RPC Arranger Design Pattern

Yoad Gidron Lev Kozakov Uri Shani
NewACT IBM T.J.Watson Recearch IBM Haifa Labs
Apollo House, Shaar Yokneam, Center University of Haifa Campus,
Yokneam lllit, Israel 19 Skyline Drive, Mt. Carmel, Haifa, Israel
+972-52-689-9929 Hawthorne, NY, U.S.A. +972-4-8296282
yoad.gidron@newact.com +1-914-784-7002 shani@il.ibm.com

kozakov@us.ibm.com

ABSTRACT

Remote Procedure Call (RPC) is a commonly used
mechanism for synchronous communicating client/server
applications. RPC implements a tightly synchronized
client/server interaction that is analogous to thgula
procedure call in non-distributed applications. The generalKeyWOrds

underlying principle common to all RPC-based tools and RPC

standards is that both client and server share a €OMMO 1 Rpc ARRANGER SCOPE
interface definition file (e.g., IDL). Automatic tools .
process the interface definition file and generate gourc
files that, when compiled with the application, ensure
client/server run-time compliancy. With DCE, CORBA o2 |NTENT

and Web Services (SOAP), client and server do notfeave gp,c5nqiate synchronous RPC mechanism for both client

be implemented in the same language, although the mosL,y server parts in a distributed application providing
common language used in these application had initially girect control of the process to the developer rathen t
been C, then C++, and later Java and C#. With the moder piging it within third-party services and component.

languages, such as Java, the built-in Remote Methogqre seamless interaction between client and sbyver
Invocation (RMI) method provides a very easy solutn f g 21ing of the same class declarations. Simplify mgiti

developing distributed applications. reliable RPC-based applications without requiring the use

We introduce a new design pattern for single-languageof external tools.
RPC-based object-oriented client/server applicatiors th

General Terms
Design Pattern, Remote Procedure Call, Synchronous
Communication

Distributed client/server applications. Remote Procedure
Call (RPC) mechanism implementation.

offers a solution based on sharing of base classgdade 3. FORCES) o)

of an interface definition file. This pattern providiee * Synchronized communication between client and

developer with full control on how client and server server must also be maintained in full synchrony

interact, while releasing her from the dependence iod, a between client and server code

need to learn _complex RPC_ infrastruc_tures, tools a_nd . Developer of RPC needs to have full control over

standards. We implemented this pattern in C++ to provide progress of RPC at execution time.

a convenient and safe solution to a real problem. An

implementation in Java was done too. * Need full control on how RPC passes parameters
) . between client and serve, how they are coded, and

The pattern is presented using the GOF pattern template how much of the data is passed.

[1].

» External RPC tool imposes dependency on the
tool, require to learn the technology, and
dependency on its revisions.

Categories and Subject Descriptors

C.2.4 Computer-Communication Network]: distributed
Systems —client/server, Distributed applications;, D.1.3
[Programming Techniques]: Concurrent Programming —
Distributed Programming;

External RPC tools may require the use of an
additional mediator broker server to facilitate the
client/server interaction.

4. MOTIVATION
Remote Procedure Call (RPC) is a widely used paradigm Client Server
and a classic method for developing client/server
applications [2][3]. The essence of RPC is that cliams

..

servers are tightly synchronized and exchange informatio : :

and control analogously to procedure calls in a regular : | Application | : i | Application
non-distributed application [1]. RPC is implemented code code
usually via tools provided in products that are generally : : :

also based on international standards for development o I I

such applications [4][5][6][7]. The underlying principle of i

operation of these tools is that the compliance bstvike : Client : : Server

client and server comes from a common interface stub stub :
definition file, which defines the functions, their i : :
parameters, and their types. Interface files are emith : I : : I :

an Interface Definition Language (IDL). A stub compiler : : :
generates stub files from IDL file. The stubs are cdedpi : Communications s:------- 2 Communications !
and linked with the client and server application code. ; i :

Thus the same source interface definition is shared

between applications to ensure workable protocol andrijgyre 1. RPC Mechanism. Client application code invokes a
seamless interaction. regular procedure call in the client stub, which marshals

. . R input and output parametersvia a communication layer.
The stages in an RPC are erlcted n ':'9“”? 1. The rem_Ot%erver stub playsthe partner role, which invokes the actual
procedure call mechanism is encapsulated in stubs, whichyyyice routinein the server application.

consist of source and header files. The applicationd toee Thi lleviat i -
compile their code using stub header files and link with 'S pattern comes to alleviate several issues;lfiesme

the compiled stubs. In addition, the applications wilklin ©f the tools providing access to classical RPC meshani

with the runtime support of the RPC package. Input and@re quite complex, and depend on special tools and run-

output parameters are encoded and streamed via thgme libraries. Yet, that is not always true, speailliyvv_ith
communication protocol in a process called marshaling. modern RPC such as the Java RMI [14]. The later isyprett

Marshaling ensures that parameters are correctlyeasy to use. Secondly, all RPC tools, including Java, RMI

transferred between different machines and processes. F leave very little control to the programmer as to rtbe

that reason, the IDL file defines precisely the seinarof interaction between client a_nd SErVer are done.dn fae
built-in and compound types so that the exact byte “protocol” between the parties is totally sealed bdhime

ordering (little/big endian) and number of bytes per data limited freedom of defining the parameters of the RPE€ an

. . - their direction — whether input to the server, or aret
element is clearly and unambiguously specified. . o '
y ¢ y'sp from it. More control of the application over the RPC

execution may serve additional purposes. For instance,
RPC operates on independent calls with no sense afe st
in the server that is preserved across calls. Timgdtion

is not necessarily true in all RPC systems, e.g. pnogra
partitioning [13] and in some sense alkva RMI[14]

can preserve state.

The RPC Arranger design pattern comes to fill this eich
The main idea of the pattern is to share the samecetiéd
between client and server applications by the use of a
common base class, instead of generating the stubs from
the same interface definition file. Within that prese
programmer can also explicitly control how the RPC call
protocol is implemented down to the most primitive data
element exchanged between client and server.

The RPC Arranger is described and demonstrated using
the C++ language. A Java version of this design has been

implemented in order to evaluate efficiency comparing thi
design and the use of Java RMI [16].

The RPC Arranger pattern borrows its structure from the
known Bridge and Template design patterns [8], and the
Dispatcherdesign pattern [15]. To clarify the mechanism

of the RPC Arranger, consider a fragment of a simple
client/server application, depicted in Figure 2A (object
diagram) and Figure 2B (class diagram). This fragment
presents a remote login operation.

[Client]—){SewiceAgentClient]—)[CommAgentClient]
J r

[Server]—)[ServiceAgentSewer]—)[CommAgentSeweq
4 r

Figure 2A. Fragment of RPC based client/server application
(object diagram).

ServiceAgent

conmdgent->input{ name });
" commAgent-»input(pawd);
loginlsert) (Zr{-mrmcmememmcmaaens ans =checkUser { name, pswd };
checkUser() (r{--msressesnnans commagent->output { ans J;
return ans;
—h
ServiceAgentClient ServiceAgentServer Skringmaneyspovd,
Servicedgent: : loginUser (
loginUser() & loginUser(y G-~ reme, pswd]
H checkUser() ey

check user name & pswd;

[send request;

Serviceagent: : loginUser (
name, pswd };

44 CommAgent
input{ String) ,_A_\
output{ Bool }
CommaAgentClient CommaAgent3erver
+1+ input{ String) input{ String) @)+
i | output; Bool) @ () output(Bool)

[recnve boul,} [send bool;]

Figure 2B. Fragment of RPC based client/server application
(class diagram).

The client application issues the RPC to the server(checkUser()),
application, providing user's name and password as stringauthentication).

This method sends appropriate request to the
server to identify the required service and
then calls the loginUser() method of its base
ServiceAgent class, which performs the
client stub of the RPC.

The server identifies the request and calls the
loginUser() method of its
ServiceAgentServer object.

This method allocates space for the input
parameters and then calls the loginUser()
method of its base ServiceAgent class, which
performs the server stub of the RPC.

The loginUser() method of the ServiceAgent
class (wich comprises the common stub
code) calls the input() methods of the
CommAgent class to transfer input
parameters, then it gets the output parameter
value, calling the checkUser() method (the
actual service function), and calls the
output() method of the CommAgent class to
transfer the output parameter.

The input() method in the client object sends parameters,
while in the server object it receives parameterBe T
output() method in the client object receives parameters,
while in the server object it sends parameters. The
checkUser() method is implemented in the server object
only to perform actual user authentication.

The key objects in this fragment are thavice and
communication agents.

Base communication agent class defines marshaling
methods for built-in data types. These methods are
implemented differently in the client and server
communication agent objects (in the clienput() means
sending andutput() means receiving, while in the server
input() means receiving anmaltput() means sending).

One service agent object is required for each of tieatcl
and server to implement the RP@g{nUser()). The
common base class for these objects implementsttibe s
for this procedure. It uses marshalinigp(t()/output())
methods, implemented in an appropriate communication
agent object, and calls the actual service function
which completes the task (user
The actual service function is

parameters. The server application checks the user'smplemented in the server object only.

attributes and returns boolean parameter (answer)eto th
client application.

The objects in this fragment interact in the follogiway:

* The client calls théoginUser() method of its
ServiceAgentClient object.

Note that theloginUser() function is an instance of the
Template Method8] design pattern - it is composed of
functions, that are defined in abstact classes and
implemented differently in concrete classes.

By sharing of the same base class between client and Figure3. Classdiagram of the RPC Arranger design
server service objects, the same common code (stillb) w pattern.
run on both sides, ensuring synchronous interaction7 PARTICIPANTS
between client and server parts of the application.)
7.1 Abstract level

7.1.1 CommAgent
Abstract class. Defines the marshaling interface

In real distributed applications each semantically eelat
group of services requires one set of service agenttebjec

follows: . o .
as foflows (input/output methods) for built-in data types; it also
* One common base class, which implements implements all methods needed for the RPC initiation;
common stubs . —_
7.1.2 ServiceDistributor
* One object for each client and server, whose Abstract class. Defines an interface for the lowele
class is derived form this common base dispatcher; a reference to an instance of this clasisl be
class. used for registration of service groups in the high level
Each RPC will be identified in two levels: dispatcher (not shown here);
 High level dispatcher - to resolve the group 7.13 ServiceAgent B _
(class) of services (service agent object) Base class for all application-specific service agiasses;

) N it provides an access to the communication agent object
» Low level dispatcher - to resolve the specific

procedure in the service group 7.2 Application level

High level dispatcher is implemented in the server 7.2.1 CommAgentServer

application itself. The service-specific low level Derived from theCommAgent class; it implements the
dispatchers are implemented in each service agent objecgerver side of the marshaling interface (input/output
of the server. methods) for built-in data types (in the server inputmsea

receiving and output means sending);
5. APPLICABILITY

The pattern could be useful for developing RPC-based’-2.2 CommAgentClient

object-oriented distributed applications, when both tlien Derived from theCommAgent class; it implements the
and server parts are written in the same programmingclient side of the marshaling interface (input/output
language and use the same underlying communicationmethods) for built-in data types (in the client input mea
interface. Depending on the low-level marshaling Sending and output means receiving);

implementation, it may be possible to walk also betwee

heterogeneous machines. 7.2.3 AppGroupAgent

Base service agent class for a particular group of gsvic

6. STRUCTURE derived from theServiceAgent class; it implements the
et eeeet oo ee e eee e e eee et eee e oo ee e eeeeeeeee s eeeeeeeeeseeeseeeeeseeeeeeeeee application-specific group of common procedures (stubs)
‘ Abstract Level for both client and server; it may also implement the
Ji common marshaling interface (input/output methods) for
Servieebistribator | | ServceAgent il the application-specific group of data types; it defines the
dispateh() ae application-specific group of actual service functions, as

A

A well;

. o 7.2.4 AppGroupAgentServer

Application|Level Service agent class for a particular group of services,
: provided in the server, derived from both the

ServiceDigtributor and the AppGroupAgent classes; it

implements the low-level dispatcher as well as the

AppGroupAgent

serviceProc()

’—%X application-specific group of actual service functions for
the server application;
: | AppGroupagentServer AppGroupAgeniClient Commag er Commagentclient |
; dispateh() SRS input () ingut () 7.2.5 AppGroupAgentCIlent
serviceprocl) i i Service agent class for a particular group of services] us

in the client, derived from thé&ppGroupAgent class; it
overrides the base procedures (stubs), defined in its base

class, so that it sends the service specific requéselibe Note, that the Iatter functions are

base procedure is called. implemented differently in the client and
server communication agent objects
8. COLLABORATIONS (CommAgentClient/ CommAgentServer

classes). To accomplish the task, the

Client SEEVEE common service method calls appropriate
AppGroupAgent CommAgent Dispatcher AppGroupAgent service functions, defined in the base service
I g fH dispatch() agent class AppGroupAgent class) and
ks i‘i‘:;%fﬂ P] fL\ implemented in the server object
: o (AppGroupAgentServer class).
9. CONSEQUENCES
Base:iservieePrue() Eﬁ Base::serviceProc() The benefits and liabilities of the RPC Arranger patte
5 include the following:
parameters MPUtl) : input() parameters
marstal| | 1| [emersa It eliminates the need for interface definition
= = (II_DL) files and tools, used to g_enerate
ki service. client/server stubs. Instead both client and
: e server parts of the application use the same
parameters ouputt) | [[| output) parameters code (stub) to implement the actual RPC.
urmarshal marshal
T TET T e It gives a developer more control over 'Fhe
: marshaling process. The marshaling
methods for all built-in data types as well as
Figure 4. Collabor ations between the RPC Arranger objects. other necessary methods of the
 The client invokes a specific remote procedure communication agent could be shared
by using a method of the appropriate service between different applications. The
group @AppGroupAgentClient class). marshaling methods for application-specific

data types should be based on methods
provided by the communication agent. The
application-specific marshaling methods are
written by a developer of the server

» The ID of this call is sent to the server as a
request message. In the server, a top-level
dispatcher is awaiting incoming messages,
and will receive the request ID, identify the

! application.
proper service groupAppGroupAgentServer
class) and invoke the low level dispatcher of * It adds certain overhead when implementing
the group. new services, as described in the

.) .) Implementation section.
* The group dispatcher, defined in the service P

distributor GerviceDistributor class) and * It makes using new services easy. To make use
implemented in the service agent object of of a new available service procedure a client
the server AppGroupAgentServer class) will application should be recompiled and linked
invoke the correct procedure. with the new/updated service agent class
code.

e From this point, both client and server run
exactly the same common service method 10. IMPLEMENTATION
(stub), which is implemented in their mutual To make new service procedure available a
base class AppGroupAgent class). This developer should go through the following steps:

method transfers parameters by using

marshaling functions of two kinds. For the 1. Implement common part

group-specific data types, marshaling is e Add two methods (new common

implemented in the base service agent class procedure stub and new service
(AppGroupAgent class). For built-in data function definition) to existing base

types, marshaling is defined in the proper service agent class (or add new base
communication agent objectCgmmAgent service agent class);

class), which is accessed through the
common base classServiceAgent class) .

e Add marshaling methods for
service-specific ~ data
necessary);

new
types (if

accompanied by all service specific request
IDs. In our sample theegistrar object is
implemented as th&TL - like [10] Map
class instance.

* In our sample we use ti8ocket+Hibrary [9],

which encapsulates the standard socket
library APIl. TheSocket class in our sample
inherits from the standardbostream class
and uses the buffer atreambuf. Thus, we
can write to the socket by using the '<<'
operator, and read from the socket by using
the '>>' operator. Data is sent over the
socket implicitly (when the buffer is full) or
explicitly by calling sync(). End of input
data stream is sensed when the input buffer
is empty. OurSocket class definition is very
similar to theiosockstream in the Socket++
library.

e The registration of available service groups

could be done after the communication
channel has been established. Each service
group is associated with one service agent
object. To register particular service group
its service agent object (presented as a
pointer to the ServiceDistributor object)
should be added to the registrar object,

2. Implement server part
. Add one trivial method (new service » If certain application-specific dgta types are
procedure) to existing service agent used by_ more th_an one service group, the
class (or add new service agent class, marshaling _functlons for these data types
derived from the appropriate base could be defined separately.
service agent class); « To avoid multiple inheritance in the service
* Implement the actual service function agent (_)bject (server) one cc_)uld use the
in the service agent class; ._alternatlve structure of this object, depicted
in Figure 5.
e Add new entries to the high level and
low level dispatchers. ServiceDistributor
3. Implement client part
* Add one trivial method (new service AidigpatchQ
procedure) to existing service agent A
class (or add new service agent class,
derived from the appropriate base
service agent class).
. . . AppGroupDistributor AppGroupAgent
The following are further implementation
details: T dispatch A
» Each application initializes a communication
channel via TCP/IP. The most useful
method is via sockets, but the pattern does
not prefer any mechanism as long as it can
be considered a reliable stream of bytes in AppGroupAgentServer
both directions.

Figure 5. Alternative structur e of the service agent object in
server application.

11. SAMPLE CODE AND USAGE

11.1 Sample Application

Our example is of a simple calculator. The calculator can
perform the four basic arithmetic operations: '+, "*;

and /' on integer operands. We define the arithmetic
operations as a type:

typedef char Operator;

#define PLUS '+'

#define MINUS '-'

#define MULT ™'
#define DIV /'

The calculate() function returns the result of a given
expression:

int calculate(int a, Operator op, int b)

switch (op) {
case PLUS: return a + b;
case MINUS: return a - b;
case MULT: return a* b;

case DIV: returna/b;
default: /I should throw an
exception

}
}

The application is as simple as:

main()

int a, b;
Operator op;

cin >>a >>op >> b;

cout << calculate(a, op, b) << endl;

}

p

p

p

String clientAuthentication;
ublic: // base methods
CommAgent(Socket &sock) : socket(sock) {}
virtual ~CommAgent() {}
ublic: // abstract methods
virtual void input(char &character) = 0;
virtual void input(int &number) = 0;
virtual void input(String &string) = 0;
virtual boolean endOfInput() = 0;
virtual void output(char &character) = 0;
virtual void output(int &number) = 0;
virtual void output(String &string) = 0;
virtual boolean endOfOutput() = 0;
ublic: // public methods
ReturnCode connect() {
/I client: send; server: receive
input(clientAuthentication);
/I check if the input was successful

To adapt this application to a client/server model, the if (lendOfinput())
client will invoke the calculate() function via an RRE return COMMUNICATION_FAILURE;

. - ReturnCode response;
the server, after passing to it the operands and operstor /] server: check client authentication

input parameters. The result will be returned as an output jf (isvalid())
parameter. response = SUCCESS;

else
11.2 The RPC Staff response = CONNECTION_REFUSED;
Two enumerated types are defin@&kquest 1Ds that are /I server: send, client: receive
sent from the client to the server aReturn Codes that

output(response);
return endOfOutput() ? serverResponse :
are sent from the server to the client.

COMMUNICATION_FAILURE;

enum Requestld {
NO_REQUEST =0,
Il Here the application adds more RPC // client: send: server: receive
Il'ids (e.g. CALCULATE for our example) input(requestld);

h return endOflnput() ? SUCCESS

COMMUNICATION_FAILURE;
enum ReturnCode { }

SUCCESS =0, b
INTERNAL_FAILURE,
COMMUNICATION_FAILURE,

CONNECTION_REFUSED, The Communication Agent Client CommAgentClient
INVALID_REQUEST,

FUNCTION FAILED implements the actual input and output methods for the
% - built-in data types. In the client, input means sendingd, a

The Communication Agent CommAgent is an abstract ~ Output means receiving.
base class that defines the input and output methodsefor thclass CommAgentClient : public CommAgent {
built-in data types (which have different implementasion public: // base methods

in the client and server) as pure virtual functions eHere CommAgentClient(Socket &socket)
| . h int d stri but CommAgent(socket) {}
are only using characters, integers and strings, but more”_ComwagentClient()

input/output functions can be defined for other built-in public: // marshaling methods

types or user-defined types. The Communication Agent void input(char &character) { // send
also defines the first two steps in the client/sepretocol: socket << character; }

connect and request. TheValid() method is used to void input(int &number) { I'send

. . . S . : socket << number; }
identify the client application. It validates that tbleent void input(String &string) { // send

and server were indeed compiled with the same shared socket << string; }

stub code. This method is implemented in the server only ~Poolean endOfinput() { II'flush
return socket.sync(); }

class CommAgent { void output(char &character) { I
private: // private methods receive

virtual boolean isValid() const { socket >> character; }

return True; } void output(int &number) { 1l

protected: // protected attributes receive

Socket &socket; socket >> number; }
public: // authentication string

ReturnCode request(Requestld &requestid)

void output(String &string) { 1
receive
socket >> string; }
boolean endOfOutput() {
return socket.good(); }

h

/I check

The Communication Agent Server CommAgentServer

class ServiceAgent {
protected: // attributes
CommAgent &commAgent;
public: // base methods
ServiceAgent(CommAgent
commAgent(aCommAgent) {}
virtual ~ServiceAgent() {}

I3

&aCommAgent)

implements the actual input and output methods for the

built-in types. In the server, input means receivingd an
output means sending. It also implements if\éalid()
method that checks the authentication of the client.

class CommAgentServer : public CommAgent {
private: // private methods

boolean isValid() const {

/I check the client authentication

public: // base methods
CommAgentServer(Socket
CommAgent(socket) {}
~CommAgentServer() {}
public: // marshaling methods
void input(char &character) {
receive
socket >> character; }
void input(int &number) {
receive
socket >> number; }
void input(String &string) {
receive
socket >> string; }
boolean endOflnput() {
return socket.good(); }
void output(char &character) { // send
socket << character; }

&socket)

1

1

1

/I check

void output(int &number) { /I send
socket << number; }

void output(String &string) { // send
socket << string; }

boolean endOfOutput() { /I flush

return socket.sync(); }

h

The Service Distributor ServiceDistributor is an abstract
class that defines the pure virtual functidispatch()
which serves as the low level dispatcher. A pointearto
instance of this class will be used for the registratf
services.
class ServiceDistributor {
public: // base methods

ServiceDistributor() {}

virtual ~ServiceDistributor() {}
public: // abstract low level dispatcher

virtual boolean dispatch(Requestld
requestld) = 0;

1

The Service Agent ServiceAgent is the base class for all
service agent classes. It holds a reference to
Communication Agent.

11.3 RPC Version of the Application
The Calculator Agent is the base clas®\gpGroupAgent
class) for the client and server service-specifissga. It
implements thecalc RPC() method - the common
procedure for both client and server. Thac RPC()
method takes three input arguments (two operands and an
operator) and returns the result as an output argument.
This method defines the protocol of passing arguments
between the client and server. Tth@Calculate() method
performs the actual calculation and is implemented only i
the server by calling our originahlculate() function.
class CalcAgent : public ServiceAgent {
private: // dummy service functions
virtual ReturnCode doCalculate(int &a,
Operator &op, int &b,

Int
&result) {

return SUCCESS; }
protected: // common RPC methods

virtual ReturnCode calc_RPC(int &a,
Operator &op, int &b,

int &result)
{

/I This is the common RPC stub
commAgent.input(a);
commAgent.input(op);
commAgent.input(b);
if (lcommAgent.endOfinput())
return COMMUNICATION_FAILURE;
/I The following call does nothing in
/I the client, but in the server it
/I performs the actual calculation.
ReturnCode rc = doCalculate(a, op, b,
result);
commAgent.output(rc);
/I needed to verify success of the
/I function itself.
if (rc == SUCCESS)
commAgent.output(result);
return commAgent.endOfOutput()
SUCCESS : COMMUNICATION_FAILURE;

?

public: // base methods
CalcAgent(CommAgent
ServiceAgent(commAgent) {}

h

&commAgent)

The Calculator Agent Client overrides thecalc RPC()
function of the base class. First, a request is seilhe
server and then the the baséc RPC() function is called.

a
class CalcAgentClient : public CalcAgent {

public: // base methods a connection to the server. It also provides an fiaterto

CalcAgentClient(CommAgentClient : ;
&commAgent) - CalcAgent(commAgent) {} thecalc_RPC() function of theCalculator Agent Client.

public: // service RPC methods class Client {
ReturnCode calc_RPC(int &a, Operator &op, private: // attributes
int &b, int &result) { Socket socket;
Requestld reqld = CALCULATE; CommAgentClient *pCommAgent;
/I send request public: // base methods
ReturnCode rc = Client() {}
commAgent.request(reqld); ~Client() {
if (rc == SUCCESS) socket.close(); }
return CalcAgent::calc_RPC(a, op, b, public: // public interface
result); ReturnCode connect(const char *hostName,
else int portNumber) {
return rc; if (!socket.connect(hostName,
} portNumber))
b return COMMUNICATION_FAILURE;
pCommAgent = new
) CommAgentClient(socket);
The Calculator Agent Server implements the /I The client should initialize the
doCalculate() function. It also implements the low level /I clientAuthentication string in the

dispatcher that selects the method to invoke. ThepC%%TnAgggtmm Agent->connect();
calculate() function with no arguments is defined because P g ’
the server should allocate parameters before callisg th void disconnect() {

calc_RPC() function. socket.shutdown();
delete pCommAgent;

class CalcAgentServer : public }
ServiceDistributor, public: // service methods
_ public CalcAgent { ReturnCode calculate(int &a, Operator
private: // actual service functions &op, int &b,
ReturnCode doCalculate(a, op, b, result) int &result) {
CalcAgentClient calcAgent(*pCommAgent);
result = calculate(a, op, b); return calcAgent.calc RPC(a, op, b,
return SUCCESS; resu|t);
}
private: // methods to be invoked by };}
dispatcher
ReturnCode calculate() {
gt a, bt result; The Server class defines the methods of the server
reFt’Errr? OrC(;l?(;Agentiicam_RPC(a, op, b, application. It contains the top-level dispatcher Seécts
result); the agent class to service the request and calls tire lo
level dispatcher. ThéandleRequest() method receives a
public: // base methods requestiD from the client and calls the top level
CalcAgentServer(CommAgentServer dispatcher
&commAgent) : CalcAgent(commAgent) {} ’
public: // public interface class Server {
boolean dispatch(Requestld requestld) { private: // attributes
/I low level dispatcher Socket socket;
ReturnCode rc = INVALID_REQUEST; CommAgentServer *pCommAgent;
switch(requestld) { Map< Requestld, ServiceDistributor * >
case CALCULATE: registrar;
rc = calculate(); private: // private interface
break; /I service registration
default: void registerServices () {
break; registrar.insert (CALCULATE, new
} CalculatorAgentServer(*pCommAgent));
return (rc == SUCCESS) ? True : False;
} /I top level dispatcher
k boolean dispatch(Requestld reqld) {
ServiceDistributor *pAgent =

))) registrar.find (reqld);
The Client class defines the methods of the client if (pAgent != NULL)
application. Theconnect() method is used for establishing :retum pAgent->dispatch(reqld);
else
return False;

public: // base methods
Server(int portNumber) {
socket.bind(portNumber); }
~Server() {
socket.close(); }
public: // public interface
void listen() {
socket.listen(); }
boolean connect() {
Socket sock(socket.accept());
pCommAgent = new CommAgentServer(sock);
registerServices();
return (pCommAgent->connect() ==
SUCCESS) ? True : False;

void disconnect() {
registrar.erase(registrar.begin(),
registrar.end());
delete pCommAgent;

boolean handleRequest() {
Requestld requestld = NO_REQUEST;
if (pCommAgent->request(requestld) !=
SUCCESS) // receive a request
return False;
return dispatch(requestld);

Client code example:

Client client;
client.connect("hadar.haifa.ibm.com”,
1997);

int a, b;

Operator op;

cin >>a>>op >>b;

int result;

client.calculate(a, op, b, result);

cout << result << endl;

based image viewers with an access to the centrakK-UNI
based system archive. The solution alleviated the teed
implement security and data access on the Windows
platform based on the implementation already available
the UNIX platform. The server part was implemented as
an UNIX-based application, while the client part - as a
Windows-based API. Low level marshaling interface was
implemented by using the Socket++ library [9].

13. RELATED PATTERNS

The RPC Arranger has something in common with a few
classical design patterns. The structure of the
(ServiceAgent, CommAgent, AppGroupAgent) triad
reminds the structural Bridge pattern [8]. The construction
of the common ‘stub’ procedure in the ServiceAgent and
its different implementations in the ServiceAgentServe
and ServiceAgentClient remind the behavioral Template
Method pattern [8]. The Dispatcher pattern [15] may be
used to implement the dispatcher component of the RPC
Arranger pattern.

The major distinction of the RPC Arranger patternhist t

it combines several classical structural and behaviora
ideas to form a specialized design pattern for a wide clas
of distributed systems.

14. REFERENCES

[1] A.D. Birrell, B.J. Nelson, "Implementing Remote
Procedure Calls", ACM Trans. on Computer Systems,
vol.2(1), pp.39-59, February 1984.

[2] W. Richard Stevens, "UNIX Network Programming",
Prentice Hall, 1990, ISBN 0-13-949876-1.

[3] Open Software Foundation, "OSF DCE Application
Development Guide", Prentice Hall, 1993, ISBN 0-13-
643826-1.

Server code example (this server handles only one request peja] Object Management Group, "The Common Object

connection):

Server server(1997);
while(1) {
server.listen();
server.connect();
server.handleRequest();
server.disconnect();

}

12. KNOWN USES

Request Broker: Architecture and Specifications”,
Object Management Group, Inc., edition 2.0, July
1995.

[5] Douglas C. Schmidt'ACE: an Object-Oriented
Framework for Developing Distributed Applications”,
Proc. of the 6-th USENIX C++ Technical Conference,
Cambridge, Massachusets, USENIX Association, April
1994.

[6] J.Dilley, "OODCE: A C++ Framework for the OSF
Distributed Computing Environment", Proc. of the

This methodology was first presented at the Eighth lisrae
Conference on Computer Systems and Software
Engineering [11].

The RPC Arranger design pattern was assumed as a basis
for the implementation of the client/server solutianthe [7]
large-scale hospital Picture Archive and Communication
System (PACS) [12]. The primary purpose of the
client/server solution was to provide remote Windows-

USENIX Technical Conference on UNIX and
Advanced Computing Systems, New Orleans,
Louisiana, January 16-20, 1995, USENIX Association,
Berkeley, CA, USA, ISBN 1-880446-67-7.

I. Gold, U. Shani, "Wrapping DCE/OSF Client/Server
Applications”, Proc. of the USENIX UNIX
Applications Development Symposium, Toronto,
Canada, April 25-28, 1994.

[8] Erich Gamma, Richard Helm, Ralph Johnson, John M.
Vlissides, Design Patterns: Elements of Reusable
Object Oriented SoftwareAddison-Wesley
Professional Computing Series, 1995, ISBN: 0-201-
63361-2.

[9] Gnanasekaran SwaminathaB++ Socket Library
(Socket++) copyright bySAIC/ASSET, 1996.

[10] David R. Musser, Atul SainiSTL Tutorial and
Reference Guide: C++ Programming with the Sandard
Template Library, Addison-Wesley Professional
Computing Series, 1996, ISBN: 0-201-63398-1.

[11] Y. Gidron, L. Kozakov, U. Shani, "An RPC-Based
Methodology for Client/Server Application
Development in C++", Proc. of the 8-th Israeli
Conference on Computer Systems and Software
Engineering, pp.39-46, Herzliya, Israel, June 18-19,
1997.

[12] Y. Gidron, L. Kozakov, E. Salant, U. Shani,
"Deploying a Large-Scale Hospital-Wide PACS", to be
published in the Proc. of the SPIE Conference on
Medical Imaging, vol.3339, paper 58, San Diego,
California, USA, February 21-27, 1998.

[13] U. Shani, et. al., "C Programs Partitioning for
Heterogeneous Machines", Proc of the 6-th Israeli
Conference on Computer Systems and Software
Engineering, pp. 136-145, June 2-3, Israel, 1992.

[14] P. Heller and S. Roberts, "Java 1.1 Developer's
Handbook", Sybex, 1997, ISBN 0-7821-1919-0.

[15] Christian Thilmany and Todd McKinney, “BizTalk
Implement Design Patterns for Business Rules with
Orchestrated Designer,” From the October 2001 issue
of MSDN Magazine.
http://msdn.microsoft.com/msdnmag/issues/01/10/BizT
alk/default.aspx

[16] Anat Hashavit, Sigal Ishay and Vladimir Lazebny, "An
RPC-Based Methodology for Client/Server Application
Development in Java,” DSL Lab, Computer Science
department, Technion — Israel Institute of Technology,
Haifa, Israel. Final project report in:
http://dsl.cs.technion.ac.il/completed_projects/rpc-

pattern/index.htm2004.

