Patterns of Object Creation

Dirk Riehle, dirk@riehle.org, www.riehle.org
Brian Foote, foote@cs.uiuc.edu

James Noble, kjx@comp.vuw.ac.nz

Abstract

This paper puts a set of well-known and some netepe together to form a pattern language of olgjeza-
tion. The object creation patterns presentedCasation Method, Factory Method, Conversion Method, Clon-
ing Method, Trading Method, Object Factory, Abstract Factory, Builder and Prototype. Language context is
provided by thdnitialization Method, Finalization Method, Cascaded Delete, Default Implementation, Class
Object, Exemplary Instance, andSpecification patterns. The purpose of this presentation is parsge out the
different patterns rather than to provide an inticithn to Object Creation to the novice reader. phagern
language is aimed at intermediate and expert deesio

1 Overview

This pattern language presents nine object cregtidterns and a number of related patterns. The oliject
creation patterns form the core of the languagés €bre has two parts: method patterns and obgtenms.
The method patterns talk about how to design amaleiment a method that creates an object, and tieetob
patterns talk about how to have a dedicated faabjsct that creates other objects. Figure 1 shhbese pat-
terns and their relationships.

Object Creation Patterns
Creation 1 Object
Method uses Factory
uses
refines refines refines refines refines refines refines
Factory Conversion Cloning Trading Abstract .
Method Method Method Method Factory Bufkler IFreEe
uses uses
uses uses uses
Default Finalization a Initialization . .
Implementation Method Claselebiecy Method Sp !
t: imp!eméntsimplementsimp]emgnts
Exemplary String . Logical
Instance Specification IFrepEgy st Expression
Related and Support Patterns

Figure 1: Outline of pattern language, showingegrattrelationships

Copyright 2005 by Dirk Riehle. All rights reserved.

Needs to be updated, | don’t have visio. Logicgbiession -> full spec.

1.1 Audience

The language is aimed at moderately experiencedaaf developers; it is helpful if you already knand are

familiar with the common creational patterns, sashFactory Method and Abstract Factory [Gamma+85].
you are a novice, you will find it difficult to usbese patterns straight away. Where appropriaegfer read-

ers back to the original sources. This allows uketep the details on each pattern quite briefptog on the

vocabulary and structure of creational patterns,riéiationships to other patterns and the diffezsrizetween

them.

Please be aware, however, that we provide a moeegfiained vocabulary of the object creation sphae the
Design Patterns book, distinguishing patterns rolerarly from each other.

1.2 Object roles

The best way to understand object creation is ttetstand the roles that objects play in the cregimcess.
The three key roles are Client, Creator, and Prodttee Client wants a new object; the Creator caovige
new objects; and the Product is the new objecCiteator returns to the Client.

Client, Creator and Product areles that objects play in an object-oriented programt, classes or objects
themselves. Classes only specify the roles that thetances can play. For example,Ractory Method, the
Client and the Creator role may be played by timeesabject (but don’t have to), or Prototype, the Creator
and Product role are played by different objedhefsame class.

Client requests new object Creator

\ /;

receives, owns, and /
. creates
uses new object P

— Product —

Basic model of object roles and their relationshipsng the object creation process

These three roles are not the only participanthéncreational patterns. Sometimes the client desits re-
quirements using a Specification, and sometimeSteator has been configured with a Class Obje&xem-
plary Instance. But at the most basic level, adisthpatterns are about a Client asking Creatoraterthem a
Product.

1 Specification | ——

e .

creates intérprets

// \\
/)
|

Client requests new object Creator -is configured with- Class Object

| |
\“ |
“‘\

\\ /

receives, owns, and
creates

uses new object P
T Product —

More elaborate role model of object roles andrthadationships during the object creation process

1.3 Context and forces

The patterns of this language have to deal withiraler of forces—constraints on why a pattern maspei-
cable, or benefits or liabilities from using thetpens.

Coupling. Fundamentally, these patterns help you decolligets from the products they create. There are
a number of ways clients can be coupled to prodacis different patterns tackle this in differerays:

— What class should the product object be?

- How should the product be initialized — with whatwes for variables?

— To which other objects should the product be relate

- Which other objects know the information that theduct object will need?
Brevity. These show how to create objects using coddshvatitten once and only once.

Flexibility. By reducing coupling, these patterns can make progrmore flexible, particularly at runtime.
That is, not only do the patterns allow you to dgxte the decisions about the product from the tlibat
they also allow your program to revisit those decis every time a new object is created.

Extensibility. Also by reducing coupling, these patterns candeal to increase the extensibility of the sys-
tem. A common form of extensibility — e.g. in tBgategy or Template Method patterns — is to extend
the system as a whole by subclassing and then asia@r more of the classes that it defines. Bist té+
quires some way of creating objects of the newlasbes, not the existing superclasses. These pattan
help programmers do this.

Safety. Programming language mechanisms such as conssumtarlass methods cannot by themselves
create objects configured the way programmers ttemd. Initializing objects to a known state (alllmr

all zero) is certainly preferable to handing outnitialised memory from malloc(), but that just mea
programs might crash with null pointer exceptionsliwide-by-zero errors rather than taking an opega
system exception or crashing the whole machinetodisn't mean your program will execute correctly.
These patterns help programmers ensure that eb@gtas created into a correct, consistent, anblst
state, immediately ready to use by the rest optiegram.

Complexity. These patterns often make your program more eamphus harder to read and understand
(especially if you don’t understand which patteans being used and why). The simpler patterns Hd®
tory Method, are much less likely to gratuitously complicatags than e.g. a Builder, Trader, or External

Configuration. Especially with the more complextpats, be sure the benefits (reduced couplingibilex
ity, extensibility) outweigh the costs imposed bg patterns themselves.

1.4 Roadmap

The remainder of this paper presents the pattérowrsin Figure 1 above. We begin with the most basit-
tern, Creation Method, and then walk through its variankactory Method, Conversion Method, Cloning
Method and Trading Method. We then continue on ©bject Factory and discuss itébstract Factory, Builder,
andPrototype variants.

2 Method Patterns

The Creation Method pattern tells you to create a method for creapngduct objectsConversion Method,
Factory Method, Cloning Method, and Trading Method then provide different ways of doing so. With each
successive pattern variant, more power is givehécalient requesting the new product. Whkibetory Method
does not allow the Client to have any say in whatl lof product it gets bacKrading Method lets the Client
specify to a large degree the properties of thaesiew object. Finallynitialization Method allows a Client
to configure a Product separately from its creation

Problem

Context

Solution

Roles

Comments

Examples

2.1 Creation Method

How to avoid creating redundant code for creatibjgais.

Different places within one or several clients needreate products.

The object creation code itself is relatively simpl

Put the object creation code into one metho@reation Method, and make everyone call this
method.

The client is the object that needs the product.

The creator should be the object in the systemkhaivs the most about the object to be cre-
ated. Sometimes this may even be the client itself.

Creation methods can generally be implemented usiagbject creation features of the em-
ployed programming language, for example, by cgllirew(). Creation methods are useful
even if the client could directly create the prddaecause they localize creation code.

If the client code resides in more than one clgss,may want to introduce abbject Factory
first, for which you then define th@reation Method.

Products returned by creation methods (or indegdofithese patterns, since the more com-
plex patterns typically use creation methods of kimel or another to create products) should
be created and initialized to a usable state. Ddipgron the usage context, they may also have
undergone more complex configuration. Fields shawdtbe left uninitialised, but should at
least receive default values.

An email application needs to create a new Messhet whenever the user hits the reply,
reply to all, forward, or “New Message” buttongy.e.

Message nsg = new Message(Current User. get Emai | Address());

See Also

Problem

Context

Solution

Roles

Comments

Examples

See Also

Problem

Context

Rather than repeating this coddnereverthe new Message object is needed, move it into a
Creation Method to say it once and only once:

Message newhessage(Enmi | Addr ess addr ess) {
return new Message(address);
}

The client can then follow up by providing addit@rinformation. For example, if the reply
button was hit, the client will set the to: fieldcardingly. If the forward button was hit, noth-
ing no further information is set.

Noble, Natural Creation; Beck STBBP; Null Object

2.2 Conversion Method
How to get a product object into the right form.

You have an object at hand that has the right imé&tion but presents it in a wrong form (typi-
cally the wrong class). You want a different pradwith the same information but more suited
to your task.

Implement aCreation Method on the object’s class that returns a new prodfiet dass that
better meets the client’s requirements. This metisod Conversion Method, because it pre-
sents a converted form of the object to the client.

This pattern “converts” an existing product intdoetter suited form of product. Hence, the
creator role is on the original product’s clasg] &me product role is on another, simpler, class.

The Creator should return a simpler type of ohieean itself to promote loose coupling. If the
object is more complex, it is more likely to hawele dependencies back to the Creator’s class,
and hence the two class implementations becomeaitylependent.

In C# 3.0 (with attached methods), Smalltalk/ENVY AspectJ, creation methods can be
packaged with the Product class rather than that@rewhich can reduce coupling problems.
Alternatively, you may be able to implement the\emnsion method as a static method on the
Product class. This may improve coupling, but camta@rt your code and may not be possible
if the Product needs information private to thea@oe

Also please note that you are not actually conngrthe original object; you are just returning
a different form of (some of) its information. Atte name might have beénterpretation
Method, but so farConversion Method seems to have stuck.

Common Java examples are th@St ri ng() or asl nt eger () methods on many classes,
and stati@sStri ng(Stri ng) methods on a few.

Cope?, Beck SmalltalkBPP, Java standards?

2.3 Factory Method

How to vary by creator the specific variant of agel product type to be instantiated.

Sometimes, from the client’s perspective, the pcodoust conform to a general class but can
in reality be any of its subclasses. It typicalgpdnds on the creator which of the different sub-
classes it should be.

This scenario is called dual class hierarchies,ravtiee creator has to work with the product

Solution

Roles

Comments

Examples

See Also

Problem

Context

Solution

Roles

Comments

Examples

See Also

later on, so you make the creator decide what putdolest matches its needs. In this scenario,
the client is often the creator itself.

You declare theCreation Method abstract or “as to be overridden”, or in an irded, and
make each subclass implement the method in suchydhat they return a new instance of the

proper type.

The client calls the factory method on the integfdaut interacts with a creator of a concrete
class at runtime. Client and creator may be theesaloject where the client code is written to
the interface, even if the separate factory metimudes a specific concrete class.

An implementation ofactory Method may use th@®efault |mplementation pattern. Here, you
don’t define theCreation Method as abstract but rather provide a default cas@efptroduct
type to be instantiated. You then override the metbnly if special circumstances make the
default case unsuitable.

The Design Pattern book uses the example of a hiasarchy of Application classes for dif-
ferent types of editors and their matching Docun@asses. The Application and Document
class hierarchies are dual hierarchies, mirroriacheothers structure. Hence, an Application
object will only create a specific kind of Documegmbduct, one that it can handle.

GoF covers this one pretty well

2.4 Cloning Method

How to allow the system to configure dynamicallyiethobject gets created.

A Conversion or aFactory Method fixes the product class in code. Sometimes, $i®o re-
stricting, and you need to configure what typelgéact to create. Such configuration typically
happens at system startup time.

You configure the Creator with d&xemplary Instance, also known as Brototype. This object
is a stand-in for the type of object to be crealdtk Cloning Method, when called, creates the
new object by cloning (copying) the exemplary inst&

Like with a regular creation method, the definitifithe client, creator, and product roles may
or may not be on different classes. The client@edtor role may be played the same object.

The Exemplary Instance pattern is usually called tHerototype pattern, which is one of the
standard creational patterns from the Design Rett€atalog. The Design Patterns’ béuk-
totype has two purposes: To create a new object, anditialize that object in a particular
way. We use the term Cloning Method to refer to fir& part only, and leave Prototype to
refer to a way of configuring a complex product.

The cloning process can become quite complex ihalevobject structure is to be cloned, also
see the discussion of the Prototype pattern. Hgeeassume that only one object is being
cloned, that is we make a shallow clone.

Thd.

GoF, etc.

2.5 Trading Method

Problem

Context

Solution

Roles

Comments

Example

See Also

Problem

Context

Solution

The Client has information about the product tat@ated , but doesn’t know the full details of
the creation process

The client does not want to interfere with the pe%; but it has some extra information that
determines the type of object that will be created.

The Client creates $ecification that captures the needed information. The Crehtm uses
the Specification to look up aClass Object (or Exemplary Instance) that matches the specifica-
tion. Once theClass Object has been determined the Creator instantiates etndnrthe new
object to the Client.

The Creator (who may be the same as the Clienéstitke specification and returns the prod-
uct.

Trading Method is called trading method because the original iafeasing specifications to
retrieve products goes back to the CORBA tradingise (and earlier)Specification is a gen-
eral term here, and there are at least three diffeiorms of specifications: String Specifica-
tion, Property List, and Logical Expressions.

An example is the editor application again, whicints to create a View for a Document. The
type of view primarily depends on the type of doemt) so you make the Application object
hold a dictionary that maps Document classes omv\dlasses. For a given Document object
then, you look up the View class, instantiateritgl aeturn it.

Dirk’s Product Trader writeups

2.6 Initialisation Method

(aka. configuration method)
A client needs to create a product now, but canawtpletely initialize it in one step.

Sometimes creational relationships between obpetscyclic — e.g. a window needs a docu-
ment but that document needs a window. Unfortugateht means you can't create a fully-
functioning window before you have created youruhoent — but you can't create the docu-
ment before you have the window.

Sometimes, it is not feasible to provide all valteshe new product in the constructor or crea-
tion method call. The list of arguments may be w@hdyi long. Or the arguments different cli-
ents supply vary so much that different constrigcfor each client would be overkill. d. Or,
some systems, most notably C++, provide a funatigribject only after the constructor call
has finished. Or the product initialization proceas be crazily complex,

Make a clear distinction between basic productt@mraand subsequent product initialisation.
An Initialization Method or Configuration Method asmethod that sets up the object for use.
If you use this pattern, the Creation Method dagtshave to do that; it could well just return
an empty shell of the right type. The InitializatiMethod then makes sure the attribute values
of the object are right and so are the links t@pthbjects.

The client supplies basic values through the cansir or creation method call only, and re-
cieves an unconfigured object from the creatoreimnn. Then, the client itself sends a series of
initialization or configuration methods to the puootl

Roles

Comments

Example

See Also

Creator returns a (partly or completely) unitiadiggoduct. The Client must call the inisitlisa-
tion method(s) on the product before the productasly for use.

This pattern is intrinsically dangerous, sincelibws uninitialized objects loose in your sys-
tem. This must compromise the integrity and sadétyour design, the fidelity of your model-
ing, and leads to buggy programming. But, this @éang what provides the power in the pat-
tern: when initialization methods are called, thedpict is already in functioning albeit bare-
bones state. These initialization methods provigerore complex initialization values to the
new product, and while doing so can already relyabeast some of the product’s methods
working properly.

There are a number of things you can do to mitigagedanger. The easiest is that the product
should only be allowed to escape from the clierdeoi is fully configured and ready for use.
This hopefully confines the problems within theeali and product, but the problems remain,
especially if there is any ambiguity at all abdue precise state of a partially-initialized object.
Preventing objects escaping is also harder thawounhds, so this approach can give a false
sense of security.

Second, and really required for good practice (athier more work) is to ensure the initializa-
tion state of the product is clearly embedded $ndiésign and code. Ensure that all incorrect
uses of the product after creation fail safely amdidly. This may mean guarding every
method with if-statements that check the productisalization state, using th&ate pattern,

but in any case it typically leads to defensivegpamming that is buggy in itself, contributes
to a false sense of security, and is usually toomeffort for most programmers.

Probably the best option is to move initializedoitthe creator, from the client, typically by
using a more advanced creational pattern su@uidder. A Builder can create a whole collec-
tion of interrelated, initialized, configured, ardnsistent objects in what appears to be one
transactions from the client’s point of view: aghwinitialization methods, a client can drip-
feed information to a Builder piece by piece, the product object is only allowed out once
both construction and configuration is completee Tisadvantage is that most programmers
seem to find Builder one of the most scary pattemmsind, although the code is usually sim-
pler, less routine, and less fragile than impleimenproper support for partially initialized
objects.

But best of all is to just kid yourself you donave a problem, which is also the simplest thing
that could possible work...

Thd.

Kent BPP again? Cope? Where else? The Self book?

3 Factory Patterns

The Object Factory pattern tells you to move ti@reation Methodsto an object of their own. The main purpose
of an Object Factory is to satisfy some constramtshe types of objects being created, and tada s central
place. There are three main variants of the basiem:Abstract Factory, Builder, andPrototype.

Problem

3.1 Object Factory

Your program needs to create products of a givea.ty

Context

Solution

Roles

Comments

Examples

See Also

Problem

Context:

Solution

Roles

Sometimes, the client code that needs the new tolgespread around multiple different
classes. The Client classes shouldn’t redundamiyement the sam@reation Method.

The product creation is an important part of thal reworld that you need to model.
The object creation code itself is relatively coexpl

Create a dedicate@bject Factory class whose purpose is to create the needed psodimu
then make the Factory class provide one or roeation Methods for the products. Clients go
to an instance of the Object Factory class, thédfgcand ask for a new product.

This typically separates the client, creator & preidroles, with the new Factory class playing
the creator role

Frequently, there is only one instance of @lgect Factory class, though in multi-threaded
environments you may want multiple instances, uguale for each thread. Sometimes, the
Factory Object is stateless (except for some indafiguration state) in case of which multi-
threading issues are less problematic.

An Object Factory is a good place to do more fastajf like reusing objects from a@bject
Pool rather than creating a new object for every requastlways returning &ngleton in-
stance of the type of object to be instantiatedoAl Factory Object frequently keeps track of
the products it created, likeRegistry.

An Object Factory can use any kind d@@reation Method. Thus, you may need to configure the
Factory before it can be used. You typically dassystem startup time.

The key liability of Object Factory pattern is that you've introduced another classe your
design, a class which probably has little relativpgo the world the program models or the
internal technical architecture of the prograns jtist there because you need to create things.

This is related to the difference between the ger@meator role and a particula®bject Fac-
tory class: an Object Factory reifies the creator rateating particular classes and objects to
play that role, either standalone or in conjunctiagth other patterns. But where other objects
in your design can naturally play the creator rdiés often works better if it doesn’t overcom-
plicate the candidate creator class. So, for exanifph Document class can create a View ob-
ject that displays it, that may much more directrtlcreating a special ViewFactory class that
creates the views. On the other hand, if it takepdges of code to create a View, you're better
off putting it into its own Object Factory, eventlife client’s interface to that is via a Creation
method on the Document class that delegates totamal ViewFactory.

Thd

Thd. Probably the #1 pattern the GOF missed, aotpitd Ralph | believe..

3.2 Abstract Factory

You need to create sets of interrelated objects

Clients who turn to a®bject Factory expect that the products they ask for can worlttogy,
for example, because the Factory provides diffemnotucts from a complex collaboration
rather than a single class.

You group theCreation Methods for the different products from the collaboratiam, family,

in oneObject Factory class, and make sure that the implementationisedEiteation Methods
are aligned in such a way that they ensure theatksntegrity between the products being
created.

A single Abstract Factory plays the Creator roledseries of different Creators and Products.

Comments

Examples

See Also

Problem

Context

Solution

Roles

Comments

This is a good example of a “dense”, overlapping afsone pattern (in this case, many Object
Factories) being sufficiently common that it hasrbeamed as a new pattern in its own right.

Abstract Factory, like Object Factory, can use any of th€reation Methods, but typically it
uses the same type Gfeation Method for objects from one family of classes, becauss thi
makes ensuring consistency easier.

Abstract factories have all the benefits of Objectories, with the additional advantages of
increasing the extensibility of the system

Thd

| always thought GOF did this well, though | knothers disagree — but that's mainly cos
they didn’t have Object Factory first.

3.3 Prototype

Clients sometimes want not just one simple produat,a complex product consisting of many
different parts. Moreover, the structure of thisngbex product is frequently not predeter-

mined---it is either derived from configurationel or even more complicated, is configured at
runtime.

There are multiple situation, in which you havehsaomplex products. They might get con-
figured in configuration files. They might be builsing some algorithm that in turn draws on
configuration files and system events. You migtgretiave a user fully defining the complex
product through a user interface. The effect isagthe same: A complex objecy with a struc-
ture that might change every moment.

You create the complex product in memory, befoeefitst Client ever asks for it. This is the
Prototype. When the first client comes along, you make aydgfpone) thePrototype and re-
turn it to the Client as the Product.

In the Prototype pattern, the Creator and Productrestances of the same class. The prototype
uses aCloning Method to create a copy of itself as the product, whickhen returns to the
client

Typically, thePrototype has one root object, by which it is being held.anhit is being held
may vary. There may be a global variable holdinig tieference, or there may be @bject
Factory that hides th@rototype behind aCloning Method.

The cloning process can become quite complex. WYsualu have multiple phases. In each
phase, different things are done. First, the bakject structure is created, following owning
relationships. Next, object attributes are iniial. Then, non-owning references within the
structure and to the outside are created. Fingdly,may have to make the outside world link
back to the prototype properly. Futhermore, thelpob cannot generally be an identical clone
of the prototype, so the cloning method may haveake any necessary changes.

Sometimes, you allow thBrototype to change after clones have been created. You toeed
define then what to do with the existing clonesuYoay want to leave them alone, so that
they get out of sync with the originBiototype object, or you may want to change them so that
they maintain conformance with the origirRabtotype.

If you delete &Prototype, you are most likely going to useGascaded Delete. In a Cascaded
Delete, the root object makes sure all its owned objactsdeleted too, which in turn delete
their owned objects, etc. Much like the initialmlog process, th€ascaded Delete is a recur-
sive multiphase algorithm that traverses the fojéct.

The originalPrototype pattern from the Design Patterns book serves ml#fgrent purposes.

10

Examples

See Also

Problem

Context

Solution

Roles

Comments

Examples

It is difficult to tear them apart, so we know wive are talking about. Alternatively, this pat-
tern could be namet@iemplate, which together witfExemplary Instance would cover the two
main uses of the origin&rototype pattern.

The prototype pattern as two key liabilities. Fitttis pattern means that the product’s struc-
ture is obscured or even completely invisible ia tirogram code: everything depends on the
way the prototypes are constructed at runtime. Tag&es programs using prototype harder to
read, understand, and change, although increaseébility, extensibility, and can make pro-
grams much shorter (especially if prototypes cag be read out of serialized files or object
dumps). The second liability of prototypes is finetotype corruption problem — rather than
returning a new product, you accidentally returineatly or indirectly, the prototype or part of
it. This kind of problems can be very difficult detect and resolve.

thd

Gof,s OK here, right? How about ATTACK of the CLONE (Chinese translation)

3.4 Builder

How can you create a really complex, dynamicallyficured, product?

Clients sometimes don't just need one product gbjeat several objects, set up properly to
work together. Unlike théPrototype, though, the Client wants to determine this stmect
rather than receive a predetermined one.

Often these complex products — or sets of objeasentikely — also need to be configured
dynamically, so you find yourself using mahytialisation Methods. The resulting code gets
difficult to read and maintain, is brittle and byggnd pollutes the clients own code.

You create a special kind @ibject Factory, called theBuilder, that provides a clean proce-
dural API for creating the products. TBeilder implements the building process of the com-
plex object. Clients supply information to tBeilder as it becomes available to them, helping
the Builder build the complex object structure piby piece.

The Builder plays the part of the Creator. The fitliean have a very extended interaction with
the builder, before finally asking for the Produghich is eventually delivered fully config-
ured.

TheBuilder can have very different methods, some of whichGueation Methods, some of
which arelnitialization Methods. Still others are methods that provide some infdiam help-
ing control the build proces8uilders are usually stateful, keeping the information neette
build the object. Their interface resembles thaa ¢fansaction protocol, with a dedicated be-
ginning of the building process and a conclusioit.of

So why do programmers hate the Builder pattern? i@ason could be that it is not so much
complex as subtle — nonobvious. Many programmeemdeappier dealing with lots of crufy
detailed code than designing a (stateful) buildetqzol and rewriting all their creation code
to use it. Because Builders are aggressively alomatriants and encapsulating progesses, its
hard to see how they can be introduced by a nummbemall refactorings: like Fagade, the
point is to sweep lots of evil stuff under a rugen protect it so you can’t get at it outside: you
need to impose Builder (and Fagade) in one largemposite refactoring, or you'll end up sup-
porting e.g. ad-hoc initialization and the builderever (Wizards anyone).

(Hmm — that probably is the intermediate step falkbuilder, an ad-hoc pile of crap helper
methods) — James

thd

11

See Also Gof. Where else? Perhaps the gof's writeup is tostomplex. Perhaps it makes more sense
after reading all the rest of these. | like thensto initialization method about how you're
better off with builder.

3.5 Dependency Injection
Problem, How can you move issues of object creation anddénteection OUT of your program

Context You're doing EJB or components. You don’t underdtaow your system is designed. You are
going to have lots of little components, all alikeat are going to be deployed in lots of differ-
ent situations. You need to be able to reconfigorewhole system in to lots of different ways
—- e.g. single machine client, test rig, businesser version.

Solution Give each product class a wide selection of ingggtion methods. Have a god-like creator
that builds and configures everything.

Roles Client does nothing (or doesn’t exist). Creatordeeaonfig file, creates products, uses initiali-
zation methods to wire them together.

Comments OO people hate this. AOP & EJB people love it. tFidtsne in Xerox Parc Mesa or Cesar |
think.

The practical implementation of “software architeetdescriptions languages”

So in many ways | don't think this belongs heralat

Examples thd

See Also Marty. Spring! Rod!!

4 Related Patterns

A Class Object is an object that represents a class. In mostibjgented programming languages these days,
the Class Objedss the class. Th€lass Object knows how to create an instance of the class itesgmts. In
C++, if type_info is not enough, you create Exemplary Instance to represent the class. Atxemplary In-
stance is a singled-out instance of the class that plagstle of the class object.

The Secification pattern is a pattern language of how to describpasties of objects for the purposes of se-
lecting these objects from some collection. Singpecifications are strings like a class name, ncoraplex
specifications ar@roperty Lists that provide a number of named attributes thaegified class or object has to
match, and really complex specifications are exgioes in a full-fledged specification language.

A Default Implementation is a method implementation that provides the defaase. You use Befault Im-
plementation if most implementations of the method are goingpeche same, with a few exceptions that then
override theDefault Implementation.

Complementary to object creation is object desimnct-or objects that hold important resources, typically
want aFinalization Method that cleans up those resources before the olgjetsstroyed. If the object is com-
plex, you use &ascaded Delete that traverses the complex object and makes sluosvaed objects are final-
ized and deleted.

12

5 References

Still didn’t get to do the references...

Me Neither, but here are some.

GOF. POSA? BeckBPP, James’ NatCreat. Dirk's metotas papet

Brian’s Powerpoint; Kevlin's stuff on factories —eth of which we really should look at again.

What else?

6 Acknowledgements

To Joe Bergin, the most patient and kindly shepherahy of whose best ideas we stole, and who maa h
argued really hard to the PC, given what a slalknje did during our “iterations”

To John Vlissides, without whom etc.

7 Miscellaneous left overs

Modeling. Objects don't just exist within programs, but gatigralso represent some phenomena of the
“real world”. These patterns (especidlyeation Method) can make programs better models by letting
object creation in the program follow the sameguatt as in the world. By managing when and how
product objects created, they can also help toremst only that products’ invariants and interstattes
are correct, but that they faithfully model thetpanf the world they are supposed to reprsent.

13

