
ccccroblem YYYYrame ccccatterns

An Exploration of Patterns in the Problem Space

Rebecca Wirfs-Brock, Paul Taylor, James Noble

Contents

1 Problems and Solutions ... 2

1.1 Introducing problem frames... 2

1.2 Examples of problem frames.. 3

1.3 Reasons for liking problem frames ... 4

1.4 Using problem frames.. 4

1.5 The phenomenology thing... 6

1.6 Our motivations... 6

1.7 Our approach.. 8

2 Problem Frame Patterns.. 9

2.1 Required Behavior Problem Frame .. 11

2.2 Commanded Behavior Problem Frame.. 16

2.3 Information Display Problem Frame .. 21

2.4 Simple Workpieces Problem Frame ... 26

2.5 Transformation Problem Frame ... 29

3 Assessment and Conclusions ..33

4 Glossary...34

5 Acknowledgments ..36

6 References and Resources ..36

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 2

1 Problems and Solutions

Software developers solve problems in code. It’s part of our nature to decompose, resolve, or drive toward

a solution quickly and efficiently. We naturally gravitate to ‘the solution space’ where our architectures,

designs, patterns and idioms combine to resolve the plaguing problems that our clients continually push on

us. Patterns have in part been so successful because they expedite the journey from problem to solution—

they make us look good by handing us a best-practice template that we can fill out to deliver a proven

solution. So what good can come out of immersing ourselves in the problem space?

Patterns work like a ladder in the ‘Snakes and Ladders’ board game—given a known context and problem

(square on the board) they give us a leg-up to a higher place. Design patterns fall squarely in the middle of

the solution space and provide object-oriented fragments of structure to resolve solution space forces [1].

But they do assume that the problem and context are sufficiently well understood so that a sensible

selection of the appropriate pattern can be made. So what if we don’t yet have this orientation? What if we

find ourselves washing around in the amorphous problem space, unable to get a foothold on anything to

bear the weight of a pattern or to anchor a fragment of architecture? Is there another kind of pattern that

helps to locate our thinking early in the analysis and conceptualization of systems and solutions? Do patterns

in the problem space exist? If so, what kinds of patterns are they? How do they relate to design patterns?

And how might consideration of problem structure help us produce better software architecture and design?

1.1 Introducing problem frames

In this paper, we work with ‘problem frames’, a problem space classification mechanism proposed by

Michael Jackson [1] and further refined in [2]. Jackson’s ‘problem frames’ are interesting because they

build on a recognition of generic problem types, based on structures and relationships between domains and

system elements. Problem frames are based on a philosophy of phenomenology, which firmly places us in a

world of concepts, domains, phenomena and (software) machines— software mechanisms of our own

design—that interact with these elements of the problem’s enveloping context.

In Jackson’s problem frames, a problem is described as consisting of the software machine and one or more

application domains. The machine and application domain are connected, representing a domain of some

shared phenomena in which both the machine and the application domain participate. The problem context

provides us with the elements of a scene, but not the function. For example, a context may include a

workbench, a box of hand tools, and some pieces of timber. What we are missing is the requirement that

will dictate but not describe the function of the machine. Jackson suggests that a requirement should be

expressed in terms of the context rather than in terms of the machine. One possible requirement in this

example context is to produce a wooden container with removable lid to hold pens and pencils, while

another may be to transform the timber into a big pile of wood shavings for combustion. On the other hand,

requirements in terms of the machine in this example could be a series of detailed steps that tell you how

to hand-saw and plane the constituent wood pieces, and how to use nails and glue to best hold the box

together Or how to shave the wood with a handheld plane until there is no solid wood left. By expressing a

requirement only in terms of the machine and not in contextual terms, we risk jumping to the solution

space prematurely. As a consequence, we risk missing important aspects of specification and opportunities

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 3

for use and reuse outside the existing experience or existing processes or machines. Continuing the

example, when the craftsperson ignores the workshop, the possibility of using the high-powered wood-

chipping machine sitting in the corner might get overlooked.

1.2 Examples of problem frames

A problem frame is a generic, abstract problem structure, proposed by Jackson using the problem solving

techniques of Polya [3]. A problem frame consists of ‘principal parts’, a structure, and a solution task.

Figure 1 illustrates two of Jackson’s problem frames—the Required Behavior Frame and the Simple

Workpieces Frame. The Required Behavior Frame deals with a simple problem class so let’s start there. This

frame is a simple generalization of the structure of a class of problems that involve automated control—an

example is an electronic thermostat for temperature control. The frame consists of three principal parts.

The machine (the component to be built) shown as a double-hatched box. The machine is associated with a

single domain (the Controlled Domain depicted by a rectangle) by a line, representing an interface of

shared phenomena. The domain is in turn connected by a dashed line to a named set of properties (the

Desired Behavior requirement depicted by an ellipse).

Controlled

Domain
Controller

Desired

Behavior

Required Behavior Frame

Software
Machine

(Tool)

Workpieces

Operation

Requests

Operation
properties

Simple Workpieces
Frame

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 4

Figure 1: Two of Jackson’s problem frames.

The Simple Workpieces Frame deals with a class of problems where a user interacts with a software tool to

create and manipulate create manipulate computer-processable text or graphic objects, or similar

structures.

Although abstract, these problem frames generalize one of a number of basic structures that underlie every

system and architecture that solve problems of their type. Recognizing the structure of the problem and

adopting a frame such as this helps to structure the specification and analysis, as each element of the frame

is specified and documented. Each fact, predicate, assertion, invariant, observation, classification,

relationship and behavior that will be addressed at some stage during specification, analysis, design or

implementation, now has a principle part in the problem frame with which to be associated. A further

benefit is that all extraneous elements of the problem can be recognized for what they are earlier in the

analysis and development process.

In earlier work [1] Jackson named the Required Behavior Frame a Control Frame and the Simple Workpieces

Frame a Workpieces Frame. In addition to the frames we have briefly mentioned, we present three other

problem frames in pattern form—the Commanded Behavior Problem Frame, the Transformation Problem

Frame, and the Information Display Frame. Work is progressing amongst problem frame adherents toward

elaborating these frames and identifying new ones [3,7,8,9].

1.3 Reasons for liking problem frames

There are some good reasons to like problem frames. As an architect and developer, your goal is to design

and build software that will behave appropriately and solve the customer’s problem. Jackson advocates that

you convince yourself and your client that your proposed software will tackle the right problem by writing

an appropriate set of descriptions about the problem domains. As an analyst using problem frames (a

‘problem framer’) your central task is to investigate and describe problem domain properties and the

desired effects the machine that you design is to have upon any domain it interfaces with. Each type of

problem frame has a different set of concerns that are typically addressed. You can think of each problem

frame as having its own micro-methodology. So when you choose a problem frame, you choose a problem-

structuring template that encourages you to ask the right questions and specify the right things to describe

the problem with which you are faced.

Because problem frames provide a structure for analysis and description, the analysis effort can be correctly

targeted and the most appropriate method for the solution task is implied. In practice the need for

analytical judgment and decision making is not eliminated, rather it is transferred from the detail of

analysis to selection of a problem frame and creation of the mapping between problem elements and

frame’s principal parts. This is consistent with the goals of the pattern movement—a practitioner should be

able to reuse the community’s time-proven collective knowledge of problem analysis by simply fitting the

pattern (problem frame) to the problem at hand.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 5

1.4 Using problem frames

Using a problem frame involves selecting a candidate frame from a catalog of problem frames and

identifying a mapping between elements of the specific problem with the principal parts of the selected

problem frame. Practically, a real world problem frequently maps to several or many problem frames, so a

simple best-fit analysis is needed to select the most appropriate frame or frames. Jackson advocates

decomposing a complex problem into a number of smaller problems, and then focusing on the requirements

and the concerns of each sub-problem. As you progress through the process of fitting one or more problem

frames to the problem at hand, the frames guide you in what to specify and what questions to ask. In

effect, each problem frame comes with its own micro-method in the form of a descriptive template to be

completed. But to get value from using frames you do not have to ‘go formal’. In practice, the frame helps

you to know what questions to ask and what issues are commonly encountered in particular problem frames.

Once you have framed a problem, you can start asking questions. Or conversely, as you are asking questions

you find yourself exploring what frames seem to fit and push harder to gather appropriate requirements. In

this early analysis period, we find ourselves working in both directions at the same time—finding a frame

that fits and executing its associated micro-method to evaluate the fit occur simultaneously.

Each problem frame also describes a frame concern. The frame concern, illustrated in Figure 2,

characterizes the domains making up a frame and describes how they must be interrelated (that is, how the

operation of the machine must interact with the various domains) to produce a stylized argument that an

eventual implementation will be correct. As well as helping you convince yourself your requirements are

correct analyses of the problem you are studying, frame concerns can be useful to check that you have

characterized your problem with the correct frame. If you’ve selected the wrong frame for a particular sub-

problem, you’ll discover that the frame will suggest descriptions that don’t make sense and will leave out

other necessary ones—if you’re fitting your problem into the wrong frame, it will be difficult to construct a

convincing argument that your specification can meet that frame’s concern.

Figure 2: The Required Behavior Frame Concern

By helping you to ask the right questions, frames improve specification quality. There is another benefit—

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 6

frames encourage you to separate the concerns of the problem into demarcated sub-spaces (domains or

problem parts) in the overall problem space, and then to treat each in turn according to its specific needs.

This form of ‘separation of concerns’ helps you to develop minimal and contextual descriptions, and ensures

that the machine you specify sits comfortably in its phenomenological world. This can result in well-

integrated and minimal software solutions that are more likely to deliver quality—fitness for purpose—

because you have understood the purpose better.

1.5 The phenomenology thing

Conventional methods such as functional decomposition assume that there is an objective reality that the

analyst must discover and understand objectively. The analyst’s task is to describe the implications of the

domain’s invariant characteristics for the proposed system as input to a system design activity.

In contrast, Problem Frames adopt a phenomenological philosophical stance. Phenomenology is a big word

but its meaning for problem framers can be stated with smaller ones. The phenomenological position holds

that the only meaningful assertions that can be made are from observed behavior. Phenomenologists

construct theories and descriptions from observed behaviors, paying close attention to contextual and

situational factors and forces. A problem framer does just this by asking specific questions and studying

actual phenomena within tightly defined domains. Frames dovetail with this philosophy by promoting

definition and description of small, targeted domains at the expense of high-level architectural structure

and process.

Jackson distinguishes two types of phenomena—individual phenomena (events, entities, and values) and

relationships between individual phenomena (states, truths, and roles). An event is an indivisible,

instantaneous happening taking place at some point in time. For example, in the case of an email client,

“email sent” or “email received” are events. An entity is an individual that persists over time, changing

properties and state. In an email application, emails or mail folders and their contents are entities. A value

is immutable, existing outside of time and space—such as numbers or characters.

Jackson’s definition of state—a relationship (or predicate) among two or more individuals that can be true

at one time and false at another—is rooted in formal logic. So, for example, Temperature(myOffice, 72) is a

state, as is Sent(Emailxxx). A truth is a relationship among individuals that cannot change.

LaterThan(“timestamp: 9.9.2006”, “timestamp: 9.1.2005”) is a truth, just as GreaterThan(5,3) is. A role is a

relation between an event and individuals that participate in it, such as Sendmail(Emailxxx,Outbox).

1.6 Our motivations

Problem frames were first published by Jackson in 1995 [1], with a follow-up book in 2001 [2]. Two

international workshops have been conducted for researchers (IWAAPF 2005 and 2006) and while the idea

appears to be gathering broad academic acceptance, its use in industry is still some way off. So why have

we decided to pursue problem frames, and what benefits do we expect to see by expressing them in pattern

form?

We find ourselves intrigued by the promise of problem frames and their similarity with patterns. On face

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 7

value, problem frames and patterns may be kissing cousins:

• They are both based on a structural classification and require decomposition or abstraction of aspects

of the problem at hand.

• They both require selection, fitting and interpretation of a reference structure (a pattern or problem

frame).

• Once fitted, they both dictate a highly specific process (a ‘micro-method’).

• They can both be combined, with parts that can overlap or be shared and parts that must remain

separate.

However, when we look closely, we can also see a number of important differences that make problem

frames and patterns look more like members of feuding families:

• Problem frames produce descriptions, whereas patterns produce architecture or code structure.

• Problem frames are top-down (they have their roots in formal specification) whereas patterns are

bottom-up (they are rooted in practitioner experience) and emergent design.

• A problem frame is a template that arranges and describes phenomena in the problem space, whereas a

pattern maps forces to a solution in the solution space.

• Problem frames are method-centric (frames are subordinate to methodology), whereas patterns are

artifact/asset-centric — they focus on particular designs (i.e. the patterns) and those designs are useful

across a wide range of development methodologies, from UML Design Up Front to Extreme Agile Hacking

[10].

We think it is about time the patterns community took a look at problem frames. For one thing, we think

that problem frames look just too intriguingly similar to patterns to be ignored, and we want to understand

the relationship between the two. This paper is an attempt to expose these similarities and differences.

Another reason is that the patterns community is (arguably) some way down the track of making patterns

mainstream, and some of our lessons might be applicable in the development and promotion of problem

frames. Finally, we think that those interested in patterns will be similarly intrigued by problem frames.

Once you start thinking about the comparison, many other questions suggest themselves:

• Are problem frames an early attempt at applying patterns to specification? If so, are they useful?

• Are problem frames ‘patterns in the problem space’? If so, what does this mean for patterns?

• Is there value in treating problem frames as patterns? If so, where are the forces? Where is the solution?

• Is it meaningful to associate a given problem frame with a set of design patterns? In other words, can

design patterns instrument a problem frame’s micro-method?

• Do Alexanderian concepts such as pattern language, generativity, and emergence have an analog in

problem frames?

While we obviously don’t expect to answer many of these questions, we include them to share a sense of

the possibilities. We should also declare our own personal motivations for pursuing this chimera. Our

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 8

motivations for promoting problem frames in the patterns community and for attempting to write problem

frames as patterns include:

• to investigate and explore the relationship between problem frames and patterns in the hope of finding

common ground.

• to learn for ourselves about problem frames by making associations back to familiar concepts from

pattern theory and practice.

• to identify options for informal and agile approaches to problem frames that take the approach out of

its methodological origins and ground it in pragmatic techniques and the language of system and

software developers and designers.

1.7 Our approach

Consistent with patterns community ethos, we make no claims on originality for much of the material

presented in this paper, other than the idea of bringing problem frames and patterns together, the

identification of implementation issues discussed for each pattern, the running example, and our slight shift

away from Jackson’s insistence on real world phenomena and domains to one that accommodates computers

and computational domains. The problem frames and their definitions are taken nearly verbatim from

Jackson’s books. The fitting of each frame into a pattern template, and the assessments and conclusions are

all our own work.

We welcome engagement from anyone interested in developing the idea and look to the patterns

community for feedback and stimulating discussion.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 9

2 Problem Frame Patterns

In this section we present five patterns, one for each of Jackson’s problem frames. The names of the five

problem frame patterns, and the classes of problem that each address, are as follows:

• Required Behavior Problem Frame pattern—there is some part of the world whose behavior is to be

controlled so that it satisfies certain conditions… the problem is to build a machine that will impose

that control.

• Commanded Behavior Problem Frame pattern —there is some part of the world whose behavior is to

be controlled in accordance with commands issued by an operator… the problem is to build a machine

that will accept the operator's commands and impose the control accordingly.

• Simple Workpieces Problem Frame pattern —a tool is needed to allow a user to create and edit a

certain class of computer-processable text or graphic objects, or similar structures, so that they can be

subsequently copied, printed, analyzed or used in other ways… the problem is to build a machine that

can act as this tool.

• Information Display Problem Frame pattern —there is some part of the world about whose states and

behavior certain information is needed… the problem is to build a machine that will obtain this

information and present it at the required place in the required form.

• Transformation Problem Frame pattern —there are given data which must be transformed to give

certain required output. The output data must be in a particular format and it must be derived from

the input data according to certain rules… the problem is to build a machine that will produce the

required outputs from the inputs.

Each problem frame is presented using a simple pattern form. The pattern begins with a short definition of

the problem the frame address, taken verbatim from Jackson’s corresponding frame definition. Then our

patterns present a brief example, showing the various domains that comprise the structure of the problem.

The pattern examples are drawn from a running example that depicts the specification of an email client.

This client can exchange messages with email servers, detect junk messages, allow users to compose new

messages, and display encoded multimedia objects. A client with this amount of functionality necessitates

the use of a number of different problem frames, and the process of fitting, then combining frames

together illustrates how this kind of analysis can yield simple yet highly definitive and formal descriptions.

Returning to the problem frame pattern descriptions, each pattern then describes which abstract problem

frame the example can be fitted to, shows the generalized structure of that frame, and describes the

‘participants’ (or principal parts)—that is, each domain that is a part of the frame. Each pattern next

describes the abstract ‘frame concern’, that is, the overall condition the machine must satisfy if it is to

embody a correct solution meeting the requirements of the frame. In some ways, this is similar to the

‘collaboration’ section of an object-oriented design pattern, in that it shows how different domains are

interrelated within the frame. The pattern shows how the frame resolves the email client example,

sketching an argument to show how the example’s specific concerns can be resolved. Each problem frame

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 10

pattern includes a brief list of analysis, design, or implementation considerations that often arise with this

frame, and (for a few of the frames) briefly lists common variants or closely related problem frames.

Domain Diagrams:

Both specific problems and abstract frames are drawn using Jackson’s most recent [2] problem frame

diagram notation:

Figure 3: An example of Jackson’s problem frame notation (for a medical monitoring

machine).

These diagrams show domains (rectangles) and requirements (dashed ellipses). Domains generally represent

sets of phenomena in the real world—in the example shown in Figure 3, medical patients, sensors, display

panels, and a ‘monitor machine’ that connects sensors to panels. An important point is that the solution—in

problem frame terminology, the Machine—is considered a domain like any other. This emphasizes a practical

consequence of Jackson’s phenomenological stance—the ‘machine’ that we have to build is a domain in the

real world (at least once the software ‘machine’ is built and installed) and can be treated from a

specification perspective just like any other domain, with characteristics and phenomena of its own. Since

we have to build it, we identify it with stripes on the left-hand side of its rectangle.

Domains are linked by lines representing shared phenomena between them; that is, phenomena that occur

in each domain. In

Figure 3’s example, sensors are physically attached to patients and monitor their pulse, blood oxygen levels,

blood pressure, etc. Sensors are similarly attached to the monitor machine via an instrumentation bus, and

the machine is attached to a display panel via some graphics drivers. Requirements are constraints on the

states or operations of various domains. In

Figure 3’s case, they are linked (by dashed lines) to the domains they constrain. The requirement that the

patient’s state of health must be reflected accurately in the Panel display is expressed as an assertion in the

Patients domain, but acts as a specification for the Panel Display domain (thus the arrowhead).

Monitor
Machine

Panel display

Sensors

Display ~ Patient

Condition

Patients

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 11

2.1 Required Behavior Problem Frame

2.1.1 Problem

There is some part of the world whose behavior is to be controlled so that it satisfies certain conditions.

The problem is to build a machine that will impose that control.

2.1.2 Example

The most basic requirement for an email client (the most fundamental problem that

it has to solve) is to send emails from the client program to some external Mail Server,

and to get emails back from that server. The problem frame diagram in

Figure 4 illustrates how the Required Behavior problem frame fits this simple description of the client’s

most basic function. The Machine (called the Email Client) must interact with the immediate endpoint of

the emails

(the Mail

Server)

and that

interaction must satisfy the requirement that emails are correctly exchanged between the two.

Figure 4: Basic email client operation mapped onto the Required Behavior problem

The Mail Server domain will consist primarily of entities representing email messages. The Mail Server

domain is linked to the Email Client domain by shared phenomena — obviously email messages, but also

events by which the Email Client can send or request emails to and from the server. This is two-way

communication, since the Email Client can inspect the Mail Server domain (i.e. to find any emails) and

affect it (by sending emails to the server). Since the key problem the frame presents is to design the Email

Client, the problem gives no more details about that client directly — because those details are precisely

the space we will fill in our design and implementation: our specification says nothing more about the

machine. There are three basic Required Behaviors—the Email Client periodically issues Send events to send

emails, it initiates Check events to determine if any new emails have arrived, and it issues Get events to

retrieve each of those emails.

The “C” in the lower corner of the Mail Server domain indicates that it is a causal domain, one which

predictably responds to events. Note that although the server is internally aware of the arrival of new email

Mail ServerEmail Client
Send and get/check

for Email on
predefined scheduleC

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 12

messages, it never signals out to Client when one arrives—rather, it waits for the Client to initiate a Check

event. Because of this, it is always responsive as far as the Client is concerned.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 13

Controlled DomainControl Machine Required Behavior

2.1.3 Structure

This problem fits into the Required Behavior problem frame, shown in Figure 5.

Figure 5: General form of the Required Behavior problem frame.

The Required Behavior problem frame is comprised of these participating elements:

• Control Machine (Email Client in the example)—this is the part that we know we have to build, and

its purpose is to exert control on the Controlled Domain.

• Controlled Domain (Mail Server in the example)—this domain defines just the part of the world that

needs to be ‘controlled’ by the machine.

• Required Behavior (Send and Get Emails in the example)—this part describes how the domain must

be controlled by the machine.

2.1.4 Frame Concern

They key concern of the Required Behavior problem frame is that the machine must ensure that the

Controlled Domain exhibits the required behavior.

The frame concern relates the frame’s domains in the following way:

1. The behavior of the Control Machine
2. AND the properties of the Controlled Domain
3. ENSURE the Required Behavior.

Figure 6: The Required Behavior Frame Concern

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 14

Concern Resolved:

Referring to the example, we can say that the behavior of the Email Client AND the properties of the Mail

Server ENSURE that email will be sent and received according to the predefined schedule.

That is, we must be able to make a convincing argument that:

1. The behavior of the Email Client
2. AND the properties of the Mail Server
3. ENSURE the emails will be exchanged between Client and Server.

Addressing the frame concern adequately means making sure that descriptions of the requirement, the

specification of your machine at its interface to the controlled domain, and the description of the

controlled domain’s reactions to events all work together consistently. In the Email Client application, the

requirement must describe how emails should be sent and received. The domain description must show how

emails are received, stored, and transferred by the mail server, and the machine’s specification must show

how it behaves at its interface with the Mail Server. To deal with receiving emails, for example, the Email

Client must issue Check events periodically to determine if there are any incoming emails, and then a series

of Get events (one for each pending email). Assuming the Mail Server behaves as expected — listing all

pending emails in response to a Check event, and moving one Email message in response to each Get event,

the system as a whole will satisfy the required behaviour—that incoming emails are periodically transferred

from server to client.

2.1.5 Discussion

The task of analyzing a problem that fits the Required Behavior frame is given by the separate tasks of

analyzing how the controlled domain works, and specifying the behavior your machine must have so that it

exerts the proper control over the controlled domain. To fit a problem to this problem frame, you need to

match each of the frame’s parts to a portion of the problem at hand. As you proceed, you assess the quality

of the fit by working with each part in turn to write down a mapping between the frame part’s

characteristics and the corresponding phenomena in that part of the problem space. When you do this, the

frame will guide you, prompting you with questions. For example, to fit the frame’s Controlled Domain part,

you will have to answer the following kinds of questions—what external state in the Controlled Domain must

be controlled? What are the natural states of these objects or phenomena and how do transitions come

about? And which of these transitions must your Machine command? And how and when does your software

machine decide what actions to initiate?

With an unreliable connection interspersed between the machine and the Controlled Domain, there is an

increased probability that the state of things as “expected” in the Controlled Domain won’t match up with

your machine’s intended effects on the Controlled Domain. If this indeed is a valid concern, then your

descriptions must address how your machine will detect when things get ‘out of synch’ and what your

machine must do in this case.

More fundamental is the question of whether or not your Software Machine needs find out whether its

actions have had the intended effect. A question to ask about any Required Behavior problem is whether the

machine needs to know for certain, or whether it can just react later (when the state of something in the

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 15

Controlled Domain is not as expected). A simple example from our Email Client application is the case

where the user wishes to know whether sent emails have been received by the recipient. One way to

accomplish this is to tag an email as requiring a ‘confirmation of receipt’ reply when it is read by its

recipient.

2.1.6 Variants

Connection Domain:

The part of the Required Behavior problem frame that varies most across different problems is whether or

not a Connection Domain is part of the problem. In an ideal world your software machine directly shares

phenomena with the Controlled Domain and a rich interface gives it access to all the phenomena it needs to

detect or control. If you can convince yourself that it is safe to view the connection between your software

Machine and the thing under control as being direct (with no complicating connection properties that have

to be specified and managed by the Machine) your software solution will be considerably simpler. On the

other hand, when software system designers assume the simple case and overlook the complexities of this

connection (which happens often in the desire to selectively ignore complexity) the reliability of the

Machine can be dramatically reduced.

So, the reality is that often software isn’t able to directly and simply affect the control domain. A

Connection Domain lies between the two which interposes its own properties and behavior. If, as is often

the case, you decide that this connection can cause quirky or interesting behavior then you may need to

understand the properties of this Connection Domain. You’ll then need to describe the properties of this

domain and how it interacts with your software Machine and the Controlled Domain. In the example, a

separate Connection Domain is most likely needed as part of the elaboration of the frame since the internet

(a not entirely reliable connection) lies between our Email Client and the Mail Server (Figure 7).

Figure 7: The Required Behavior Frame showing the internet connection domain.

Configuration Domain:

Sometimes it is useful to specify the configurable aspects that drive the controlling machine’s behavior. For

example, in the case of the Email Client, the schedule for when to send and check for incoming mail might

be represented in a designed description domain, shown as an oval with a single vertical line in Figure 8—

the Email Transfer Schedule. While this may indeed be a simple lexical description, it is interpreted by the

Email Client, and its values can be set by the user in yet another problem frame (a Commanded Behavior

frame). Domains in one problem frame can be represented in other frames; if this is so, then care must be

taken to ensure that the requirement from one frame doesn’t conflict or contradict another.

Similarly, it can be useful to model other domains that the Control Machine interfaces to as it performs its

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 16

control functions. For example, in the email example, incoming and outgoing emails are transferred

between the Mailbox Manager Domain and the Email Client. A more complete picture of the use of the

Required Behavior frame for specifying the Email Client example is shown in Figure 8.

Figure 8: Required Behavior problem frame for the Email Client, with added ‘Mail

Folder’ and ‘Email transfer schedule’ domains.

Mail Service
Provider

Email Client
Send and get/check

for Email on

predefined schedule

C

Email transfer
schedule

Mail Folder Manager

C

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 17

2.2 Commanded Behavior Problem Frame

2.2.1 Problem

There is some part of the world whose behavior is to be controlled in accordance with commands issued by

an operator. The problem is to build a machine that will accept the operator's commands and impose the

control accordingly.

2.2.2 Example

An Email Client cannot only communicate with the Mail Server: it must also provide an interface to its users

to compose and send, receive and read email The frame diagram below shows this problem: the Machine,

the Email Client, must exchange emails with the Mail Server with the requirement that the interactions with

the Mail Server are commanded by the client.

The Mail Server domain, once again, will consist primarily of entities representing email messages, and is

linked to the Email Client domain by shared phenomena — Control Events — Email messages, and Send, Get,

and Check events. The User domain is also a source of events, in this case Commands from the user to

Queue (i.e. edit to send later), to Send queued emails, and to Check Mail. The Commanded Behaviors are as

follows: in response to User Send commands, the Email Client must send all queued Email Messages; in

response to User Check events it must check Email and use Get events as necessary to retrieve them.

As explained earlier, the “C” in the lower corner of the Mail Server domain indicates that it is a causal

domain, one which predictably responds to events. The User domain, marked with a “B”, is a biddable

domain—one which isn’t guaranteed to respond predictably. This is because it is impossible to predict how

(when, and in what sequence) the user will issue events to the Email Client.

Email Client

Mail Server

Send and receive
email when user

says to

User

B

User! Send,

Queue, Check
Mail..

C

Figure 9: User’s control of the email client mapped onto the

Commanded Behavior problem frame.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 18

2.2.3 Structure

This problem fits into the Commanded Behavior problem frame shown in Figure 10:

Figure 10: General form of the Commanded Behavior problem frame.

Participants:

• Control Machine (Email Client) — the part that must be built in software, it controls the Controlled

Domain using Operator Commands as commanded by the Operator domain.

• Controlled Domain (Mail Server) — the part of the world to be controlled via Control Events issued

by the Control Machine.

• Operator (User) — autonomously active domain that issues Commands (Operator Commands)

directly to Control Machine.

• Commanded Behavior (Send and Receive Emails) — describes how the Controlled Domain must be

controlled in response to user commands.

Frame Concern:

The key concern of the Commanded Behavior problem frame is that the Control Machine must produce the

Commanded Behavior in the Controlled Domain in response to the Operator’s commands. The frame’s

concern, illustrated in Figure 11, can be stated as follows:

1. When the Operator issues a Command
2. AND the Machine rejects invalid Commands
3. AND the Machine either ignores it if unviable, OR issues Control Events
4. AND the Control Events change the Controlled Domain
5. ENSURE the changed state meets the Commanded Behavior in every case.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 19

Figure 11: The Commanded Behavior Frame Concerns

Concern Resolved:

Referring to the example, we can say that the behavior of the Email Client AND the properties of the Mail

Server and User ENSURE that email will be sent and received in response to user commands:

1. When the User issues a command
2. AND the Email Client accepts that command only if it is valid
3. AND the Email Client issues email requests only if they are viable
4. AND the Email Client requests an exchange of email with the Mail Server
5. ENSURE that email is exchanged only when the User says so.

In the Email Client application, the Commanded Behavior requirement must describe how emails should be

sent and received. The domain descriptions must show how emails are received, stored, and transferred by

the Mail Server, and describe the commands that may be issued by the User. Finally the Machine’s

specification must show how it behaves at its interface with the Mail Server in response to commands

coming in from the user. To deal with sending emails, for example, the Email Client must collect outgoing

emails (in response to Queue command events from the User domain) and then, when the user issues a Send

command must issue the correct Send events to the Mail Server domain. Assuming the Mail Server and User

domains issue and interpret the required events, the system as a whole will queue and then forward email,

satisfying this required behaviour.

2.2.4 Discussion

An added complication in the Commanded Behavior frame is the unpredictability of the operator’s decisions

and interactions with the Machine. The underlying issue that the Commanded Behavior frame forces the

analyst to deal with is what’s a good model of user-system interaction and what does the user need to know

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 20

in order to “command” the machine to do things? And although you may specify permissible actions in detail

(because the Operator domain is biddable) you cannot rely on the operator following operating instructions

at all times. As a result, the Control Machine can’t be required to respond to every operator command.

Some commands may make no sense in the context of previously issued ones. Certain commands may not be

viable because they are inappropriate or not permitted given the current state of the Machine or the

Controlled Domain. For example, a “send email” command doesn’t make sense if there is no unsent email.

This leads you to ask what commands need to be inhibited based on the current state of the Machine or the

Controlled Domain. One way to inhibit “send mail” would be to disable the ‘send’ menu item when there is

no unsent mail.

For more complex Commanded Behavior frames, it may be appropriate to ask whether a sequence of actions

makes sense, or whether a lag between issuing a command and the machine performing the action could

cause the operator to mistakenly believe that a command has been ignored. In some circumstances, it is

legitimate to ignore certain sequences of commands—repeated presses of the elevator ‘call’ button in a

foyer are a good example.

In any case, it is always appropriate to ask what should happen when a command fails. Should the operator

be involved in “steering” the Control Machine through a recovery procedure? Do commands need to be

reversible, logged, monitored or otherwise tracked? What kinds of feedback (if any) should the Machine give

the Operator to indicate when commands have been successfully processed?

Because of the interplay between the Operator’s actions, the reasons for disobeying or failing to execute

commands, and the required properties of the Controlled Domain, there are more subtle relationships

among the descriptions in a Commanded Behavior problem than those in a typical Required Behavior

problem.

2.2.5 Variants

Designated Domain:

Is it possible that commands may be specified to the Machine that do not immediately take effect? If so,

then a “Designed Domain” may need to be specified that describes commands, their parameters and when

they take effect. Are there possible conflicts between Operator-issued commands and required behavior in

a problem where operator commands modify or overrides required default behavior (as shown in Figure 12)?

If so, a specification of frame concern priorities may be needed. This would simply state relative priorities

(possibly in the form of rules) to resolve conflicting commands and situations.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 21

Figure 12: A composite frame with both commanded and required behaviours.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 22

2.3 Information Display Problem Frame

2.3.1 Problem

There is some part of the world about whose states and behavior certain information is continually needed.

The problem is to build a machine that will obtain this information from the world and present it at the

required place in the required form.

2.3.2 Example

These days, email clients need to do more than allow users to edit emails, and exchange those emails with

mail servers. They also need to identify the large amount of junk mails that most email users receive. The

frame diagram below (Figure 13) shows this problem: the Machine (a ‘Junk Mail Filter’) must inspect

Incoming Mail and then produce a report which assigns a junk mail rating to each email based on a Bayesian

algorithm.

Figure 13: Junk mail detection problem mapped onto the Information Display problem frame.

2.3.3 Structure

This problem fits into the Information Display problem frame:

Figure 14: General form of the Information Display problem frame.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 23

Participants:

• Information Machine (Junk Mail Filter) — the part to be built, the Information Machine displays

information from the real world—something that (relative to our problem) is not under our

software’s control.

• Real World (Incoming Mail) — an active and autonomous domain containing the information that

needs to be displayed. Nothing in the problem context can affect the Real World.

• Display (Junk Mail Report) — the part of the world where information is to be presented.

• Display~Real World (Identify Junk Mail Requirement) — the requirement that relates the domains

(the Display must show true information about the Real World).

2.3.4 Frame Concern:

The key concern of the Information Display problem frame is that the Information Machine must ensure the

Display’s output is derived from the values in the Real World. The frame’s concern, illustrated in Figure 15,

can be stated as follows:

1. When the Real World is in a particular state
2. THEN because the Real World domain contains particular values
3. AND the Machine will detect those values from the Real World domain
4. AND it causes events to the Display domain
5. AND the Display domain produces some output in response to those events
6. ENSURES the Display can be interpreted as corresponding (as required) to the Real World.

...and cause these

events...

{specification}

So the output will be

this…

{domain properties-b}

When the state of the

world is this…

{requirement}

5

4

3

...the software will

detect these

phenomena...

{specification}

...then because the

things are like this...

{domain properties-a}
2

1

Your

Software

Information

Machine

Real world

Display –

real world

C

Display

C

...which correspond as

required to what is

happening in the world

{requirement}

6

Figure 15: Information Display Frame Concern

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 24

Concern Resolved:

Referring to the example, we can say that the Information Machine always ensures that the Display responds

to the state of the Real World according to the Display~Real World requirement:

1. When the user is receiving spam
2. THEN the Incoming Mail includes junk mail messages
3. AND the junk mail filter will detect those junk messages and assign each a junk mail rating value
4. AND it sends the title, junk mail rating value, and ‘From:’ line of those messages to the junk mail

filter report
5. AND the junk mail filter report can be interpreted as listing junk messages
6. ENSURES the junk mail filter report lists the junk mail messages within the Incoming Mail stream.

2.3.5 Discussion

To address the frame concern for an Information Display problem, you describe the requirement of how

information should be presented to the Display domain, the properties of the Real World domain, and the

phenomena that are available at the Machine-to-Real World domain interface. In essence, you must ask,

what is the form of “observation” that the Machine must make about some event, fact or thing? Indeed, it

may be difficult to ascertain when an event has occurred in the Real World simply because the Real World

domain-to-Machine interface is a narrow view onto the real world. For example, if your software is trying to

record how many vehicles passed over sensors placed on the road it may be difficult to characterize what

constitutes a vehicle—is it two axles passing within a time period? What about motorcycles, backed-up slow

traffic, etc?

An Information Display problem is often characterized by a significant gap between the real world

phenomena and the ability of your Machine to make an accurate interpretation of “reality” based on limited

phenomena available at its interface to the Real Word domain. Although a human recipient can answer

quickly by scanning email whether it is junk or not, it is much harder for a machine to make an accurate

discrimination. When considering the specification of your Machine, it is often important to ask, how much

computation does your software have to do to come to an observation? For example, most spam mail

detection is based on analysis of the email contents compared to “known” junk, as well as matching an

email’s properties with other known junk mail characteristics (such as where the email originated from). A

“junk mail probability rating” can be assigned to an email, based on Bayesian analysis of the contents of a

message based on sample data currently loaded into the junk mail box.

This leads to consideration of how precise or accurate your information display requirement is. Is it

sufficient to assign a junk mail confidence rating value (i.e. 50%) to an incoming email, or is a more precise

(but potentially less accurate) “yes” or “no” answer satisfactory?

Although the basic Information Display frame only describes the problem of representing a transitory value

on the Display, information display requirements are often more complex. For example, historical

information may be important, and users may need to query, organize and manipulate information. If so,

this will lead to further analysis of the requirements for display, querying, and retention of information.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 25

2.3.6 Variants

Model Domain:

Sometimes, to simplify the workings of your Display Machine, it is useful to include a “Model domain” of the

phenomena being observed in order to answer questions about it (Figure 16). When you do this, you’ve

essentially decomposed an Information Display problem into two sub-problems: one that observes the real

world and creates model of it (called the Model domain), and another that displays the information based

on the more accessible phenomena in the model. It is important to realize that a Model domain is

completely distinct from the Real World domain, but it is introduced when events that are unavailable in

the Real World would be useful to drive the display. In essence, a Model domain is part of a solution—and

not an intrinsic part of the problem.

Figure 16: Information Display frame with an added Model domain—an example of a

composite frame.

Commanded Information Frame:

In the basic Information Frame, the choice of information to be displayed is fixed in the

requirement. But sometimes it is useful to have a kind of information problem where the

machine answers questions of a user. Jackson calls this variant a Commanded Information

frame. The operator is called the Enquiry Operator whose enquiries are regarded as

commands to the Answering Machine. The machine produces its information outputs in the

Display domain. In the case of our junk mail rating machine, a Commanded Information

frame, shown in Figure 17, would let the user query and view a junk mail report based on

specific threshold values.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 26

Figure 17: Commanded Information frame.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 27

2.4 Simple Workpieces Problem Frame

2.4.1 Problem

A tool is needed to allow a user to create and edit a certain class of computer-processable text or graphic

objects, or similar structures, so that they can be subsequently copied, printed, analyzed or used in other

ways. The problem is to build a machine that can act as this tool.

2.4.2 Example

In order to have email messages to send, an email client must allow users to compose emails. The frame

diagram below (Figure 18) shows this problem: this Machine (the Email Editing Tool) must support Users

editing a set of email messages. The Email messages (annotated ‘X’) comprise a lexical domain, that is, a

set of symbolic objects rather than a part of the world external to the system. The User domain (annotated

‘B’), which interacts with the Email Editing Tool domain, is biddable—that is, in most situations it’s

impossible to compel a person to initiate an event (your machine can ask, but their response is never

guaranteed).

Figure 18: Email editing function mapped onto the Simple Workpieces problem frame.

2.4.3 Structure

This problem fits into the Simple Workpieces problem frame:

Figure 19: General form of the Simple Workpieces problem frame.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 28

Participants:

• Editing Tool (Email Editing Tool) — the part to be built, this domain issues Operations on the

Workpieces in response to User’s commands.

• User (User) — autonomously (actively) issues Commands to the Editing Tool to manipulate

Workpieces.

• Workpieces (Email Messages) — an inert, lexical (symbolic) domain containing materials to be

worked on.

• Command Effects (User’s Commands on Message Contents) — the requirement that describes how

the User’s commands should affect the Workpieces.

2.4.4 Frame Concern

The key concern of the Workpieces frame is that the Machine correctly changes the Workpieces in response

to editing Commands. The frame’s concern, illustrated in Figure 20, can be stated as follows:

1. When the User issues a Command
2. AND the Machine rejects invalid Commands
3. AND the Machine either ignores a Command if unviable, OR invokes editing Operations
4. AND the editing Operations result in changes of Workpiece values and states
5. ENSURE the changed state meets the Commanded Behavior in every case.

Figure 20: Simple workpieces frame concern

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 29

Concern Resolved:

Referring to the example, we can say that the Editing Tool ensures that commands have the effect on the

Workpieces according to the Command Effects requirement:

1. When the User issues an editing gesture (e.g. keystroke, mouse click)
2. AND that command is syntactically correct
3. AND the command is semantically correct
4. AND that command changes the email message being edited
5. ENSURE the message is edited correctly.

2.4.5 Discussion

The Simple Workpieces frame’s concern bears a strong resemblance to that of the Commanded Behavior

frame. The User has a role and characteristics very similar to the Operator in a Commanded Behavior

problem. The chief difference is that Workpieces is a lexical domain whose contents can be manipulated by

user commands. It is usually a designed domain (or, in the case of email message contents, a given domain

whose correctly formed contents are defined by email message standards).

It is important to identify both the structural elements of the workpiece and the commands that operate

upon them. Sometimes a workpiece can take on different forms, or may need to be published or printed.

One question to ask is whether a workpiece has an interesting lifecycle, or whether it is just changed and

then treated as “static” after each user command. Consideration of lifecycle questions lead to asking

whether a workpiece can be shared, and if so, how? It may be that a workpiece is passed around between

various users, for example a document requiring approvals or a meeting appointment whose attendees must

confirm their attendance. In cases like these, there may be a more complex workflow associated with

changes to the workpiece.

2.4.6 Variants

Command File:

Sometimes a Command File can take the place of a User. Instead of the User domain controlling edit events

as it does in the Simple Workpieces frame, a Command File (a passive lexical domain) is substituted as

shown in Figure 21.

Figure 21: Command file workpieces problem.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 30

2.5 Transformation Problem Frame

2.5.1 Problem

There are some given inputs which must be transformed to give certain required outputs. The output data

must be in a particular format, and it must be derived from the input data according to certain rules. The

problem is to build a machine that will produce the required outputs from the inputs.

2.5.2 Example

Consider multimedia messages, that is, email encoded in some particular way. The frame diagram in Figure

22 shows this problem: the Machine (the Email Decoder) must transform Encoded Email messages into

Viewable Email messages, according to some Decoding Requirements.

Figure 22: Multimedia decoding problem mapped onto the Transformation problem frame.

The “X” in the lower corner of the Encoded Email and Viewable Email domains indicates that they are

lexical domains—physical representations of structured data.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 31

2.5.3 Structure

This problem fits into the Transformation problem frame:

Figure 23: General form of the Transformation problem frame.

Participants:

• Transform Machine (Email Decoder) — the part to be built, this domain transforms inputs into

outputs without changing inputs.

• Inputs (Encoded Email) — a static lexical domain containing inputs.

• Outputs (Decoded Email) — a static lexical domain that is to be made by the machine.

• I/O Relation (Decoding Requirements) — a description of the desired relationship between inputs

and outputs.

2.5.4 Frame Concern:

The key concern of the Transformation problem frame, illustrated in Figure 24, is that the input is correctly

transformed into the output:

1. BY traversing the input in sequence, and simultaneously traversing the outputs in sequence
2. AND finding values in the input domain, and creating values in the output domain
3. AND that the input values produce the correct output values
4. ENSURES the I/O relation is satisfied.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 32

Figure 24: Transformation Problem Frame Concern

Concern resolved:

1. BY traversing an encoded email, and the decoded representation
2. AND finding values in the encoded emails, and creating values in the decoded emails
3. AND that the encoded values produce the correct decoded values
4. ENSURES the email message is decoded correctly

2.5.5 Discussion

In a transformation problem, the two problem domains are lexical. The transform machine traverses over

the Input domain, accessing the data values it needs by visiting the places in the domain where they are to

be found. In the same way it simultaneously traverses the Output domain, creating data values and

depositing them at places where they are required. The frame concern for the Transformation Frame is to

show that as the Machine traverses the Input and Output domains that it correctly calculates the values to

be written to the proper places in the Output domain.

If the transformation is complex, or the input domain’s size isn’t well-known or bounded, there are other

considerations. For example, the analyst might need to consider what speed, space, or time tradeoffs exist

for performing any particular transformation. Is the transformation “lossy”, i.e. is it permissible to lose

certain information when space and speed tradeoffs must be made? And does the transform need to be

reversible?

Efficiency of the Machine and its traversal algorithms is a common concern. A practical efficient traversal

tries to avoid multiple visits to the same data or unnecessary visits to irrelevant data. If the transformation

is complex, then algorithmic descriptions may be part of the Machine specification.

Another question to ask is whether a transformation will always work. What should happen when your

transform machine encounters anomalies in the Input or unknown data in the Input domain? For example,

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 33

what should happen when a particular encoded element cannot be read by the Email Decoder? Should it

ignore it, put it in the Output as some distinguished (uninterpretable item) and continue, or terminate?

2.5.6 Variants

Description Domain:

A more flexible way of treating a transformation problem is to add a description domain that guides the

behavior of the machine. For example, the definitions of tokens and their types are encoded in a

description domain that a Lexical Analyzer interprets during its traversal of the Input stream (Figure 25).

The Token definitions domain describes the relationship between the characters or values in the input

domain and tokens. The requirement is that the Output domain should contain token records corresponding

to the Input domain tokens.

Figure 25: Transformation problem description variant.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 34

3 Assessment and Conclusions

Now that Jackson’s problem frames have been elaborated in pattern form, we need to return to our stated

motivations to discuss just how their expression as patterns has helped us understand and use problem

frames. One reason we had for writing problem frame patterns was to learn how they relate to other

patterns. Patterns are about designing things. The fact that we put problem frames into pattern form

demonstrates that when people write specifications, they are designing too—they are designing the overall

system, not its internal structure. And while problem frames are firmly rooted in the problem space, to us

they also suggest solutions. When solving translation problems it seems reasonable to check out patterns

about how to write parsers, or to consider the Command pattern when designing a solution to a Commanded

Behavior problem (or most frames involving a user-operator domain). Required Behavior problems suggest

investigating event and event handling patterns, finite state machines, or reactive system design patterns.

And query-report patterns come to mind when solving the Commanded Information Frame variant. Likewise,

when designing a Model domain, inspiration can come from considering the nature of that model and various

patterns that may apply based on its necessary behavior and intrinsic structure. So it appears that problem

frames usefully suggest patterns. But the link seems tenuous.

Connections between problem frame concerns and potential design pattern solutions certainly exist. It

seems fruitful to view framing as one way of guiding the exploration for potential solutions. However,

stronger connections between frame concerns and architectural or design patterns, other than those we

have mentioned, don’t appear so obvious. This may be because certain design patterns resolve tensions that

are intrinsic to the solution, not the problem. Design patterns as a whole need to be better organized

before more connections can become clear.

One recurring question that arises from our view of problem frames as patterns is how they help the

analyst—specifically, the question of how people are supposed to use problem frame patterns. We suggest

that as you look at a problem to be solved ask, “Is there a workpiece here? Or a transformation or a

required behavior? What problem frames seem to predominate?” You’ll apply a frame and see whether it

fits. And this leads to meaningful questions to ask. As you explore a problem, you will discover ancillary

problems and decompose larger problems into sub-problems. You’ll try to write requirements. While a

phenomenological world view can lead to formal descriptions of events, states, statements about truths and

cause and effects, we haven’t found ourselves “going more formal” just because we know problem frames.

Instead, we find that knowing problem frames leads us to ask deeper questions and distinguish requirements

from assertions, wishes, and technology constraints. Framing also helps us spot the need for developing

more rigorous state models, event descriptions or behavioral rules.

We find that analysts steeped in other forms of analysis descriptions and models find problem frames to be

interesting but not immediately applicable. Problem framing doesn’t seem to supplant other analysis

activities nor do phenomenological descriptions replace other analysis artifacts. Integration of problem

framing with other analysis activities needs further investigation. We hope that by writing about problem

frames as patterns, we can expose problem frames to a wider audience who in turn integrate framing

activities with their other analysis activities and report on their experiences.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 35

4 Glossary

Like all weltanshauungs, Problem Frames have their own specialised terminology. Here’s a brief illustrated

glossary, shamelessly culled indirectly from the Problem Frames Book.

Biddable Domain – a domain that a Machine can tell what to do (although the outcome of such a mutation is

not necessarily reliable or predictable). ‘B’ marks a biddable domain.

Causal Domain—a domain that a Machine can tell what to do, and where the outcome is perfectly

predictable. ‘C’ marks a causal domain.

Designed Domain—a realization of a description or model that the developer is free to design. A box with a

single stripe is a designed domain.

Domain—a collection of phenomena. A domain is designated by a box.

Domain Dependency—two domains may be linked by shared phenomena.

Entity—an individual phenomenon that persists over time, changing properties and state. In an email

application, emails or mail folders and their contents are entities.

Event—an individual phenomenon representing an indivisible, instantaneous happening taking place at some

point in time. In an email client problem, “email sent” or “email received” are events.

Frame Concern—an argument (or argument schema) that describes how the Machine Domain must interact

with other Domains within a Problem Frame if the specification accurately fits that Frame.

Given Domain—a domain that is given or fixed in a particular problem, that is, it is not subject to change (it

is pre-established).

Individual Phenomena—individual elements of a domain that may be observed. Classified into states,

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 36

truths, and roles.

Interface—a connection among domains consisting of phenomena that they share. On a frame diagram, a

connection is represented by a solid line between two domains.

Machine (or Machine Domain)—the software program you are specifying. A machine is drawn as a box with

double stripes.

Lexical Domain—a domain that is a set of data with a deterministic structure. An ‘X’ marks a lexical

domain.

Phenomena—something that may be observed; a part or quality of a domain. Classified into Individual

Phenomena and Relationships.

Problem Frame—a set of Domains and Interconnections that describes a recurring problem structure.

Requirement—a condition on one or more domains of the problem context that the machine must bring

about, for example a stipulated correspondence between an information display value and the reality it

concerns. A dashed oval is a requirement.

Role—a relation between an event and individuals that participate in it such as Sendmail(Emailxxx,Outbox).

State—a relationship phenomenon (or predicate) among two or more individual phenomena that can be true

at one time and false at another. So, for example Temperature(myOffice, 72) is a state as is Sent(Emailxxx).

Truth—a relationship among two or more individuals that cannot change that is either true at all times or

false at all times. LaterThan(“timestamp: 9.9.2006”, “timestamp: 9.1.2005”) is a truth just as

GreaterThan(5,3) is.

Value—an immutable individual phenomenon existing outside of time and space—such as numbers or

characters.

Problem Frame Patterns Wirfs-Brock, Taylor, Noble

 Page 37

5 Acknowledgments

Many thanks are due to Susan Kurian, who ably shepherded this paper for PLoP 2006.

Thanks also to John Schwartz for his discussion of meaningful frame questions with Rebecca, to Jim Holt and

Nathan Ward for their development of a working frame example with Rebecca, and to Nathan for his

inspired leading of a Problem Frames reading and study group I (Rebecca) participated in.

Finally, we’d like to apologise to Michael Jackson (“he’s BAAD!”) for what we did to his lovely idea.

6 References and Resources

 [1] Software Requirements and Specifications, Michael Jackson, Addison-Wesley, 1995.

[2] Problem Frames: Analyzing and structuring software development problems, Michael Jackson, Addison-

Wesley, 2001.

[3] http://www.ferg.org/pfa/ —A website devoted to problem frames and their application.

[4] http://mcs.open.ac.uk/mj665/ —Jackson’s home page.

[5] http://www.wirfs-brock.com/rebeccasblog.html —Rebecca’s Blog (including some entries about problem

framing).

[6] http://homepage.mac.com/jon_hall/Academic/IWAAPF06/ —The 2nd International Workshop on

Advances and Applications of Problem Frames.

[7] http://csdl2.computer.org/comp/proceedings/re/2001/1125/00/11250306.pdf - Geographic Frames,

Maria Nelson, Donald Cowan, and Paolo Alencar, Proceedings of the Fifth International Symposium on

Requirements Engineering, 2001.

[8] http://csdl2.computer.org/comp/proceedings/re/2003/1980/00/19800371.pdf - Introducing Abuse

Frames for Analysing Security Threats, Luncheng Lin, Bashar Nuseibeh, Darrel Ince, Michael Jackson,

Jonathon Moffett; Proceedings of the Eleventh International Symposium on Requirements Engineering, 2003.

[9] http://mcs.open.ac.uk/mj665/ArchDrvn.pdf - Architecture-driven Problem Decomposition Lucia

Rapanotti, Jon G. Hall, Michael Jackson and Bashar Nuseibeh; Proceedings of the 2004 International

Conference on Requirements Engineering.

[10] http://www.xpuniverse.com/2001/pdfs/Edu02.pdf - Adapting Problem Frames to eXtreme

Programming, James Tomayko.

