.

The key idea in the model-view architecture is to decouple the model from
the view. In an ideal world, the model will know nothing at all about the
various views; it will just get on with the business of representing its domain.
Whenever a view needs to know some aspect of the state of the model, it asks.
The problem with this näıve scheme is that the view needs to redraw itself on
every display refresh cycle; it would be hopelessly inefficient to poll the model 60
or 80 times per second, usually to find that nothing has changed. The standard
solution is to use the Observer [15] pattern, which requires the model to notify
the views of any changes. The model is no longer oblivious to the existence of
views, but it knows little or nothing about them beyond the fact that they exist.
No description of model-view can be complete unless it shows how to address
the performance challenge that arises from the decoupling of model and view.

The key insight to solving the performance problems is that only a small
part of the program is in view at any one time, and thus the extensions need
only complete their analyses for that part — if only they could somehow know
which part! Explicit Interest, described on page 23, provides a way for a view to
notify the model that someone is interested in a particular part of their domain
without the model having to care about who is interested.

The rest of this subsection presents patterns for dealing with real perfor-
mance issues once they have become apparent. Performance improvements
sometimes bring a cost in complexity, which may in turn adversely affect cor-
rectness. This is the topic of the following subsection (3.4).

When and how do performance issues arise in computing a Model Exten-
sion (p. 10)? The most näıve implementation of an Extension would simply
compute the property whenever it is requested. For properties that can be
computed cheaply enough, this is a good choice: if computing the property is

21



not much more expensive than retrieving it from a cache, there is no point in
precomputing it. However, as properties start to be used in development envi-
ronments to give interactive feedback to programmers, the meaning of “cheaply
enough” is becoming more exacting. For example, whereas matching parenthe-
sis used to be a by-product of the parsing step of a compiler, performed every
few minutes, today most environments match parenthesis as they are typed.
Similarly, whereas in the past it might have been thought sufficient to report
missing “required” methods at release time, our desire to show this information
interactively requires a much more sophisticated implementation, but supports
new styles of work [33]. Thus, the frequency of use of an analysis can change
from once every few minutes to multiple times per second.

The literature contains quite a few performance-related patterns relevant
to implementing a Model Extension. If some values are very common for a
particular property, Flyweight [15] might be justified. Beck discusses Caching,
and observes that the biggest problem with caches is ensuring that they remain
valid; to limit the complexity of the task of maintaining validity of the cache, he
suggests reducing the scope and extent of the variable used for the cache. Thus, a
caching temporary variable is usually quite easy to maintain as valid; a caching
instance variable less so [4, p. 44–5]. The variation that is most specifically
relevant to us is the caching of model extension values between client calls.
After all, the fastest way to compute something that hasn’t changed since the
last time we were asked is probably not to compute it at all, but to cache our
last answer.

The third volume of Pattern Oriented Software Architecture [21] presents a
set of patterns for managing resources efficiently. A Model Extension, containing
as it does computed results, is not exactly the kind of resource assumed in this
volume, but some of the patterns are still relevant. Going beyond Caching, Lazy
Acquisition suggests that delaying the moment of requesting a resource may
improve performance, because sometimes the resource will not be used after all.
Applying this pattern to our domain, we might want to delay the computation of
a model extension until its value is actually requested. Evictor is a mechanism
for ensuring that the elements of a cache are flushed at the appropriate time;
it may be useful to us because we want to minimize the memory consumption
of cached model extension data, and also prevent these data from being used
when they are stale. However, Evictor gives us only the mechanism: how do we
find an efficient policy for evicting a Model Extension?

As we mentioned in the introduction, one of the ways to solve this problem
is to give the implementation of a Model Extension more information about the
intentions of its clients. First we explain this idea using our example; we then
present two patterns that describe a particular interface and implementation.

In our running example, the Model Extension pattern gives clients a simple
interface for obtaining the requirements of a class. Unfortunately, this simple
interface makes it hard for the implementation to achieve good performance.
Schärli’s algorithm is efficient when it is used to calculate the requirements of

22



a class and its subclasses at the same time. What happens when a sequence
of separate requests is made of the model? If the first class requested is the
superclass of the others, then queries about the subclasses can be answered
from the cache. However, if the client happens to request subclasses before their
superclass, the algorithm would repeatedly calculate the same information. A
client might try to work around this problem by applying the algorithm to some
parent of the class in which it is really interested; however, this parent might
have many subclasses in which it will never be interested, in which case this
work would be wasted.

The root cause of the inefficiency is that the calculation mechanism does
not know beforehand which classes the tool is going to enquire about. This
situation is not specific to the required methods example: the most efficient
way to compute an Inverse Mapping is also to traverse all the relevant code
once, gathering information about references to just those elements that clients
will to ask about. In fact, this situation will be very common when using a
non-local code analysis.

One way of giving the calculation mechanism this extra information would
be to provide an additional “bulk” interface. For example, we could provide an
additional interface for required methods so that the client tool could request the
requirements of several classes at once. However, this interface would be incon-
sistent with the model extension pattern. Moreover, since the simple interface
and the “high performance” interface would be quite different, it would encour-
age premature optimization. Therefore we choose to keep the simple interface
unchanged, and to add a separate interface by which the tool can explicitly ex-
press an interest in specific classes. The pattern Explicit Interest describes this
additional interface, while Bulk Calculation (p. 28), Minimal Calculation (p. 27)
and Lazy Update (p. 29) address related issues.

Explicit Interest

Context. You have a model extension with calculations that are significant
enough to require optimization.

Problem. How do client tools provide the information necessary to aid the
optimizations?

Forces. Real time display of the code and its properties requires interactive
response times, which means 100ms or better. Property calculations may be
expensive and non-local, and the code model may be large. Having more in-
formation about the usage of a property can mean that we are better able to

23



optimize the process of obtaining it. For example, caching all model extensions
over the whole code model may be too expensive in space and invalidation costs,
whereas caching these extensions over the much smaller part of the model that
supports the programmer’s current “working set” is feasible and cost-effective.
However, focussing the caches in this way requires more coordination— cache
usage patterns are dependent on the tools, but cache invalidation strategies are
specific to model extensions. The code model is not completely static, because
the user will occaisonally type in a change, or modify significant parts by load-
ing a new version of parts of the code. Taken together, these forces mean that a
wide variety of implementation tricks may need to be employed to make the dif-
ferent model extensions fast enough. Nevertheless, the interface to each model
extension should still be simple and uniform.

Solution. Allow clients to explicitly declare and retract their interest in a specific
model extension for a specific code element. At any time, the parts of the Shared
Code Model in which interests are declared are said to be interesting.

Consequences. We may now assume that tools will make queries on only the
interesting elements of the code model. This assumption provides various op-
portunities for optimization. For example, caches can be focused on interesting
information. This allows the client to assume that the space cost of caches are
linear in the number of interests that they have registered.

Access to calculated properties of code elements not declared interesting
can be either prohibited (useful to ensure that the interest declarations are
complete), or merely less efficient (more friendly to tools before they adapt).
This choice might also be controlled by a mode switch, to support different
stages in the development of tools.

Related patterns and variants. Explicit interest and the Observer pattern may
seem similar because both make a model object aware of its clients. However,
there are significant differences in the intent, effect, and consequences of the
two patterns. An explicit interest is an optimization hint given to the provider
of information by the consumer. This hint allows the provider more freedom
of implementation; if the hint is not needed, it is always correct to ignore it.
In contrast, adding an observer creates the responsibility for the information
provider to notify the new consumer of changes; this new responsibility can
only constrain the implementation, and cannot be ignored. For example, a
requirement to include information about the new state in the notification mes-
sage would force the calculation of that information before the message is sent.
Explicit interest has little consequence on the architecture of the application:
declaring an interest does not affect when or how the consumer requests the
value of the property. In contrast, Observer affects the control flow by placing
initiative with the model, which must call the observer. The final difference
is that with Explicit Interest, the model is not concerned with who expresses
an interest, but solely with which part of the model is interesting. In contrast,

24



Observer does say who is interested, but does not communicate which part of
the model is interesting. In this sense, Observer and Explicit Interest are duals;
they manage separate concerns, and can be used together

Because the model is unconcerned with how many times an interest has been
expressed, interests have some similarity to reference counts on the data struc-
tures supporting a model extension. AB IIs there a pattern-literature description

of reference counts that we should cite here?J

Explicit Interest provides information that could be used by the other im-
plementation patterns mentioned above. For example, Lazy acquisition might
be applied only to non-interesting elements, and Interest information could be
used by an Evictor.

�

In applying Explicit Interest (p. 23) we decided that each instance of our code
browser will tell the shared code model which classes it is currently displaying.
Note that two browsers may display overlapping sets of classes, in which case
there will be two registered interests in the requirements of those classes. Main-
taining the interest registration requires the browser to declare interests when
new classes are first displayed (for example, when a new browser is opened) and
remove them later (when a browser is closed, or when the user changes the set
of classes being viewed).

As is typical in large software development projects, we did not write this
browser from scratch, but instead used an existing framework, the OmniBrowser1.
The OmniBrowser is highly object-oriented: an OmniBrowser window does not
display mere text strings, but model-specific node objects that correspond to
(and reference) part of the code model, for example, a class or a method. These
node objects have behavior, for example, they can react to mouse-clicks in useful
ways. A client creates a customized OmniBrowser by creating new node objects
with custom behavior; the class of the node objects used in a specific browser
is determined by a meta-model that thus defines the behavior of that browser.
The OmniBrowser framework instantiates node objects as needed to support a
user navigating through the code.

In our browser, the node object representing a class has a life-span that
matches quite precisely the interest of the browser in that class. Whenever a
class is displayed, a node object corresponding to the class is included in the
browser’s display list; when the browser is no longer displaying that class, it
ceases to reference the node object. We made the creation of a node object
register an interest in the corresponding class; we also declare a finalization
action, triggered when the node is garbage collected, that de-registers the inter-
est. Thus, the requirements of a class are a Life-long Interest of the node that
represents that class in our browser; this pattern is described on the following
page.

1http://www.wiresong.ca/OmniBrowser/

25



Life-long Interest

Context. You have a tool that derives its extensibility from being an instance
of a framework.

Problem. You wish to adapt this tool to present a new property. This property
is captured by a Model Extension, so to use it efficiently, you need to express
Explicit Interest in parts of the model being presented. How should you do this
in a manner consist with the framework?

Forces. If the framework pre-dates the publication of these patterns, it is un-
likely to support Explicit Interest directly. To be effective, interests have to be
declared before queries are made, and must eventually be retracted, though the
timing for retraction is not critical. Failing to express an interest will hurt per-
formance, possibly making the tool unusable. Extending a framework in a way
that its designers did not anticipate is likely to produce code that is fragile and
hard to understand. A well-designed object-oriented framework is likely to have
objects representing the model elements that are interesting, and to allow for
customization by changing or replacing these objects.

Solution. Find the framework objects representing the parts of the model that
enjoy the new property, and adapt them to express Explicit Interest in the cor-
responding part of the Shared Code Model for the whole of their lifetime. This
can be achieved by making each of these objects register its interest when it is
initialized or constructed, and retract its interest in when it is finalized or de-
stroyed. A life-long interest can also be declared by modifying the factory that
creates the representation objects. If we assume that the tool creates the rep-
resentation objects before using the model extension, the interest declarations
will be early enough; the language’s object deallocation mechanisms will guar-
antee that interest is eventually retracted. This gives your objects the desired
property, while assuming little about the framework, and making only local and
easily understandable adaptations to the code.

Consequences. Life-long Interest is not always applicable: the framework may
not have an object with an appropriate lifetime, the object may not be exten-
sible, or its factory may not be available for modification. Using this pattern
therefore constrains the implementation freedom of the framework. For exam-
ple, caching the framework objects, rather than deallocating and reallocating
them, will interfere with the use of this pattern.

Related patterns and variants. Suggestions welcome!

26



�

So far we have discussed how to design an interface that encapsulates a
code analyis as a model extension, while providing it with information about
client intentions. We now resume the discussion of implementing a code analysis
efficiently in the context created by these patterns.

Returning to our running example, it is clear that the näıve approach of
recalculating the requirements of every class on every request is far too expen-
sive. In order to make calculations efficient, we look more closely at what to
calculate, and how, and when to do so.

We want to calculate requirements for as few classes as possible; Explicit
Interest (p. 23) helps because we now know which classes have clients interested
in them. Another important thing to know is what classes have changed since
the previous calculation, and how these changes affect the requirements. Finally,
we need to understand the scope of the requirements calculation: it turns out
that the requirements of a class depend only on the definitions of the class and
its superclasses. The scope of calculations is controlled by the pattern Minimal
Calculation .

DV IPerhaps this should change to present a merger of the three patterns Lazy

Update, Bulk Calculation and Minimal calculation as a calculation strategy that combines

many of the ideas in this section in the context of Explicit Interests, for some difficult

cases. J AB II don’t think so; I believe that it is useful for didactic reasons to present

these patterns separately, even though they will often be used in combination.J

Minimal Calculation

Context. You have a model extension, and an interface through which clients
express Explicit Interest.

Problem. How do you avoid unnecessary re-computation in response to changes
in the Shared Code Model?

Forces. The code model is large, and changes slowly during ordinary editing
and browsing operations. At any particular time, only a small part of the code
model affects the user’s display.

Solution. Use notification events on the code model to update only those model
extensions that are both affected by changes in the code model and are inter-
esting. If the update is inexpensive, it may be perfectly satisfactory to do it
immediately after a change is notified. Otherwise, Bulk Calculation and Lazy

27



Update on the following page can help to determine how and when to perform
the updates.

Consequences. Whilst it is true that the code model changes slowly during
ordinary editing, when a new package or file is loaded into the development
environment, many parts of the model change at the same time. Similarly, a
global refactoring (such as re-organizing the class hierarchy) may cause a large
number of changes to the model.

Related patterns and variants. Since interactive response is not required until
the end of the package-loading or refactoring process, Bulk Calculation, described
below, can be used to avoid slowing down these operations by repeatedly recal-
culating properties that will soon be invalidated.

�

Having minimized the set of classes for which we recalculate the require-
ments, we are now concerned with doing the calculation as efficiently as pos-
sible. Requirements have non-local aspects. For example, an unimplemented
method selector may be self-sent by some superclass, making the corresponding
method required. To find this we need to check the code of all superclasses.
This is reflected in Schärli’s algorithm, which first updates a class and then
its subclasses. These non-local aspects of the requirements calculation make it
attractive to update the model extension in a Bulk Calculation, rather than one
class at a time.

Bulk Calculation

Context. You have defined a Model Extension (p. 10) that depends on non-local
aspects of the Shared Code Model (p. 8), for example, the value of a property
for a class depends on properties of all of its superclasses. The interface to the
model extension allows clients to express Explicit Interest (p. 23) in parts of the
model.

Problem. You need to avoid repeated re-calculation of the model extension.

Forces. The tool supported by the model extension might request the the
extension’s properties for multiple classes in succession. Näıvely satisfying these
requests would result in multiple traversals of the common parts of the model
on which they depend, which would be prohibitively expensive.

Solution. Each Model Extension keeps track of all the relevant changes to the

28



code model, but defers acting on them. When the model extension eventually
updates its caches of calculated information, all changes are dealt with, and the
extension is calculated for all interesting code elements, at the same time.

Consequences. Bulk Calculation reduces the number of traversals of the common
parts of the model. However, it also means that for a period of time, the
properties maintained by a Model Extension are invalid. Steps must therefore
be taken to prevent clients seeing this invalid data.

Related patterns and variants. The timing and ordering of this re-calculation
may be determined by Lazy Update .

�

Observe that the problem of displaying code properties maintained by a
model extensions is incremental in two different ways. First, requests for the
property values are made incrementally. Second, changes to the code model are
often small and spread over time. Bulk Calculation uses Explicit Interest (p. 23)
to know in advance what properties it will be requested; it also uses the code
change notification mechanism of the Shared Code Model (p. 8) to batch the
required work. To avoid doing unnecessary work, we wish to perform the bulk
calculation as late as possible. This is supported by Lazy Update, described
below.

Lazy Update

Context. You have defined Layered Extensions (p. 20) on top of a Shared Code
Model (p. 8).

Problem. How do you determines when, and in what order, the properties that
underlie the model extensions should be recalculated?

Forces. Most of the time, the user wants interactive response. However, bulk
changes to the code, such as applying a patch that updates 100 classes, should
be efficient but need not be interactive. The order in which the model extensions
are updated should be consistent with the inter-layer dependencies of the Layered
Extensions.

Solution. Update the model extensions lazily, that is, only in response to client
queries. Laziness has several benefits.

1. Model extensions that are not needed are not calculated.

29



2. Bulk changes will be executed without useless intermediate updates to
the model extensions. The eventual update will be efficient due to Bulk
Calculation (p. 28).

3. Recalculation of Layered Extensions is performed in an appropriate order.

However, this pattern also has some disadvantages. The first access to a model
extension after an update will be less responsive than other accesses. When
used in combination with Bulk Calculation, this pattern is not completely lazy,
so specific parts of a model extension may be calculated in spite of not being
requested. Perhaps the most significant disadvantage, in comparison with eager
evaluation, is that Lazy Update does not support change notifications on the
model extensions.

Consequences.

Related patterns and variants.

�

For the requirements calculation, we applied all three of the above imple-
mentation patterns. Bulk Calculation allowed us to use Schärli’s algorithm as it
was designed to be used, and Lazy Update allowed bulk changes to the code to
be made efficiently.

Lazy Update also ordered the updating of the requirements with the self
senders of extension that it uses. In the implementation of self senders of we
used a trivial combination of these patterns — the cache for a class is invalidated
when the class is modified, and recalculated when it is requested. The re-
computation of self senders of is restricted to the specific class requested, rather
than all interesting classes. This is sufficient for this particular model extension
because the self senders of mapping is, by definition, local for each class.

3.4 Correctness Concerns

As performance concerns drive the code implementing a model extension to-
wards greater complexity, the code becomes more difficult to understand, and it
becomes harder to avoid inserting bugs during maintenance and revision. How
can we remain confident in the correctness of the implementation? Our answer
is to test it against a Canonical Implementation, described on the following page.

30



Canonical Implementation

Context. You have implemented a useful model extension. Its definition is not
trivial, and the simplest implementation is not fast enough.

Problem. How do you improve performance while remaining confident of cor-
rectness?

Forces. The calculation of a model extension must be fast enough for interactive
use. This necessitates optimizations that make the code complex and harder to
verify and trust. The model extension must provide correct information if users
and tool builders are to trust it. Hand-written unit tests check only what their
authors thought of testing.

Solution. Before proceeding to complicate the implementation with optizations,
take the simplest possible implementation and encapsulate it as the Canonical
Implementation. Now you can freely create an independent implementation with
better performance; this is the implementation that will actually used by client
tools. Write tests to compare the results of the two implementations over large
existing code bases to gain confidence in the optimized implementation.

Consequences. Tests comparing the two implementations complement hand-
built unit tests, because the data over which the tests run is independent of the
assumptions in the efficient implementation..

There are a number of reasons that separating the two implementations
allows you to create and maintain a correct and understandable Canonical Im-
plementation.

1. Performance is not a concern for the Canonical Implementation, so you
can use well-known, high-level libraries instead of hand-tuned code.

2. The Canonical Implementation need not read from or maintain any caches.

3. The Canonical Implementation can make use of data objects that support
the semantics of the desired mathematical operations (e.g., sets) rather
than efficient ones (e.g., arrays).

4. The canonical implementation is used only a test oracle for the fast imple-
mentation. This puts fewer constraints on the interface to the canonical
implementation, so it can correspond more closely to a Formal Definition
(p. 33).

31



5. You might choose to write the canonical implementation in a higher-level
or more appropriate programming language than that chosen for the fast
implementation.

6. The canonical implementation is not modified to meet performance or
other pragmatic requirements, but only to fix bugs or follow changes in
the formal definition. Therefore its code will change much more slowly,
and bugs will be introduced into it less frequently, than will be the case
for the fast implementation.

Realistically, the need for this pattern will not becomes apparent until after
some optimizations have already been applied, and the cost of debugging them
has started to show. Thus, finding a good canonical implementation might
require using version control to retrieve the simplest version that ever existed,
and simplifying it a bit.

Related patterns and variants. A canonical implementation can help you main-
tain confidence in the correctness of the optimized version. Sometimes a Formal
Definition is also needed, in which case the canonical implementation can act
as a bridge between the non-executable, but maximally clear, formal definition,
and the efficient implementation used in practice.

�

While using the Minimal Calculation pattern, we grew convinced that by tak-
ing into account which classes had been modified, and which classes implemented
or self-sent each method selector, we could run the requirements algorithm less
frequently. However, we found it difficult to be certain of the correctness of this
optimization. What we needed was to prove a claim of the form: “if class C
requires a method named s, then one of the following statements must be true
about the code. . . ”

Proving this kind of theorem would only be possible if we had a formal def-
inition of the requirements property. Some relevant formal definitions already
existed [11] but were not particularly well-adapted to our task. We found it use-
ful to create a minimal Formal Definition based on just the concepts relevant to
the requirements calculation: method lookup, explicit requirements, reachabil-
ity through self- and super-sends, and required selectors. We used this definition
to prove some necessary conditions for a selector to be a requirement. In par-
ticular, we proved that if a selector is not defined in a class, not self-sent in the
class, and not a requirement of its superclass, then it cannot be a requirement
of the class.

These proofs allowed us to run the requirements extraction algorithm only
when the necessary conditions hold. Because these conditions are cheap to
check, and hold only rarely, performance was improved significantly, because
we ran the costly algorithm much less often. This process is captured in the
pattern Formal Definition, described on the next page.

32



Formal Definition

Context. You have thought of a useful, but complex, property.

Problem. How can you be sure that the property is well-defined in all cases?
How can you figure out what implementation shortcuts are possible. How can
you convince yourself that they are correct?

Forces. The programming language that your environment supports includes
baroque features and corner cases that are rarely encountered in ordinary pro-
grams, but which are nevertheless represented in the Shared Code Model and
over which your property must be defined. Informal language is often imprecise
at dealing with such corner cases. To improve performance, you will want to
refrain from examining parts of the program that cannot affect the value of the
property. This implies that you need a way to be sure that a part of the program
is always irrelevant to the property of interest.

Solution. Use mathematical language to define the property formally, in terms
of primitive facts about the programming language, and simpler properties.
When an optimization relies on a non-trivial claim about the property, prove
the claim from the formal definition. Although it is still possible that the proof
is incorrect and the optimization introduces a bug, the probability of this has
been reduced. Moreover, unit testing of the optimized algorithm is likely to
expose such a bug early.

Consequences.

Related patterns and variants.

�

4 Evaluation

A pattern language is useful if it leads to an improvement in the architecture,
functionality, performance or reusability of software that adopts it. We will
evaluate model extensions by this criterion in two cases: the implementation of
the requirements browser that motivated the development of the patterns, and
a proposed refactoring of the relevant parts of the Chuck type inference system.

33



4.1 The Requirements Browser

The original version of the Requirements Browser [34] was implemented as part
of an incremental programming environment. One of the principal goals of this
environment is that it show the programmer the actual state of the code being
developed in real time; this includes what methods are still missing, and which
classes are incomplete. Meeting this goal requires responsiveness during typical
browsing activities, and the constant display of requirements information. These
are difficult requirements to satisfy, because the requirements calculation is non-
local, and potentially quite expensive.

In the initial prototype, all of the self-, super- and class-send information for
every method in the image was calculated eagerly and cached in a compressed
form, at a significant space cost. This cache was subsequently replaced by a cus-
tom abstract interpreter that computed the send information on demand from
the byte codes. However, achieving responsiveness still required that the Inverse
Mapping be cached; this cache, and a global cache of requirements information
for every class in the system, were updated eagerly whenever a method changed.
What were the performance and deployment implications of these caches?

Our measurements show that the total memory footprint of these caches
was around 2 MB, for a code model (class objects and bytecoded methods)
of 4 MB. The cache was updated at every change of any method. This worked
reasonably well for interactive changes to single methods, but negatively affected
bulk recompilations, such as those caused by loading a new version of a package.
This was true even if the package being loaded had no effect on the requirements
being displayed. Building this cache from scratch, as was required to deploy the
requirements browser on a Squeak image, took tens of minutes.

The patterns proposed in this paper made it easier to overcome these prob-
lems. By caching information only for those classes in which there was Explicit
Interest, we reduced the cache size to be proportional to the amount of code
being displayed, rather than the amount of code loaded in the system. Lazy
Update removed any need for long re-computations when installing the sys-
tem, and speeded up bulk package loads. Some of the optimization required to
make the incremental computations efficient were quite complex, but Canonical
Implementation and Formal Definition greatly increased our confidence in their
correctness.

Our pattern language also improved modularity. The original Requirements
Browser prototype added the implementation of the required property directly
to the Shared Code Model ; the use of a Model Extension allow us to avoid this
modification of core system classes.

4.2 The Chuck type inferencer

Chuck is a type inference system for Smalltalk, implemented in Squeak [37, 38].
Scalable type inference for dynamically typed languages such as Smalltalk is a

34



lively research topic. One of the difficulties with inference tools is performance;
achieving high performance is complicated by the need for global analyses of
control and data flow. In particular, this means that Chuck creates and main-
tains several eagerly updated caches of computed properties of all code in the
system:

1. The parse trees for methods.
2. What expressions in the code send specific messages.
3. Which classes implement each message.
4. Which expressions assign values to each variable.
5. Which expressions read each variable.

Each of these properties could instead be implemented as a Model Exten-
sion. These would be Layered Extensions, with parse trees used as a base layer
supporting several of the other properties. According to internal documenta-
tion in the Chuck demo, these caches take tens of megabytes —a significant
cost that is borne even if no tool using type inference is active. In this case,
using the Explicit Interest pattern would reduce the amount of memory used by
these caches, as well as reducing the cost of keeping them up to date. Whether
the implementation patterns described in this article would provide significant
performance benefits when Chuck is actively used depends on the cache access
patterns of the type analysis algorithm; pending re-implementation of Chuck
using these ideas, we make no claims. However, several of the architectural
benefits we claim would clearly accrue in this case. Each of the layered model
extensions would be valuable to other tools. As model extensions, they would
all benefit from a single global cache, rather than each having to implement and
store its own cache. For example, the SmallLint [7] tool would benefit from the
parse tree cache, and the Refactoring Browser [31] would benefit from all the
others.

From a more detached perspective, Chuck can be thought of as consisting of
two components. The first is an engine for computing difficult-to-obtain type
information about code elements. The second is a tool that uses this type in-
formation to provide answers to some explicit queries useful for active program
understanding. However, type information is useful also for more frequent, less
explicit activities. For example, in IDEs for statically typed languages, types
are very commonly used for high-precision auto-completion [28]. In Smalltalk,
precision auto-completion is more difficult because types are not given explicitly
in the code, and inferred types are usually partial; if Chuck’s inference engine
were easily available to other tools, it would be a simple matter to use it to
build an accurate auto-completion tool. In fact, the eCompletions package [2]
does currently provide exactly this service, but it does so by using type infor-
mation from a completely separate inference engine called RoelTyper [42]. This
illustrates that programming tools would indeed benefit from inferred types be-
ing conveniently exposed. Since type information is naturally tied to specific
elements of the code model (in this case, variables and other expressions), is
expensive to compute, and is invalidated by updates to the code, we consider

35



it likely that significant benefits can be gained by treating type as a model
extension and applying the patterns proposed in this paper.

In both of these examples, applying our pattern language provides a way to
make existing, valuable, analyses more widely reusable, while solving various
architectural problems that are common to the domain of program manipula-
tion tools. We note that while the particular examples that we chose — abstract
classes and types — are both commonly part of the explicit code model in stat-
ically typed languages, global analyses and the enhanced models that they re-
quire are not specific to latently typed languages.

5 Related work

The idea of multiple-view software development environments has been studied
at least since 1986 [16], when David Garlan began the work that led to his doc-
toral thesis [17]. The Field environment constructed at Brown University in the
early 1990s by Steve Reiss and his students was a landmark in the development
of such systems. A 1992 study by Meyers and Reiss [27] examined novice users
of Field and concluded that multiple views, or at least the particular views that
Field supported, did indeed help programmers perform maintenance tasks.

However, Field was constructed as a loose collection of separate tools that
communicated using what we would now call a publish and subscribe system
(Meyers called it “Selective Broadcast” [25]). Although this made it quite easy
to write new tools and add them to Field, each tool duplicated the core data
of the system, making it hard to maintain consistency, contributing to high
latency when attempting to keep simultaneous views up-to-date, and inevitably
forcing programmers to introduce redundancy between the tools. The approach
to consistency that we are taking in Multiview is close to what Meyers called
“Canonical representation”, which seemed then to be an unattainable dream.

Since 1991, the amount of core memory available on a typical development
workstation has expanded from 16MB to 2 GB. This has made it possible to
keep all or most of the representation of even quite large software systems in
core memory, and this permits the use of more flexible data structures than are
supported by a database and, perhaps more importantly, allows the parts of
these data structures to link to each other directly. Nevertheless, it is still the
case that “no representation has yet been devised that is suitable for all possible
tools”. The idea of an extensible architecture for code models and the pattern
language described in this paper is a response to the (belated) recognition that
no such representation will ever be devised a priori.

From a review of previous research, Meyers concludes that a Canonical Rep-
resentation based on abstract syntax trees (ASTs) is insufficient. Marlin [23]
presents an architecture (also called MultiView) that takes this approach, and
concludes that at least part of the problem is that the AST “shows through” in
the form of the syntax-structured editor. The hybrid style of Smalltalk’s Shared

36



Code Model avoids this difficulty by representing method bodies as text. Expe-
rience has shown that textual views have advantages over structured views at
the method-level: textual views keep white space and indentation which, while
semantically useless, are important documentation [40], and also make it eas-
ier for the programmer to transform the code by permitting it to pass through
syntactically illegal intermediate states.

Meyers and Reiss [26] describe another problem with ASTs: they do a poor
job of supporting views that are unrelated to the program’s syntax. In their
search for a “single canonical representation for software systems”, they present
their own Semantic Program Graphs (SPGs), which support a range of views
directly. Meyers and Reiss themselves note that SPGs do not faithfully represent
all aspects of a program; one of their solutions is to allow clients to annotate
them.

The architecture that we propose in this paper combines the advantages of a
Canonical Representation with those of multiple specialized representations con-
nected by message passing. The Shared Code Model solves consistency problems
by being the unique modifiable representation, but multiple representations are
made available (as model extensions) to help support disparate views. Thus,
the research into advanced representations such as SPGs can be leveraged by
using these representations as model extensions.

The overarching goal of the Multiview project is in many ways similar to that
of Charles Simonyi’s “Intentional Programming”: the development of a model
for programs that is far richer than text, and which seeks to make explicit the
intention of the programmer who wrote the code. In the current Intentional Pro-
gramming system, under development at Intentional Software, the program —
and all information about the program — is represented in a uniform tree-like
form, and stored in a versioned database. The details are proprietary. [36]

Riehle and Züllighoven [29] describe a pattern language for the construction
of software systems based on the Tools and Materials metaphor. Their language
is also concerned with defining the interface between tools and the domain
objects so that the environment is extensible, but addresses different aspects of
the problem from our work, and makes some different assumptions. For example
we strive for the ability to add properties to a fixed set of code elements, while
they consider the properties fixed and make the system extensible with new
kinds of materials that enjoy those properties.

The Cadillac programming environment [13], developed at Lucid for C++
and later named Energize, also had as its goals easy extension by the builders
of the environment, and tight integration of the tools as perceived by the user.
It achieved this by defining tool protocol interfaces that could be used to access
a shared code model of persistent objects that were stored either in ISAM files
or in an object-oriented data base. We do not know if other patterns discussed
in this paper were used in Cadillac.

One of the main concerns of the patterns that we present in this paper is

37



that of supporting efficient response to queries without complicated interfaces.
Automated incrementalization, as proposed by Liu et al. [22], also addresses
this problem. They note that maintaining the consistency of cached information
over updates is a aspect of the implementation that needs to be spread across
all the update operations. They propose to achieve this by automatic code
transformations using programmer-specified cost information and rewrite rules.
Such an approach may at some point free the programmer from some of the
more mundane optimizations that we mention.

The Intensional View Environment (IntensiVE [24]) uses SOUL to specify
subsets of the program elements, thus helping the programmer to maintain
invariants about the program structure. SOUL is used in different ways in other
papers, but in this context we consider it to be an example of a domain-specific
language (DSL) for the specification of model extensions. The approach of
specifying model extensions using a DSL has the benefit that general calculation
and caching strategies can be deployed once and for all in the implementation
of the DSL.

Eclipse is a very well known, quite widely used development environment
focused on extensibility. Since it is openly developed, extensible and popular,
it is interesting to consider whether the patterns that we have proposed are
relevant to its architecture. To this end we consider Eclipse as an extensible
development environment for a specific language and limit our comments to
the part of Eclipse that implements an interactive development environment
for Java: the JDT. Our remarks are based on the published APIs [12] and
documentation [28] for extenders.

The JDT includes a Java model in which objects represent elements of the
program under development. It provides a way to read and modify code, and in-
cludes a change notification mechanism. Because Java does not support class ex-
tension, Eclipse makes extensive use of Gamma’s Extension Object pattern [14].
Many elements in the Java model implement the org.eclipse.core.runtime.IAdaptable
interface; this interface consists of the single method getAdapter(Class) and re-
turns an object of requested class, or null if none can be found. getAdapter plays
the role of Gamma’s getExtension operation. A centralized registry keeps track
of which classes of objects can be adapted to which other classes.

This mechanism can be used as a way to implement a Model Extension. Since
in Eclipse version 2.1 the Java model was not kept in memory, the model was
inappropriate for queries that required traversing the code of a whole project.
However, in Eclipse version 3.1 the Java model is kept in memory, and thus fits
the Shared Code Model pattern. It therefore seems that it should be possible
to apply the other patterns proposed here to extend Eclipse with code analysis
tools, although we have not yet studied in any detail how feasible this will be,
or what modifications to our patterns will have to be made apart from the use
of the Extension Object pattern instead of class extensions. We venture one
comment on the implementation of our patterns in this context. Eclipse fosters
extensibility by defining standard interfaces that plugins of different kinds must

38



implement. If it is useful in Eclipse to use Model Extension and Explicit Interest
to expose code analyses, then the interfaces for expressing interests should also
be defined in a standard way, so that Layered Extensions can be contributed by
different parties.

6 Discussion and future work

It used to be that conducting research in program development tools required
either settling for a mediocre user interface (making it unlikely that the exper-
imental tool would be widely adopted) or creating an environment in which to
embed the tool, a larger investment than most research projects could support.
Fortunately, extensible development environments, such as Eclipse, are now
available; these provide a context in which the investment required to move
from the idea for an analysis to a usable tool is much lower. Because these
environments are widely used, it is also more likely that a tool that works in
such an environment will be adopted, compared to a standalone tool.

The patterns presented in this paper are intended to continue this process.
A development environment is made extensible by the frameworks it provides
and by the idioms it promotes for sharing code between extenders. The patterns
that we have described support the use of a Shared Code Model as a framework
within which code analyses can be added systematically, so that these analyses
are shared between different extenders of the development environment, and so
that one analysis can build on the results of another.

While some tools use shared code models, we have not yet found other ex-
amples of Model Extensions as proposed here. Thus the architecture we propose,
while implemented and found useful by us, has not yet been found “in the wild”.
It seems likely that some of the proposed patterns will change, and possibly more
will be added, as experience with this architecture increases. For example, we
do not yet know what the best interface is for expressing Explicit Interest.

The model extensions that we propose all create new properties of existing
elements in the Shared Code Model . However many of the code analyses in the
literature result in the creation of new entities that are not local to any such
element. One example of this is finding cyclicly dependent sets of classes [39].
The evaluation strategy that we propose for model extensions in this paper
is Lazy Update. Eager evaluation has the potential benefit of allowing a model
extension to be observable in the Observer pattern. It is not clear how to resolve
the tension between the usefulness of the Observer pattern and the performance
costs of eager update.

In spite of these issues, we feel that we have made enough progress with
this architecture to expose it to the scrutiny of the programming environment
community. Our implementation is available as a Squeak image at http://www.
cs.pdx.edu/∼black/goodies/. It has begun to solve the very real problem first
identified by Meyers in 1991 [25], and has done so in a way that enables us

39



to build useful tools for Squeak. We hope that others will be encouraged to
critique and expand on these patterns, and report their findings.

7 Pattern Language Summary

We close with a quick overview of our solution to the problem of building a
extensible, modular architecture for representing a program. We indicate with
a slanted sans-serif font the names of the patterns that are described in detail in
the body of the paper.

One important property of the Smalltalk programming environment is that
it has a Shared Code Model (p. 8) on which we could build. Since the shared
code model does not maintain the required methods of a class, we implemented
a Model Extension (p. 10) that exposes the required methods as if they were
part of the code model. We realized that the Squeak shared code model is not
minimal, but in fact includes an Alternative Representation (p. 16) for methods.

Calculating the required methods for every class in a large application would
be prohibitively expensive, and much of the effort would be wasted because pro-
grammers are interested in studying only a few classes at a time. The model
extension therefore allows tools to express Explicit Interest (p. 23) in the prop-
erties of a specific class.

In the browser development framework in which we were working, we found
that a simple way of adapting the browser to express Explicit Interest was Life-
long Interest (p. 26), in which a particular object’s interest endures until it is
garbage collected. Knowledge of the “interesting” classes creates a context in
which various optimization strategies are applicable; two optimizations that we
consider are Minimal Calculation (p. 27) and Bulk Calculation (p. 28). Lazy Update
(p. 29) complements them by determining when recalculation of a property
should take place after a model change.

To prevent this preoccupation with efficiency from coming at the expense
of understandability and correctness, we used a Formal Definition (p. 33) and
a Canonical Implementation (p. 31) as a test oracle. We found that the (rather
complicated) requirements property depends on two simpler properties, which
led us to Layered Extensions (p. 20). One of those properties turns out to be
useful both as an intermediate layer for a higher-level calculation and also to
the end user. It is a member of a more general class of Inverse Mapping (p. 18)s,
which we hypothesize are frequently useful both to the end user and to the
builder of more complex extensions.

These patterns make it easier to write a second tool that uses an existing
analysis, and also make it easier to adapt an existing tool to make use of a
new analysis. Generic Tools (p. 14) represent the limit of this second case —
tools designed to make use of any property of the code model exposed by an
extension, and thus to lower the barrier to using a new analysis.

40



Acknowledgments

This work was partially supported by the National Science Foundation of the
United States under awards CCF-0313401 and CCCF-0520346. We also thank
Emerson Murphy-Hill and Philip Quitslund for motivational discussions, and
Colin Putney for his willingness to adapt the OmniBrowser to our needs.

We are indebted to an anonymous OOPSLA referee for information about
the Cadillac system, and to our PLOP2006 shepherd Peter Sommerlad for his
extensive advise and many useful comments..

References

[1] Ken Auer and Kent Beck. Lazy optimization: patterns for efficient
smalltalk programming. In Pattern languages of program design 2, pages
19–42. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1996.

[2] Ruben Bakker. eCompletion for squeak, November 2004. http://homepage.
mac.com/monique bakker/squeak/eCompletion.html.

[3] Kent Beck. Simple Smalltalk testing: With patterns. http://www.
xprogramming.com/testfram.htm.

[4] Kent Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1997.

[5] Andrew P. Black and Mark P. Jones. The case for multiple views. In Work-
shop on Directions in Software Engineering Environments, ICSE 2004,
pages 96–103, May 2004.

[6] Andrew P. Black and Nathanael Schärli. Traits: Tools and methodology.
In Proceedings ICSE 2004, pages 676–686, May 2004.

[7] John Brant, March 2006. http://st-www.cs.uiuc.edu/users/brant/Refactory/
Lint.html.

[8] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture — A System of Pat-
terns. John Wiley & Sons, Inc., New York, NY, USA, 1996.

[9] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
MultiJava: Modular open classes and symmetric multiple dispatch for Java.
In OOPSLA 2000 Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 130–145, 2000.

[10] Stéphane Ducasse and Michele Lanza. Towards a methodology for the un-
derstanding of object-oriented systems. Technique et science informatiques,
20(4):539–566, 2001.

41



[11] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and
Andrew Black. Traits: A mechanism for fine-grained reuse. ACM Trans-
actions on Programming Languages and Systems, 28(2):331–388, March
2006.

[12] The Eclipse Foundation. Eclipse 3.1 documentation, 2005. http://help.
eclipse.org/help31/index.jsp.

[13] Richard P. Gabriel, Nickieben Bourbaki, Matthieu Devin, Patrick Dussud,
David N. Gray, and Harlan B. Sexton. Foundations for a C++ program-
ming environment. In Proceeding of C++ at Work, September 1990.

[14] Erich Gamma. Extension object. In Pattern languages of program design 3,
pages 79–88. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997.

[15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
Reading, Mass., 1995.

[16] David Garlan. Views for tools in integrated environments. In Proceedings
of an International Workshop on Advanced Programming Environments,
pages 314–343, London, UK, 1986. Springer-Verlag.

[17] David Barnard Garlan. Views for Tools in Integrated Environments. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, January 1988.

[18] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
Back to the future: The story of Squeak, A practical Smalltalk written in
itself. In Proceedings OOPSLA ’97, ACM SIGPLAN Notices, pages 318–
326. ACM Press, November 1997.

[19] Ron Jeffries, Ann Anderson, and Chet Hendrickson. Extreme Programming
Installed. Addison Wesley, 2001.

[20] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. In Proceeding ECOOP
2001, number 2072 in LNCS, pages 327–353. Springer Verlag, 2001.

[21] Michael Kircher and Prashant Jain. Pattern-Oriented Software Architecture
Volume 3 – Patterns for Resource Management. John Wiley and Sons,
2004.

[22] Yanhong A. Liu, Scott D. Stoller, Michael Gorbovitski, Tom Rothamel, and
Yanni Ellen Liu. Incrementalization across object abstraction. In OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object
oriented programming systems languages and applications, pages 473–486,
New York, NY, USA, 2005. ACM Press.

42



[23] Chris Marlin. Multiple views based on unparsing canonical
representations—the MultiView architecture. In Joint proceedings of
the second international software architecture workshop (ISAW-2) and
international workshop on multiple perspectives in software development
(Viewpoints ’96), pages 222–226, New York, NY, USA, 1996. ACM Press.

[24] Kim Mens, Andy Kellens, Frederic Pluquet, and Roel Wuyts. Co-evolving
code and design using intensional views — a case study. Journal on Com-
puter Languages, Systems & Structures (to appear) (pre-print download-
able), 2006.

[25] Scott Meyers. Difficulties in integrating multiview development systems.
IEEE Softw., 8(1):49–57, 1991.

[26] Scott Meyers and Steven P. Reiss. A system for multiparadigm develop-
ment of software systems. In IWSSD ’91: Proceedings of the 6th interna-
tional workshop on Software specification and design, pages 202–209, Los
Alamitos, CA, USA, 1991. IEEE Computer Society Press.

[27] Scott Meyers and Steven P. Reiss. An empirical study of multiple-view
software development. In SDE 5: Proceedings of the fifth ACM SIGSOFT
symposium on Software development environments, pages 47–57, New York,
NY, USA, 1992. ACM Press.

[28] Object Technology International, Inc. Eclipse platform technical overview,
2003. White paper.

[29] Dirk Riehle and Heinz Züllighoven. A pattern language for tool construc-
tion and integration based on the tools and materials metaphor. In Pattern
languages of program design 1, pages 9–42. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1995.

[30] Linda Rising, editor. Design Patterns in Communications Software. Cam-
bridge University Press, 2001.

[31] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for
Smalltalk. Theory and Practice of Object Systems (TAPOS), 3(4):253–263,
1997.

[32] Nathanael Schärli. Traits — Composing Classes from Behavioral Building
Blocks. PhD thesis, University of Berne, February 2005.

[33] Nathanael Schärli and Andrew P. Black. A browser for incremental pro-
gramming. Technical Report CSE-03-008, OGI School of Science & Engi-
neering, Beaverton, Oregon, USA, April 2003.

[34] Nathanael Schärli and Andrew P. Black. A browser for incremental pro-
gramming. Computer Languages, Systems and Structures, 30:79–95, 2004.

43



[35] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black.
Traits: Composable units of behavior. In Proceedings ECOOP 2003 (Euro-
pean Conference on Object-Oriented Programming), volume 2743 of LNCS,
pages 248–274. Springer Verlag, July 2003.

[36] Charles Simonyi. Interview with Code Generation Network, July 2004. http:
//www.codegeneration.net/tiki-read article.php?articleId=61, accessed May
2006.

[37] Lex Spoon. Chuck: Type inference for program understanding, March
2006. http://www.lexspoon.org/ti/.

[38] S. Alexander Spoon and Olin Shivers. Demand-driven type inference with
subgoal pruning: Trading precision for scalability. In Martin Odersky,
editor, Proceedings of the 18th European Conference on Object-Oriented
Programming (ECOOP 2004), number 3086 in Lecture Notes in Computer
Science, pages 51–74, Oslo, Norway, June 2004. Springer.

[39] Daniel Vainsencher. Mudpie: layers in the ball of mud. Computer Lan-
guages, Systems & Structures, 30(1-2):5–19, 2004.

[40] Michael L. Van De Vanter. The documentary structure of source code.
Information and Software Technology, 44(13):767–782, October 2002.

[41] Roel Wuyts. Star Browser. http://www.iam.unibe.ch/∼wuyts/StarBrowser/.

[42] Roel Wuyts. Roeltyper, November 2004. http://decomp.ulb.ac.be/
roelwuyts/smalltalk/roeltyper/.

44


