
 1

Pattern-Oriented Architecture for Web Applications

M. Taleb

Human-Centred Software
Engineering Group Concordia
University, Montreal, Quebec,

Canada
Phone: +1 (514) 848 2424 ext

7165
Fax: +1 (514) 848- 3028

mtaleb@encs.concordia.ca

A. Seffah

Human-Centred Software
Engineering Group Concordia
University, Montreal, Quebec,

Canada
Phone: +1 (514) 848 2424 ext

3024
Fax: +1 (514) 848-3028

seffah@encs.concordia.ca

A. Abran

Software Engineering
Department & Information

Technology,
École de Technologie

Supérieure (ÉTS), Montréal,
Québec, Canada

Phone: +1 (514) 396-8632
Fax: +1 (541) 396-8405
aabran@ele.etsmtl.ca

Abstract

There is a number of recurring Web design problems such as: (1) decoupling the different aspects
of Web applications such business logic, the user interface, the navigation, and information
architecture, (2) isolating platform specifics from the common concerns to all Web applications.
Within the context of a proposal of a pattern-oriented architecture for Web applications this paper
identifies an extensive list of patterns aimed at providing a pool of proven solutions. The patterns
span several levels of abstraction, from information architectural and for interoperability patterns
to navigation, interaction, visualization, and presentation patterns. The architecture proposed will
next show how to combine several individual patterns at different levels of abstraction into
heterogeneous structures that can be used as building blocks in the development of Web
applications.

Keywords

Design Patterns, Pattern-Oriented Architecture, Software architecture, Web applications.

1. Introduction

The Internet and its languages offer major opportunities to develop a new generation of Web
software systems architecture. These new Web software systems are highly interactive, platform-
independent and run on the client Web browser across a network. This paper aims to provide a
pool of proven solutions to many recurring Web design problems. Examples of such problems
include: (1) decoupling the different aspects of Web applications such as the business logic, the
user interface, the navigation and information architecture, (2) isolating platform specifics from the
common concerns to all Web applications.

Within this paper, the definition of software architecture from [1] is adopted: “the structure of the

subsystems and components of a software system and the relationships between them typically

represented in different views to show the relevant functional and non functional properties”. This
definition introduces both the main architecture elements (for instance: subsystems, components,
and connectors), how to represent them by means of a set of different views and to represent both
functional and non-functional requirements.

To address these issues, a proposed architecture and the related list of patterns aim to provide a
pool of proven solutions. This paper proposes a list of patterns for a pattern-oriented architecture

 2

for Web application. These individual patterns could then be combined at different levels of
abstraction into heterogeneous structures that can be used as building blocks in the development of
Web applications.

This paper is divided as follows: section 2 introduces related work on pattern-oriented architecture
in general such as MVC model (3-tier architecture), model Core J2EE patterns (5-tier architecture)
and Zachman model (multi-tier architecture); section 3, based on Zachman work, describes
primarily the proposed pattern-oriented architecture and some patterns which we identified and
formalized; finally, section 4 presents a summary and future work.

2. Related Work

2.1. MVC model

The basic architecture we considered as a starting point is the MVC pattern. MVC pattern is
commonly used to structure web applications that have significant processing requirements. This
makes them easier to code and maintain. MVC is used here to describe the core components of Web
applications architecture whereas MVC is seen as 3-tier architecture that often is used by Web
applications designers to maintain multiple views of the same data. At the design level, the MVC
pattern hinges on a clean separation of three types of objects:

• Model: for maintaining data;
• View: for displaying all or a portion of the data;
• Controller: for handling events that affect the model or view(s).

This MVC pattern is illustrated in the UML class diagram in Figure 1. Other patterns may apply in
the construction of these components. For example, in MVC the views are tightly coupled with the
control. Some authors suggested using Command Action pattern to ensure the separation between
views and controls.

M o d e l

V ie w 1 C o n tro lle r

C o n tro lle r V ie w 2

V ie w

M o d e l

C o n tro lle r

V ie w 3

M o d e l

C o n tro lle r

4 : R e q u e s t

5 : In fo rm a tio n A c ce ss

6 : U se In fo rm a tio n
tra n s m itte d

7 : In fo rm a tio n A c ce s s

8 .U se In fo rm a tio n
tra n sm itte d

1

*

C o m p o se

1

*

C o m p o se

1

*

C o m p o s e

1 : R e q u e s t

2 : In fo rm a tio n A c ce s s
3 : U se In fo rm a tio n

tra n sm itte d

9 : R e q u e s t

1 0 : In fo rm a tio n A cc e ss

1 1 : U se In fo rm a tio n
tra n sm itte d

Figure 1: Class Diagram of Model-View-Controller architectural pattern [18]

 3

In Web applications design, several aspects need to be considered separately including dialogues,
persistence, sate management and error handling. By itself alone, the MVC architectural pattern is
not a sufficient solution that fully addresses these issues. Other patterns are required to:

• Encourage the designer to consider other aspects of the dialogue which are very important
for the user, such as assistance or error management;

• Facilitate the use for the interface descriptions whereas they are of great importance to the
designer [14, 15, 16, 17].

2.2. More Advanced Architecture: Model Core J2EE patterns

Building on the MVC pattern, the Java Sun team proposed a 5-tier architecture [4] to model Core
J2EE Patterns Architecture [18] - illustrated in table 1. Java also provides support for the
implementation of the Model-View-Controller architecture using the Observer Interface and the
Observable classes that together implement the observer pattern. The class Observable represents
an observable object, or "data" in the model-view paradigm. It can be sub-classed to represent an
object that the application wants to have observed. An observable object can have one or more
observers. An observer may be any object that implements the interface Observer.

Architectural

Level

Description

Browser This part is very often non-representative of the architecture but it is not
excluded that this one contains applicative parts commonly called "Tests of
first level". The test of first level consists mainly in the checking of the
contents of the capture forms. They enable to ensure that all mandatory
fields was indicated well for example. However, this series of tests MUST
form part of the layer of presentation. Indeed, it is not excluded that the
end-user decides to de-activate the JavaScript functionalities of his browser.
Another use of this layer is the representation of the dynamic pages, among
others, with DHTML format.

Presentation This level deals with the logic of the navigation. It often implements
JSP/Servlets technologies.

Logical Subject Implemented in the form of Java Beans or EJB, it is in this layer that we
find the whole of the treatments of an application.

Middleware This part of the architecture covers connections with the other patterns of
the same level or the composed patterns of different levels of patterns.

Persistence It is often composed of one or several types of patterns.

Table 1: Summary of Patterns Architecture, adapted from [4]

 4

An example of a UML class diagram of J2EE Patterns is presented in Figure 2

InterceptingFilterPattern

FrontControllerPattern

CompositeViewPattern

ViewHelperPattern

FrontControllerPattern FrontControllerPattern

DispacherViewPattern ServiceToWorkerPattern

BusinessDalegatePattern

SessionFacadePattern ServiceLocatorPattern

TransferObjectAssemblerPattern

ValueListHandlerPattern

CompositeEntityPattern TransferObjectPattern

ServiceActivatorPattern

DataAccessObjectPattern

Apply zero or more

Centralize Control

Dispatch to View Delegate Processing
to Helpers

Compose View
from Sub-Views

Dispatch to
Target View

Dispatch to View
Delegate Processing

to Helpers

Uses
Lightweight Control

Processing
UsesControl Processing

Access
Business
Services

Access
Business
Services

Access
Business
Services

Access
Business
Services

Mediate
Business

Processing

Locate Services

Obtain
Composite

Values Objects

Model Coarse-
grained Business

Component

Locate Services

Access Business List

Encapsulate Data

Dispatch to
Asychronous

Processing

Invoke
Business

Processing

Encapsulate
Data

Access Data
Sources

Encapsulate
Data

Encapsulate Data

Encapsulate
Data

Access Data
Sources

Figure 2: Core J2EE Patterns Architecture [18]

 5

Table 2 summarises the core J2EE patterns-oriented Web software architecture proposed in [18].

Pattern Name Function

Business Delegate Reduce coupling between Web and Enterprise Java Beans tiers

Composite Entity Model a network of related business entities

Composite View Separately manage layout and content of multiple composed
views

Data Access Object (DAO) Abstract and encapsulate data access mechanisms

Fast Lane Reader Improve read performance of tabular data

Front Controller Centralize application request processing

Intercepting Filter Pre- and post-process application requests

Model-View-Controller Decouple data representation, application behaviour, and
presentation

Service Locator Simplify client access to enterprise business services

Session Facade Coordinate operations between multiple business objects in a
workflow

Transfer Object Transfer business data between tiers

Value List Handler Efficiently iterate a virtual list

View Helper Simplify access to model state and data access logic

Table 2: Summary of Core J2EE Patterns Architecture [18]

It can be observed that Web architecture need to represent at six different levels, which are listed
in Table 3.

Architectural

Level

Function

1. Navigation Provides proven techniques for navigation.

2. Interaction Provides dialog styles to achieve tasks.

3. Presentation Provides solutions for how the contents or the related services are visually
organized into working areas, the effective layout of multiple informations
and the relationship between them.

4. Visualization Provides different visual representations / metaphors for grouping and
displaying large set of information into cognitively accessible chunks.

5. Interoperability Provides mechanisms to decouple the different layers of a Web application
in particular information (content) and within the four higher levels listed
above.

6. Information Provides conceptual models and architectures for organizing the underlying
content across multiple pages, servers, databases and computers.

Table 3: Six Architectural levels of a Web Architecture

 6

To understand and define in more details these different levels, the Zachman model is used next,
that is an architectural multi-layer framework.

2.3. Zachman model as a basis for a multi-layers architecture

Zachman [2, 3] proposed a Multi-tier architecture. He proposed an Enterprise Architecture schema
in which he depicted two distinct dimensions in a matrix. The columns classify answers to
questions such as: What (Data), How (Function), Where (Network), Who (People), When (Time)
and Why (Motivation). The rows classify the audience’ perspectives: scope, owner, designers,
builder, trades and functioning organization. This gives 36 cells that uniquely classify portions of
the organization. The columns in the Zachman framework represent different areas of interest for
each perspective and describe the dimensions of the systems development effort - Table 4.

WHAT (Data) Each of the rows in this column addresses the understanding of, and
dealing with, an organization's data.

HOW (Function) The rows in the function column describe the process of translating the
mission of the organization into successively more detailed definitions
of its operations.

WHERE (Network) This column is concerned with the geographical distribution of the
organization’s activities.

WHO (People) This column describes who is involved in the business and in the
introduction of new technology.

WHEN (Time) This column describes the effects of time on the organization.

WHY (Motivation) As Zachman describes it, this is concerned with the translation of
business goals and strategies into specific ends and means.

Table 4: Set of concepts in Zachman Framework
3. The proposed architecture

3.1. Overview

To tackle some of the weaknesses identified in the related work, the Zachman theory or set of
concepts is used to propose a 6-tier architecture of a Patterns-Oriented generic classification
schema for a Web Software Architecture. Therefore, we use the matrix classification proposed by
Zachman where the columns are the questions and the rows represent the six levels defined in
Table 5.

 WHAT
(Data)

HOW
(Function)

WHERE
(Network)

WHO
(People)

WHEN
(Time)

WHY
(Motivation)

Navigation � � � �
Interaction � � � � �
Presentation � � �
Visualization � � � �
Interoperability � � � � � �
Information � � � � � �

 Table 5: Patterns-Oriented generic classification schema for Web Software Architecture.

 7

3.2. Patterns taxonomy

A taxonomy of patterns is proposed next. Examples of patterns are also presented to illustrate the
need to combine several types of patterns to provide solutions to complex problems at the six
different architectural levels. The list of patterns is not exhaustive: there is no doubt that more
patterns are needed, and that a number of others have yet to be discovered.

A number of Web pattern languages have been suggested; for example, Van Duyne’s “The Design
of Sites” [5], Welie’s Interaction Design Patterns [6], and Tidwell’s UI Patterns and Techniques
[7] play an important role. In addition, specific languages such as Laakso’s User Interface Design
Patterns and the UPADE Web Language [8, 9] have been proposed as well. Different specific
pattern collections have been published including patterns for Web page layout design [7, 10, 6],
for navigation in large information architectures, as well as for visualizing and presenting
information.

In our work, we investigate how these existing collections of patterns can be used as building
blocks within the context of the proposed six-layer architecture. Which patterns at which level
solve which problem is the question we try to answer?

An informal survey conducted in 2004 by HSCE Research Group of Concordia University
identified at least six types of Web patterns that can be used to create a Pattern-Oriented Web
Software Architecture. Table 6 illustrates these levels, as well as examples of patterns.

Architectural

Level

Category of Patterns Examples of Patterns

Navigation Navigation Patterns

This category of patterns implements proven
techniques for navigating within and/or between a
set of pages and chunks of information.

- Shortcut pattern
- Bread Crumb pattern
- Index Browsing pattern

Interaction Interaction Patterns

This category of patterns focuses on the
interaction mechanisms that can be used to
achieve tasks and the visual effects they have on
the scene, as such they relate primarily to
graphical and rendering transforms.

- Search pattern
- Executive Summary

pattern

Presentation Presentation Patterns

This category of patterns provides solutions for
how the contents or the related services are
visually organized into working surfaces, the
effective layout of multiple information spaces
and the relationship between them. These patterns
define the physical and logical layout suitable for
specific Web pages such as home page, lists, and
tables.

- Home Page pattern
- List pattern
- Table pattern

 8

Visualization Visualization Patterns

This category of patterns suggests different visual
representations and metaphors for grouping and
displaying information in cognitively accessible
chunks. They mainly define the format and
content of the visualization, i.e., the graphical
scene and, as such, relate primarily to data and
mapping transforms.

- Favourite Collection
pattern

- Bookmark pattern
- Frequently Visited Page

pattern
- Navigation Space Map

pattern

Interoperability Interoperability Pattern

This category of patterns aims to decouple the
different layers of a Web application. In
particular, between the content, the dialog and the
views or presentation layers. These patterns are
generally extensions of the Gamma design
patterns such as MVC (Model, View and
Controller) observer, command actions patterns.
Communication and interoperability patterns are
useful patterns to facilitate the mapping of design
between platforms.

- Adapter pattern
- Bridge pattern
- Builder pattern
- Decorator pattern
- Façade pattern
- Factory pattern
- Method pattern
- Mediator pattern
- Memento pattern
- Prototype pattern
- Proxy pattern
- Singleton pattern
- State pattern
- Strategy pattern
- Visitor pattern

Information Information Patterns

This category of patterns describes different
conceptual models and architectures for
organizing the underlying content across multiple
pages, servers and computers. Such patterns
provide solutions to questions such as which
information can be or should be presented on
which device

- Sequence pattern
- Hierarchy pattern
- Grid pattern

Table 6: Patterns-Oriented taxonomy schema for Web Software Architecture

Some examples of proposed patterns are presented next.

 9

3.3. Information Patterns

The following examples show the need to combine several types of patterns to provide solutions to
complex problems. Here again, the list of patterns is not exhaustive: there is no doubt that more
patterns still need to be documented, and that a number of others have yet to be discovered. Table
7 provides examples of Information patterns.

Pattern Name Description

Sequence pattern Organizes a set of interrelated pages in a linear narrative. This pattern
applies to information that naturally flows as a narrative, time line, or in a
logical sequential order.

Hierarchy pattern Are particularly well suited to Web application content, because Web
sites should always be organized as offshoots of a single Home Page
[11].

Grid pattern Organizes the best way to present the content of information of a
complex Web application.

Table 7: Information Patterns

3.4. Navigation Patterns

The navigation patterns are fundamental in Web design since they help the user navigate easily and
clearly between information chunks and pages. They can obviously reduce the user's memory load
[12, 11]. See also [7, 6, 8, 13] for an exhaustive list of navigation patterns. Table 8 presents a list
of navigation patterns.

Name of Pattern Description

Shortcut Pattern Lists the frequently visited pages or used services. They are generally
embedded in the home page and help experienced users find their favorite
information and services with one mouse click.

Dynamic Path Pattern
(or Bread Crumb)

Is a very useful pattern that indicates the entire path since the user
accessed the Web application.

Index Browsing
Pattern

Allows a user to navigate directly from one item to the next and back. The
ordering can be based on a ranking. For every item that is presented to the
user, a navigation widget allows the user to choose the next or previous
item in the list. The ordering criterion should be visible (and be user-
configurable). To support orientation, the current item number and total
number of items should be clearly visible,

Table 8: Navigation Patterns

 10

3.5. Interaction Patterns

A critical design issue for resource-constrained (small) devices is how long does it take to
determine if a document has relevant information? The search pattern with the complicity of the
Executive Summary Pattern (a page layout pattern), provides users with a preview of underlying
information before spending time downloading, browsing and reading large amounts of
information included in subsequent pages. Table 9 presents a list of interaction patterns.

Pattern Name Description

Executive Summary
Pattern (a page layout
pattern)

Provides users with a preview of underlying information before
spending time downloading, browsing and reading large amounts of
information included in subsequent pages

Search Pattern When users want to search, they typically scan the home page looking
for "the little box where I can type"; so your search should be a box.
Make your search box at least 25 characters wide, so it can
accommodate multiple words without obscuring parts of the user's query

Table 9: Interaction Patterns
3.6. Visualization Patterns

Information overload is another fundamental issue to tackle through a Web Software architecture.
Web applications, especially large Web portals, can provide access to millions of documents. The
designer must consider how best to map the contents into a graphical representation that conveys
information to the user while facilitating the exploration of a large Web site content. In addition,
the designer must provide dynamic actions that limit the amount of information the user receives
while at the same time keeping the user informed about the content as a whole.

These patterns are some of the information visualization patterns for solving another complex
design problem. These patterns are generally composed to provide a comprehensive map to a large
amount of content that cannot be reasonably presented in a single view. The underlying content
can be organized into distinct conceptual spaces or working surfaces, which are semantically
linked to each other. Table 10 presents a list of visualization patterns

 11

Pattern Name Description

Collections Favorites
pattern

This pattern saves all desired Web sites visited by the users on
Microsoft Internet Explorer.

Bookmark pattern This pattern saves all desired Web sites visited by the users on Netscape
browser.

Frequently Visited
Page pattern

Users will often remember good articles, products, or promotions.
However, when these are not featured on the home page, the users do
not know how to find them. To help users locate key items, keep a short
list of recent features on the home site, and supplement it with a link to
a permanent archive.

Navigable Spaces
Map pattern

This information visualization pattern summarizes the structure of the
underlying content architecture.

Table 10: Visualization Patterns

3.7. Presentation Patterns

The presentation patterns define the appearance and the form of presentation on the Web pages of
the applications. All these patterns provide solutions for how the contents or the related services
are visually organized into working surfaces, the effective layout of multiple information spaces
and the relationship between them. These patterns define the physical and logical layout suitable
for specific Web pages such as home page, lists, and tables. Table 11 presents a list of Presentation
patterns.

Name of pattern Description

Home Page pattern This pattern defines the layout of home page Web site. This pattern is
very important because the home page is the Web site face to the world
and the starting point for most user visits.

List pattern This pattern displays the information using forms.
Table pattern This pattern displays the information in tables.

Table 11: Presentation Patterns

 12

3.2.6. Interoperability Patterns

The communication and interoperability patterns are useful patterns to facilitate the mapping of
design between platforms. Examples of patterns that can be considered to ensure the
interoperability of Web applications include all Web patterns of Interoperability Patterns. Table 12
presents some examples of Interoperability Patterns.

Pattern

Name

Description

Adapter Converts the interface of a class into another interface clients expect. An adapter
lets classes work together that could not otherwise because of incompatible
interfaces.

Bridge Decouples an abstraction from its implementation so that the two can vary
independently.

Builder Separate the construction of a complex object from its representation so that the
same construction process can create different representations.

Decorator Attaches additional responsibilities to an object dynamically. Decorators provide a
flexible alternative to sub-classing for extending functionality.

façade Provides a unified interface to a set of interfaces in a subsystem. Façade defines a
higher-level interface that makes the subsystem easier to use.

Factory Provides an interface for creating families of related or dependent objects without
specifying their concrete classes.

Method Defines an interface for creating an object, but let subclasses decide which class to
instantiate. Factory Method lets a class defer instantiation to subclasses.

Mediator Defines an object that encapsulates how a set of objects interacts. Mediator
promotes loose coupling by keeping objects from referring to each other explicitly,
and it lets you vary their interaction independently.

Memento Without violating encapsulation, captures and externalizes an object's internal state
so that the object can be restored to this state later.

Prototype Specifies the kind of objects to create using a prototypical instance, and create new
objects by copying this prototype.

Proxy Provides a surrogate or placeholder for another object to control access to it.
Singleton Ensures a class has only one instance and provide a global point of access to it.
State Allows an object to alter its behaviours when its internal state changes. The object

will appear to change its class.
Strategy Defines a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from clients that
use it.

Visitor Represents an operation to be performed on the elements of an object structure.
Visitor lets you define a new operation without changing the classes of the
elements on which it operates.

Table 12: Interoperability Patterns

 13

4. Summary and Future Work

In this paper, we have identified and proposed six categories of patterns, together with examples,
for a pattern-oriented architecture for Web applications to resolve many recurring Web design
problems. Examples of such problems include: (1) decoupling the different aspects of Web
applications such business logic, the user interface, the navigation, and information architecture,
(2) isolating platform specifics from the common concerns to all Web applications. Therefore, our
discussion focused on the way to specify a Pattern-Oriented Architecture using particularly
patterns.

Future work requires the classification of each pattern and the illustration of each one of them in
UML class and sequence diagrams. Next, some relationships must be defined between patterns in
order to compose them together to create some models based on composed patterns.

5. References

[1] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. (1996). A System of
Patterns: Pattern-Oriented Software Architecture. West Sussex, England, John Wiley &
Sons.

[2] John A. Zachman. A Framework for Information Systems Architecture. IBM Systems
Journal, vol. 26, no. 3, 1987. IBM Publication G321-5298.

[3] J.F. Sowa and John A. Zachman. Extending and Formalizing the Framework for
Information Systems Architecture. IBM Systems Journal, vol. 31, no. 3, 1992. IBM
Publication G321-5488.

[4] Architecture multi-tiers. [Online] available at: http://java.developpez.com/archi_multi-
tiers.pdf

[5] Duyne D. K. van, Landay, J. A, and Hong J. I. The Design of Sites: Patterns, Principles, and
Processes for Crafting a Customer-Centered Web Experience. Addison-Wesley, 2003.

[6] Welie, M.V. The Amsterdam Collection of Patterns in User Interface Design 1999-
http://www.cs.vu.nl/~martijn/patterns/index.html

[7] Tidwell, J. Common Ground: A Pattern Language for Human-Computer Interface Design,
1997. http://www.mit.edu/~jtidwell/common_ground.html

[8] Engelberg, D., and Seffah, A. Design Patterns for the Navigation of Large Information
Architectures. 11th Annual Usability Professional Association Conference Orlando, Florida,
July 8-12, 2002.

[9] Sari A. Laakso. Collection of User Interface Design Patterns University of Helsinki, Dept.
of Computer Science, September 16, 2003. http://www.cs.helsinki.fi/u/salaakso/patterns/

[10] Coram, T., and Lee J., Experiences – A Pattern Language for User Interface Design, 1998,
at http://www.maplefish.com/todd/papers/experiences

[11] Lynch, P.J, and Horton, S. Web Style Guide: Basic Design Principles for Creating Web
Sites. New Haven and London: Yale University Press, 1999.

[12] Nielsen, J. Designing Web Usability: The Practice of Simplicity. New Riders, 1999.

 14

[13] Garrido, A., Rossi, G., and Schwabe, D. Pattern Systems for Hypermedia,” Pattern
Language of Programming Conference, 1997.

[14] Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modeling Language User

Guide, Addison-Wesley, 1999.

[15] B. A. Myers, Visual programming, programming by example, and program visualization: A
taxomany, In Proceedings of the ACM CHI’86 Conference on Human Factors in
Computing Systems; ACM New York, pp 271-278; April, 1986.

[16] B. A. Myers & W. Buxton, Creating highly-interactive and graphical user interfaces by
demonstration.

[17] B. Meyer, Conception et programmation par objets pour du logiciel de qualité, Inter-
Éditions, Paris, 1990.

[18] Core J2EE Patterns. [Online] available at:
http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.html,

