Design Patterns for Device Driver Design

Design Patternsfor Device Driver Design

Sachin Bammi
Senior Software Engineer
shammi@slb.com
Schlumber ger Technology Cor poration

Abstract:
This paper presents two design patterns on degjgamd developing
device drivers which balance the opposing forceslath encapsulation,
system efficiency and managing change in software t change in
business and technical requirements over the cafraeproject. It ends

by providing a real life example of how to applyeth to a serial
communication protocol driver.

Page 1 of 10
Copyright© 2006 by Sachin Bammi. All rights reserved.

Design Patterns for Device Driver Design

Introduction

Device drivers are all pervasive in the embedddvaoe/firmware world. They form a
critical part of the low-level code on which typllgamost of the embedded real time
applications are based on. Hence getting them dghtkis of paramount importance.

The patterns presented in this paper aim at pnogigeneral architecture specific
guidelines for developing device drivers. The pagevould eventually form a part of a
pattern language being developed by the authatdweeloping real time applications,
which drive drilling electronics in harsh environmt@ conditions. While the pattern
language that develops due to this effort will &ier specific in nature, these individual
patterns would have a more general appeal. Thewolh figure presents the most
current vision of the author for the aforementiopattern language henceforth called
“Down Hole Firmware Pattern Language”.

Figure 1. Down Hole Firmware Pattern Language version 1.0

Legend:
—» “Uses” relationship
RT Data Acquisition
A 4
Data Frame Builder Mul_t|-T|qed MUX ADC Driver
Device Driver

Friendship Zone

Only the shaded design patterns i.e. “Multi-TieBel/ice Driver” and “Friendship Zone”
in Figure 1 are introduced in this paper. Otheesveork in progress. The paper also
presents a real life sample implementation in Gar4bbth of them as applied to a serial
communication protocol driver.

Page 2 of 10
Copyright© 2006 by Sachin Bammi. All rights reserved.

Design Patterns for Device Driver Design

Pattern: Multi Tiered Device Driver

Context

In the world of embedded systems, device driveve lieeen written for a long time now.
This is an architectural pattern for designing w@®driver by giving an example of a
serial communication driver.

Problem

An important challenge in developing device drivier® keep the design flexible. This
helps in making any future changes/upgrades inen@l or the business logic in the
real-time application, which uses the driver, gasiithout affecting too much the
components of the driver. However this flexibildgmes at the price of code bloat and
performance efficiency. Hence the problem is td time right trade-off.

Forces

During the development phase of a project theadways a chance of requirements
getting changed on the business logic side andebd to make the code generic enough
so that it can be ported to other future hardwaggades. This presents a challenge for
the software/firmware engineer to accommodatelfesa possibilities in the design on
one hand by grouping things that could change tegethile avoiding code complexity,
code bloat and system inefficiency on the other.dgfeater flexibility in design one has
to group things that typically change together tBating different layers of abstraction,
but this in turn can slow down the system beca@isgcceased number of function calls
through different layers. Hence an optimum numbetbstractions need to provided so
that a balance is reached between design fleyilsihtl system efficiency in real time
systems.

Solution

Design a multi tiered architecture that dividesdlegice driver code into the three
abstractions or groups: Application level, Systerel and Low level. If the hardware
changes then the code should be modified onlyeaLtlw level or conversely if the
business requirements change then only the applicabde changes. The system level
code provides access functions to the low leveedodthe application level code. The
application level code cannot directly call the l@wel code. This way we can achieve
the aim of grouping code that typically changestbgr. This architecture is shown in
the Figure 2.

Resulting Context

The code is divided into three layers so that tn&riess logic is separated from the low
level hardware specific code and with System IgveViding the necessary bridge in
between. However the design can still be re-fadttmamake it more efficient especially
at the Low level where the time sensitive interruigbdling occurs. The following pattern
aims to address this deficiency.

Page 3 of 10
Copyright© 2006 by Sachin Bammi. All rights reserved.

Design Patterns for Device Driver Design

Figure 2: Multi Tiered Architectural pattern for device driver design

Application Application Application
Thread #1 Thread #2 Thread # N

Application Level

Synchronized access to Driver via Adapter

Adapter

<<Singleton>>

System Level

- Driver Data
Utlllty <<Singleton>> Buffer

Low Level

Page 4 of 10
Copyright© 2006 by Sachin Bammi. All rights reserved.

Design Patterns for Device Driver Design

Pattern: Friendship Zone

Context

The previous pattern showed how the architectutbeotlevice driver could be designed
so that we could have flexible design to accommegatential future changes in
business requirements and hardware. However, #nerstill system inefficiencies

related to fast data access especially for cotleeabystem level and Low level. This is
especially a concern for parts of the code thatiseinterrupts. Due to data
encapsulation at the Low level additional functaatls have to be made to access data
members of other classes. This brings in additiatahcy and code bloat into the system
and may be unacceptable for several real time mgste

Problem
How to make the three tiered architectural patpeasented earlier more efficient by
providing faster data access at the System leveLaw level.

Forces

From a truly data encapsulation point of view edealss/module should protect its data
by either keeping it private or providing the agmiate access functions. However for
time-critical and space starved real time embedgystems this could be a concern
because of additional time taken to make a funatedhand the code bloat due to
additional data access functions.

Hence we need a pattern that addresses all the agmes for it to be successfully
applied to the design of a device driver which toalse efficient, not take too much code
space and at the same time be modularized enoagfuthre changes to the code in one
component of it can be made easily without affertire other parts.

Solution

Balance the opposing forces of data encapsulatidrsgstem efficiency. This can be
achieved by using the “Friend” feature in C++, whadlows one class to access the
private data of the other if the latter declaresftrmer to be its “Friend”. This removes
the need of having additional function calls anthatsame time keeps the data of the
class concerned hidden from all the other classespe its friends. In the pattern the
author prescribes a “Friendship Zone” between yiseesn level and Low level
abstractions of the driver code. It is up to thdividual firmware engineer to decide how
exactly the friendships have to be established éetvthe classes in these two levels to
find an effective balance between the various cdimgéorces mentioned in the earlier
section. An example is presented in the sectiom{8a Implementation”. In C, one
could use globals in the Friendship Zone for fadtda access.

Resulting Context

The remaining inefficiencies that persist after iempenting the multi tiered device driver
architectural pattern are addresses while balartb@@pposing forces of data
encapsulation.

Page 5 of 10
Copyright© 2006 by Sachin Bammi. All rights reserved.

Design Patterns for Device Driver Design

Figure 3: Friendship Zone pattern overlaid on the Multi tiered Device Driver pattern

Application
Thread #1

Application
Thread #2

Application
Thread # N

Application Level

Synchronized Access to Driver via Adapter

W2
as® [
Fe
?(\e(\(\s“\p
Utility

Adapter
<<Singleton>> . 10(\6
A
e
(=) o T
10(\ ‘\65\\\91
e
Driver i Data
. Buffer
<<Singleton>>

System Level

Low Level

Page 6 of 10

Copyright© 2006 by Sachin Bammi. All rights reserved.

Design Patterns for Device Driver Design

Sample Real Life I mplementation

Figure 4 presents an object-oriented design f@rialscommunication Driver which
implements this pattern. The LTBDriver is a Singtetlass, which declares LTB
Adapter to be its “Friend”. Since LTBDriver classplements the Singleton pattern, it
guarantees that there will be one and only instafde Hence for the LTB hardware
resource there is only one driver and access taltheer is through the LTBAdapter
class. The LTBAdapter class controls all accesked_TB Hardware resource and
implements both the Adapter and Singleton pat®ther application classes like the
tFrameBuilder class, tLTBAcquisition class and theolscopeComm class use it to
access the LTB resource. They do not have diregsacto the LTB driver. All methods
of the LTB Driver are private and can only be aseésby its “Friend” the LTBAdapter.
This guarantees that if by any chance some pieced# maliciously tries to call a
function on the LTBDriver, it would cause a comgil@e error, which is better than a
run-time error. The LTBAdapter class uses a senrapioosynchronize access to the
shared LTB resource by all the application thred¢ie LTB driver uses a Utility class
Endian and a Data Buffer class LTBCommBuffer td'quen its task.

LTBCommBuffer class encapsulates the buffer usdwtd sent and received messages.
Endian class encapsulates the various utility fonstto convert from Big Endian to
Little Endian format, compute checksum, and com@RE etc.

Figures 4 and 5 were made using Rhapsody 6.0 ferlgy+logix (www.ilogix.com). As
is evident from these UML diagrams, the low-leveplementation details of the serial
communication protocol like sending and receivingssages with predefined timeouts,
retires, inter-character delays and checks fonteesage quality are completely
transparent to the application level classes. H&megdo not know any more than they
need to. However, at the low-level quick accesdata is more important and hence
“Friend” classes are used to save a time takerakerfunction call to access another
class’s data.

The Sequence Diagram in Figure 5 shows the sequémaents that happen in a typical
function call made by the tToolscopeComm applicatlwead on the LTBAdapter.

A different approach to this issue could be to addther class called LTBProtocol which
has all the LTB protocol specific information ensafated in it and making the
LTBDriver more generic by changing it to just seardl receive bytes. Strictly from an
Object Oriented Analysis and Design (OOAD) pointi@w, that would be a better
approach. However from a more practical point efwive would not be having several
protocols that are going to be supported by theegybeing developed. There are only
two protocols being supported and there is a viary@robability that there are going to
be several more in future. Hence the otherwiselv@ncern of code duplication since
each protocol has its own driver is really not ttrdtical in this case. Also at the end of
the day by adding another class to encapsulat8dahial Communication Protocol
definition is akin to just adding another layeratistraction between the system and the
low level code. There is theoretically no limithow abstract and generic we may make

Page 7 of 10
Copyright© 2006 by Sachin Bammi. All rights reserved.

Design Patterns for Device Driver Design

our code and the decision to stop at a particelsllof abstraction is typically governed
by practical project related considerations. I ttase having three layers of abstraction
i.e. Application level code, System level code andi-level code was considered
appropriate by the author.

Figure 4: Class Diagram to show the design pattern for the Serial Communication Driver

«Singleton» «Singleton» = «Singleton»
tFramebuilder tLTBAcquisition tToolscopeComm
Ith_adap:LTBAdapter Itb_adap:LTBAdapter {8 Itb_adap:LTBAdapter
Application
Level Code
1 1 1
1
«Singleton, Adapter»
LTBAdapter
1| & Itb_resource:TX SEMAPHORE=1 |-
5 System
Getlnstance():LTBAdapter
Level Code
1 1
Friend5 Friend4
1 1
«Singleton» «Singleton» «Singleton» _
Endian LTBDriver LTBCommBuffer Low-Level
1 @& Itb_in_sem:TX_SEMAPHORE=0 1 Friend6 COde
& Itb_out_sem:TX_SEMAPHORE=0
- & Getinstance():woid
EreadZBytes():mld & Getinstance(): LTBDriver
write2Bytes():void
Page 8 of 10

Copyright© 2006 by Sachin Bammi. All rights reserved.

Design Patterns for Device Driver Design

Figure 5: Sequence Diagram to show the working for the Serial Communication

:tToolscopeC :LTBAdapter :LTBDriver :LTBCommBu :Endian
omm ffer

GetLTBResource() ‘

tx_semaphore_get(0)

sendLTBCommand()

|
|
T |

StantTX()

write2bytes()

GetResponse() ‘

read2bytes() ‘

k response()

response()

releaseLTBResource() ‘

‘ tx_semaphore_put()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i i L 1 L

NOTE: LTB is Schlumberger’s proprietary serial coomtation protocol.

.
|
|
|
|

Page 9 of 10
Copyright© 2006 by Sachin Bammi. All rights reserved.

Design Patterns for Device Driver Design

Acknowledgements

The author would first of all like to thank Lise Btwim for introducing him to the world
of Pattern Languages and PLoP and for providingggradvice on writing papers for
the same. It is safe to say that without her gusdahis paper would not have been
written. The author would also like to expressdregtitude for the help he received from
his shepherd, James O. Coplien, in preparing theuswipt and for providing specific
advice on improving the presentation of the makefiaat was very helpful in getting the
paper in its present form.

References
1. Internal Schlumberger technical literature.
2. E. Gamma, R. Helm, R. Johnson and J. VlissliEssign Patterns: Elements of
Reusable Object-Oriented Software”
3. “Singleton Pattern & its implementation with C+y vsrajeshvs, Link:
http://www.codeproject.com/cpp/singletonrvs.a@ecessed orf'lJune 2006)

Page 10 of 10
Copyright© 2006 by Sachin Bammi. All rights reserved.

