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ABSTRACT 
Remote Procedure Call (RPC) is a commonly used 
mechanism for synchronous communicating client/server 
applications. RPC implements a tightly synchronized 
client/server interaction that is analogous to the regular 
procedure call in non-distributed applications. The general 
underlying principle common to all RPC-based tools and 
standards is that both client and server share a common 
interface definition file (e.g., IDL). Automatic tools 
process the interface definition file and generate source 
files that, when compiled with the application, ensure 
client/server run-time compliancy. With DCE, CORBA 
and Web Services (SOAP), client and server do not have to 
be implemented in the same language, although the most 
common language used in these application had initially 
been C, then C++, and later Java and C#. With the modern 
languages, such as Java, the built-in Remote Method 
Invocation (RMI) method provides a very easy solution for 
developing distributed applications. 

We introduce a new design pattern for single-language 
RPC-based object-oriented client/server applications that 
offers a solution based on sharing of base classes, in place 
of an interface definition file. This pattern provides the 
developer with full control on how client and server 
interact, while releasing her from the dependence on, and 
need to learn complex RPC infrastructures, tools and 
standards. We implemented this pattern in C++ to provide 
a convenient and safe solution to a real problem. An 
implementation in Java was done too. 

The pattern is presented using the GOF pattern template 
[1]. 

 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Network]: distributed 
Systems – client/server, Distributed applications; D.1.3  
[Programming Techniques]: Concurrent Programming – 
Distributed Programming; 

General Terms 
Design Pattern, Remote Procedure Call, Synchronous 
Communication 

Keywords 
RPC  

1. RPC ARRANGER SCOPE 
Distributed client/server applications. Remote Procedure 
Call (RPC) mechanism implementation. 

2. INTENT 
Encapsulate synchronous RPC mechanism for both client 
and server parts in a distributed application providing 
direct control of the process to the developer rather than 
hiding it within third-party services and component. 
Ensure seamless interaction between client and server by 
sharing of the same class declarations. Simplify writing 
reliable RPC-based applications without requiring the use 
of external tools.  

3. FORCES 
• Synchronized communication between client and 

server must also be maintained in full synchrony 
between client and server code 

• Developer of RPC needs to have full control over 
progress of RPC at execution time. 

• Need full control on how RPC passes parameters 
between client and serve, how they are coded, and 
how much of the data is passed. 

• External RPC tool imposes dependency on the 
tool, require to learn the technology, and 
dependency on its revisions. 

• External RPC tools may require the use of an 
additional mediator broker server to facilitate the 
client/server interaction. 



4. MOTIVATION 
Remote Procedure Call (RPC) is a widely used paradigm 
and a classic method for developing client/server 
applications [2][3]. The essence of RPC is that clients and 
servers are tightly synchronized and exchange information 
and control analogously to procedure calls in a regular 
non-distributed application [1]. RPC is implemented 
usually via tools provided in products that are generally 
also based on international standards for development of 
such applications [4][5][6][7]. The underlying principle of 
operation of these tools is that the compliance between the 
client and server comes from a common interface 
definition file, which defines the functions, their 
parameters, and their types. Interface files are written in 
an Interface Definition Language (IDL). A stub compiler 
generates stub files from IDL file. The stubs are compiled 
and linked with the client and server application code. 
Thus the same source interface definition is shared 
between applications to ensure workable protocol and 
seamless interaction.  

The stages in an RPC are depicted in Figure 1. The remote 
procedure call mechanism is encapsulated in stubs, which 
consist of source and header files. The applications need to 
compile their code using stub header files and link with 
the compiled stubs. In addition, the applications will link 
with the runtime support of the RPC package. Input and 
output parameters are encoded and streamed via the 
communication protocol in a process called marshaling. 
Marshaling ensures that parameters are correctly 
transferred between different machines and processes. For 
that reason, the IDL file defines precisely the semantics of 
built-in and compound types so that the exact byte 
ordering (little/big endian) and number of bytes per data 
element is clearly and unambiguously specified. 

 

 

 
Figure 1. RPC Mechanism. Client application code invokes a 
regular procedure call in the client stub, which marshals 
input and output parameters via a communication layer. 
Server stub plays the partner role, which invokes the actual 
service routine in the server application. 

This pattern comes to alleviate several issues; Firstly, some 
of the tools providing access to classical RPC mechanism 
are quite complex, and depend on special tools and run-
time libraries. Yet, that is not always true, specifically with 
modern RPC such as the Java RMI [14]. The later is pretty 
easy to use. Secondly, all RPC tools, including Java RMI, 
leave very little control to the programmer as to how the 
interaction between client and server are done. In fact, the 
“protocol” between the parties is totally sealed behind the 
limited freedom of defining the parameters of the RPC and 
their direction – whether input to the server, or a return 
from it. More control of the application over the RPC 
execution may serve additional purposes. For instance, 
RPC operates on independent calls with no sense of a state 
in the server that is preserved across calls. This limitation 
is not necessarily true in all RPC systems, e.g. program 
partitioning [13] and in some sense also Java RMI [14] 
can preserve state.  

The RPC Arranger design pattern comes to fill this niche. 
The main idea of the pattern is to share the same stub code 
between client and server applications by the use of a 
common base class, instead of generating the stubs from 
the same interface definition file. Within that process, 
programmer can also explicitly control how the RPC call 
protocol is implemented down to the most primitive data 
element exchanged between client and server. 

The RPC Arranger is described and demonstrated using 
the C++ language. A Java version of this design has been 



implemented in order to evaluate efficiency comparing this 
design and the use of Java RMI [16]. 

The RPC Arranger pattern borrows its structure from the 
known Bridge and Template design patterns [8], and the 
Dispatcher design pattern [15]. To clarify the mechanism 
of the RPC Arranger, consider a fragment of a simple 
client/server application, depicted in Figure 2A (object 
diagram) and Figure 2B (class diagram). This fragment 
presents a remote login operation. 

 
Figure 2A. Fragment of RPC based client/server application 
(object diagram). 

 
Figure 2B. Fragment of RPC based client/server application 
(class diagram).  

The client application issues the RPC to the server 
application, providing user's name and password as string 
parameters. The server application checks the user's 
attributes and returns boolean parameter (answer) to the 
client application.  

The objects in this fragment interact in the following way: 

• The client calls the loginUser() method of its 
ServiceAgentClient object. 

• This method sends appropriate request to the 
server to identify the required service and 
then calls the loginUser() method of its base 
ServiceAgent class, which performs the 
client stub of the RPC. 

• The server identifies the request and calls the 
loginUser() method of its 
ServiceAgentServer object. 

• This method allocates space for the input 
parameters and then calls the loginUser() 
method of its base ServiceAgent class, which 
performs the server stub of the RPC. 

• The loginUser() method of the ServiceAgent 
class (wich comprises the common stub 
code) calls the input() methods of the 
CommAgent class to transfer input 
parameters, then it gets the output parameter 
value, calling the checkUser() method (the 
actual service function), and calls the 
output() method of the CommAgent class to 
transfer the output parameter. 

The input() method in the client object sends parameters, 
while in the server object it receives parameters. The 
output() method in the client object receives parameters, 
while in the server object it sends parameters. The 
checkUser() method is implemented in the server object 
only to perform actual user authentication.  

The key objects in this fragment are the service and 
communication agents.  

Base communication agent class defines marshaling 
methods for built-in data types. These methods are 
implemented differently in the client and server 
communication agent objects (in the client input() means 
sending and output() means receiving, while in the server 
input() means receiving and output() means sending).  

One service agent object is required for each of the client 
and server to implement the RPC (loginUser()). The 
common base class for these objects implements the stub 
for this procedure. It uses marshaling (input()/output()) 
methods, implemented in an appropriate communication 
agent object, and calls the actual service function 
(checkUser()), which completes the task (user 
authentication). The actual service function is 
implemented in the server object only.  

Note that the loginUser() function is an instance of the 
Template Method [8] design pattern - it is composed of 
functions, that are defined in abstact classes and 
implemented differently in concrete classes.  



By sharing of the same base class between client and 
server service objects, the same common code (stub) will 
run on both sides, ensuring synchronous interaction 
between client and server parts of the application.  

In real distributed applications each semantically related 
group of services requires one set of service agent objects 
as follows:  

• One common base class, which implements 
common stubs 

• One object for each client and server, whose 
class is derived form this common base 
class.  

Each RPC will be identified in two levels: 

• High level dispatcher - to resolve the group 
(class) of services (service agent object) 

• Low level dispatcher - to resolve the specific 
procedure in the service group 

High level dispatcher is implemented in the server 
application itself. The service-specific low level 
dispatchers are implemented in each service agent object 
of the server.  

5. APPLICABILITY 
The pattern could be useful for developing RPC-based 
object-oriented distributed applications, when both client 
and server parts are written in the same programming 
language and use the same underlying communication 
interface. Depending on the low-level marshaling 
implementation, it may be possible to walk also between 
heterogeneous machines.  

6. STRUCTURE 

 

Figure 3. Class diagram of the RPC Arranger design 
pattern.  

7. PARTICIPANTS 
7.1 Abstract level 
7.1.1 CommAgent 
Abstract class. Defines the marshaling interface 
(input/output methods) for built-in data types; it also 
implements all methods needed for the RPC initiation; 

7.1.2 ServiceDistributor 
Abstract class. Defines an interface for the low level 
dispatcher; a reference to an instance of this class could be 
used for registration of service groups in the high level 
dispatcher (not shown here); 

7.1.3 ServiceAgent  
Base class for all application-specific service agent classes; 
it provides an access to the communication agent object. 

7.2 Application level 
7.2.1 CommAgentServer 
Derived from the CommAgent class; it implements the 
server side of the marshaling interface (input/output 
methods) for built-in data types (in the server input means 
receiving and output means sending); 

7.2.2 CommAgentClient 
Derived from the CommAgent class; it implements the 
client side of the marshaling interface (input/output 
methods) for built-in data types (in the client input means 
sending and output means receiving); 

7.2.3 AppGroupAgent 
Base service agent class for a particular group of services, 
derived from the ServiceAgent class; it implements the 
application-specific group of common procedures (stubs) 
for both client and server; it may also implement the 
common marshaling interface (input/output methods) for 
the application-specific group of data types; it defines the 
application-specific group of actual service functions, as 
well; 

7.2.4 AppGroupAgentServer  
Service agent class for a particular group of services, 
provided in the server, derived from both the 
ServiceDistributor and the AppGroupAgent classes; it 
implements the low-level dispatcher as well as the 
application-specific group of actual service functions for 
the server application; 

7.2.5 AppGroupAgentClient 
Service agent class for a particular group of services, used 
in the client, derived from the AppGroupAgent class; it 
overrides the base procedures (stubs), defined in its base 



class, so that it sends the service specific request before the 
base procedure is called. 

8. COLLABORATIONS 

 
Figure 4. Collaborations between the RPC Arranger objects. 

• The client invokes a specific remote procedure 
by using a method of the appropriate service 
group (AppGroupAgentClient class). 

• The ID of this call is sent to the server as a 
request message. In the server, a top-level 
dispatcher is awaiting incoming messages, 
and will receive the request ID, identify the 
proper service group (AppGroupAgentServer 
class) and invoke the low level dispatcher of 
the group. 

• The group dispatcher, defined in the service 
distributor (ServiceDistributor class) and 
implemented in the service agent object of 
the server (AppGroupAgentServer class) will 
invoke the correct procedure. 

• From this point, both client and server run 
exactly the same common service method 
(stub), which is implemented in their mutual 
base class (AppGroupAgent class). This 
method transfers parameters by using 
marshaling functions of two kinds. For the 
group-specific data types, marshaling is 
implemented in the base service agent class 
(AppGroupAgent class). For built-in data 
types, marshaling is defined in the proper 
communication agent object (CommAgent 
class), which is accessed through the 
common base class (ServiceAgent class) . 

Note, that the latter functions are 
implemented differently in the client and 
server communication agent objects 
(CommAgentClient/CommAgentServer 
classes). To accomplish the task, the 
common service method calls appropriate 
service functions, defined in the base service 
agent class (AppGroupAgent class) and 
implemented in the server object 
(AppGroupAgentServer class). 

9. CONSEQUENCES 
The benefits and liabilities of the RPC Arranger pattern 
include the following:  

• It eliminates the need for interface definition 
(IDL) files and tools, used to generate 
client/server stubs. Instead both client and 
server parts of the application use the same 
code (stub) to implement the actual RPC. 

• It gives a developer more control over the 
marshaling process. The marshaling 
methods for all built-in data types as well as 
other necessary methods of the 
communication agent could be shared 
between different applications. The 
marshaling methods for application-specific 
data types should be based on methods 
provided by the communication agent. The 
application-specific marshaling methods are 
written by a developer of the server 
application. 

• It adds certain overhead when implementing 
new services, as described in the 
Implementation section. 

• It makes using new services easy. To make use 
of a new available service procedure a client 
application should be recompiled and linked 
with the new/updated service agent class 
code. 

10. IMPLEMENTATION 
To make new service procedure available a 
developer should go through the following steps: 

1. Implement common part  

• Add two methods (new common 
procedure stub and new service 
function definition) to existing base 
service agent class (or add new base 
service agent class); 



• Add marshaling methods for new 
service-specific data types (if 
necessary); 

2. Implement server part  

• Add one trivial method (new service 
procedure) to existing service agent 
class (or add new service agent class, 
derived from the appropriate base 
service agent class); 

• Implement the actual service function 
in the service agent class; 

• Add new entries to the high level and 
low level dispatchers. 

3. Implement client part  

• Add one trivial method (new service 
procedure) to existing service agent 
class (or add new service agent class, 
derived from the appropriate base 
service agent class). 

The following are further implementation 
details: 

• Each application initializes a communication 
channel via TCP/IP. The most useful 
method is via sockets, but the pattern does 
not prefer any mechanism as long as it can 
be considered a reliable stream of bytes in 
both directions. 

• In our sample we use the Socket++ library [9], 
which encapsulates the standard socket 
library API. The Socket class in our sample 
inherits from the standard iostream class 
and uses the buffer of streambuf. Thus, we 
can write to the socket by using the '<<' 
operator, and read from the socket by using 
the '>>' operator. Data is sent over the 
socket implicitly (when the buffer is full) or 
explicitly by calling sync(). End of input 
data stream is sensed when the input buffer 
is empty. Our Socket class definition is very 
similar to the iosockstream in the Socket++ 
library. 

• The registration of available service groups 
could be done after the communication 
channel has been established. Each service 
group is associated with one service agent 
object. To register particular service group 
its service agent object (presented as a 
pointer to the ServiceDistributor object) 
should be added to the registrar object, 

accompanied by all service specific request 
IDs. In our sample the registrar object is 
implemented as the STL - like [10] Map 
class instance. 

• If certain application-specific data types are 
used by more than one service group, the 
marshaling functions for these data types 
could be defined separately. 

• To avoid multiple inheritance in the service 
agent object (server) one could use the 
alternative structure of this object, depicted 
in Figure 5. 

 
Figure 5. Alternative structure of the service agent object in 
server application. 

11. SAMPLE CODE AND USAGE 
11.1 Sample Application 
Our example is of a simple calculator. The calculator can 
perform the four basic arithmetic operations: '+', '-', '*', 
and '/' on integer operands. We define the arithmetic 
operations as a type: 

typedef char Operator; 
#define PLUS  '+' 
#define MINUS '-' 
#define MULT  '*' 
#define DIV   '/' 
 

The calculate() function returns the result of a given 
expression:  

int calculate(int a, Operator op, int b) 
{ 
  switch (op) { 
    case PLUS:  return a + b; 
    case MINUS: return a - b; 
    case MULT:  return a * b; 



    case DIV:   return a / b; 
    default:    // should throw an 
exception 
  } 
} 
 

The application is as simple as:  

main() 
{ 
  int a, b; 
  Operator op; 
 
  cin >> a >> op >> b; 
 
  cout << calculate(a, op, b) << endl; 
} 
To adapt this application to a client/server model, the 
client will invoke the calculate() function via an RPC to 
the server, after passing to it the operands and operator as 
input parameters. The result will be returned as an output 
parameter.  

11.2 The RPC Staff 
Two enumerated types are defined: Request IDs that are 
sent from the client to the server and Return Codes that 
are sent from the server to the client. 

enum RequestId { 
  NO_REQUEST = 0, 
  // Here the application adds more RPC  
  // ids (e.g. CALCULATE for our example) 
}; 
 
enum ReturnCode { 
  SUCCESS = 0, 
  INTERNAL_FAILURE, 
  COMMUNICATION_FAILURE, 
  CONNECTION_REFUSED, 
  INVALID_REQUEST, 
  FUNCTION_FAILED 
}; 

The Communication Agent CommAgent is an abstract 
base class that defines the input and output methods for the 
built-in data types (which have different implementations 
in the client and server) as pure virtual functions. Here, we 
are only using characters, integers and strings, but more 
input/output functions can be defined for other built-in 
types or user-defined types. The Communication Agent 
also defines the first two steps in the client/server protocol: 
connect and request. The isValid() method is used to 
identify the client application. It validates that the client 
and server were indeed compiled with the same shared 
stub code. This method is implemented in the server only.  

class CommAgent { 
private: // private methods 
  virtual boolean isValid() const { 
    return True; } 
protected: // protected attributes 
  Socket &socket; 
public: // authentication string 

  String clientAuthentication; 
public: // base methods 
  CommAgent(Socket &sock) : socket(sock) {} 
  virtual ~CommAgent() {} 
public: // abstract methods 
  virtual void input(char &character) = 0; 
  virtual void input(int &number) = 0; 
  virtual void input(String &string) = 0; 
  virtual boolean endOfInput() = 0; 
  virtual void output(char &character) = 0; 
  virtual void output(int &number) = 0; 
  virtual void output(String &string) = 0; 
  virtual boolean endOfOutput() = 0; 
public: // public methods 
  ReturnCode connect() { 
    // client: send; server: receive 
    input(clientAuthentication); 
    // check if the input was successful 
    if (!endOfInput()) 
      return COMMUNICATION_FAILURE; 
    ReturnCode response; 
    // server: check client authentication 
    if (isValid()) 
      response = SUCCESS; 
    else 
      response = CONNECTION_REFUSED; 
    // server: send; client: receive 
    output(response); 
    return endOfOutput() ? serverResponse : 
COMMUNICATION_FAILURE; 
  } 
  ReturnCode request(RequestId &requestId) 
{ 
    // client: send; server: receive 
    input(requestId); 
    return endOfInput() ? SUCCESS : 
COMMUNICATION_FAILURE; 
  } 
};  
 

The Communication Agent Client CommAgentClient 
implements the actual input and output methods for the 
built-in data types. In the client, input means sending, and 
output means receiving.  

class CommAgentClient : public CommAgent { 
public: // base methods 
  CommAgentClient(Socket &socket) : 
CommAgent(socket) {} 
  ~CommAgentClient() {} 
public: // marshaling methods 
  void input(char &character) {    // send 
    socket << character; } 
  void input(int &number) {        // send 
    socket << number; } 
  void input(String &string) {     // send 
    socket << string; } 
  boolean endOfInput() {           // flush 
    return socket.sync(); } 
  void output(char &character) {   // 
receive 
    socket >> character; } 
  void output(int &number) {       // 
receive 
    socket >> number; } 



  void output(String &string) {    // 
receive 
    socket >> string; } 
  boolean endOfOutput() {          // check 
    return socket.good(); } 
}; 
 

The Communication Agent Server CommAgentServer 
implements the actual input and output methods for the 
built-in types. In the server, input means receiving, and 
output means sending. It also implements the isValid() 
method that checks the authentication of the client.  

class CommAgentServer : public CommAgent { 
private: // private methods 
  boolean isValid() const { 
   // check the client authentication 
 } 
public: // base methods 
  CommAgentServer(Socket &socket) : 
CommAgent(socket) {} 
  ~CommAgentServer() {} 
public: // marshaling methods 
  void input(char &character) {    // 
receive 
    socket >> character; } 
  void input(int &number) {        // 
receive 
    socket >> number; } 
  void input(String &string) {     // 
receive 
    socket >> string; } 
  boolean endOfInput() {           // check 
    return socket.good(); } 
  void output(char &character) {   // send 
    socket << character; } 
  void output(int &number) {       // send 
    socket << number; } 
  void output(String &string) {    // send 
    socket << string; } 
  boolean endOfOutput() {          // flush 
    return socket.sync(); } 
}; 
 

The Service Distributor ServiceDistributor is an abstract 
class that defines the pure virtual function dispatch() 
which serves as the low level dispatcher. A pointer to an 
instance of this class will be used for the registration of 
services.  

class ServiceDistributor { 
public: // base methods 
  ServiceDistributor() {} 
  virtual ~ServiceDistributor() {} 
public: // abstract low level dispatcher 
  virtual boolean dispatch(RequestId 
requestId) = 0; 
};  
 

The Service Agent ServiceAgent is the base class for all 
service agent classes. It holds a reference to a 
Communication Agent. 

class ServiceAgent { 
protected: // attributes 
  CommAgent &commAgent; 
public: // base methods 
  ServiceAgent(CommAgent &aCommAgent) : 
commAgent(aCommAgent) {} 
  virtual ~ServiceAgent() {} 
}; 
 

11.3 RPC Version of the Application 
The Calculator Agent is the base class (AppGroupAgent 
class) for the client and server service-specific classes. It 
implements the calc_RPC() method - the common 
procedure for both client and server. The calc_RPC() 
method takes three input arguments (two operands and an 
operator) and returns the result as an output argument. 
This method defines the protocol of passing arguments 
between the client and server. The doCalculate() method 
performs the actual calculation and is implemented only in 
the server by calling our original calculate() function.  

class CalcAgent : public ServiceAgent { 
private: // dummy service functions 
  virtual ReturnCode doCalculate(int &a, 
Operator &op, int &b,  
                                 int 
&result) { 
    return SUCCESS; } 
protected: // common RPC methods 
  virtual ReturnCode calc_RPC(int &a, 
Operator &op, int &b, 
                              int &result) 
{ 
    // This is the common RPC stub 
    commAgent.input(a); 
    commAgent.input(op); 
    commAgent.input(b); 
    if (!commAgent.endOfInput()) 
      return COMMUNICATION_FAILURE; 
    // The following call does nothing in  
    // the client, but in the server it  
    // performs the actual calculation. 
    ReturnCode rc = doCalculate(a, op, b, 
result);  
    commAgent.output(rc);  
    // needed to verify success of the  
    // function itself. 
    if (rc == SUCCESS) 
      commAgent.output(result);  
    return commAgent.endOfOutput() ? 
SUCCESS : COMMUNICATION_FAILURE; 
  }     
public: // base methods 
  CalcAgent(CommAgent &commAgent) : 
ServiceAgent(commAgent) {} 
}; 
 

The Calculator Agent Client overrides the calc_RPC() 
function of the base class. First, a request is sent to the 
server and then the the base calc_RPC() function is called. 

class CalcAgentClient : public CalcAgent { 



public: // base methods 
  CalcAgentClient(CommAgentClient 
&commAgent) : CalcAgent(commAgent) {} 
public: // service RPC methods 
  ReturnCode calc_RPC(int &a, Operator &op, 
int &b, int &result) { 
    RequestId reqId = CALCULATE;              
// send request 
    ReturnCode rc = 
commAgent.request(reqId);  
    if (rc == SUCCESS) 
      return CalcAgent::calc_RPC(a, op, b, 
result); 
    else 
      return rc; 
  } 
}; 
 

The Calculator Agent Server implements the 
doCalculate() function. It also implements the low level 
dispatcher that selects the method to invoke. The 
calculate() function with no arguments is defined because 
the server should allocate parameters before calling the 
calc_RPC() function. 

class CalcAgentServer : public 
ServiceDistributor,  
                        public CalcAgent { 
private: // actual service functions 
  ReturnCode doCalculate(a, op, b, result) 
{ 
    result = calculate(a, op, b);  
    return SUCCESS;  
  }  
private: // methods to be invoked by 
dispatcher 
  ReturnCode calculate() { 
    int a, b, result; 
    Operator op;    
    return CalcAgent::calc_RPC(a, op, b, 
result); 
  } 
public: // base methods 
  CalcAgentServer(CommAgentServer 
&commAgent) : CalcAgent(commAgent) {} 
public: // public interface 
  boolean dispatch(RequestId requestId) {  
    // low level dispatcher 
    ReturnCode rc = INVALID_REQUEST; 
    switch(requestId) { 
    case CALCULATE: 
      rc = calculate(); 
      break; 
    default: 
      break; 
    } 
    return (rc == SUCCESS) ? True : False; 
  } 
}; 
 

The Client class defines the methods of the client 
application. The connect() method is used for establishing 

a connection to the server. It also provides an interface to 
the calc_RPC() function of the Calculator Agent Client. 

class Client { 
private: // attributes 
  Socket socket; 
  CommAgentClient *pCommAgent; 
public: // base methods 
  Client() {} 
  ~Client() { 
    socket.close(); } 
public: // public interface 
  ReturnCode connect(const char *hostName, 
int portNumber) { 
    if (!socket.connect(hostName, 
portNumber)) 
      return COMMUNICATION_FAILURE; 
    pCommAgent = new 
CommAgentClient(socket); 
    // The client should initialize the 
    // clientAuthentication string in the 
pCommAgent 
    return pCommAgent->connect(); 
  } 
  void disconnect() { 
    socket.shutdown(); 
    delete pCommAgent; 
  } 
public: // service methods 
  ReturnCode calculate(int &a, Operator 
&op, int &b, 
                       int &result) { 
    CalcAgentClient calcAgent(*pCommAgent); 
    return calcAgent.calc_RPC(a, op, b, 
result); 
  } 
}; 
 

The Server class defines the methods of the server 
application. It contains the top-level dispatcher that selects 
the agent class to service the request and calls the low-
level dispatcher. The handleRequest() method receives a 
requestID from the client and calls the top level 
dispatcher. 

class Server { 
private: // attributes 
  Socket socket; 
  CommAgentServer *pCommAgent; 
  Map< RequestId, ServiceDistributor * > 
registrar; 
private: // private interface 
  // service registration 
  void registerServices () { 
    registrar.insert (CALCULATE, new 
CalculatorAgentServer(*pCommAgent)); 
  } 
  // top level dispatcher 
  boolean dispatch(RequestId reqId) { 
    ServiceDistributor *pAgent = 
registrar.find (reqId); 
    if (pAgent != NULL) 
      return pAgent->dispatch(reqId); 
    else 
      return False; 



 } 
public: // base methods 
  Server(int portNumber) { 
    socket.bind(portNumber); } 
  ~Server() { 
    socket.close(); } 
public: // public interface 
  void listen() { 
    socket.listen(); } 
  boolean connect() { 
    Socket sock(socket.accept()); 
    pCommAgent = new CommAgentServer(sock); 
    registerServices(); 
    return (pCommAgent->connect() == 
SUCCESS) ? True : False; 
  } 
  void disconnect() { 
    registrar.erase(registrar.begin(), 
registrar.end()); 
    delete pCommAgent; 
  } 
  boolean handleRequest() { 
    RequestId requestId = NO_REQUEST; 
    if (pCommAgent->request(requestId) != 
SUCCESS) // receive a request 
      return False; 
    return dispatch(requestId); 
  } 
}; 
 

Client code example: 

Client client; 
client.connect("hadar.haifa.ibm.com", 
1997); 
int a, b; 
Operator op; 
cin >> a >> op >> b; 
int result; 
client.calculate(a, op, b, result); 
cout << result << endl; 
 

Server code example (this server handles only one request per 
connection): 

Server server(1997); 
while(1) { 
  server.listen(); 
  server.connect(); 
  server.handleRequest(); 
  server.disconnect(); 
} 
 

12. KNOWN USES 
This methodology was first presented at the Eighth Israeli 
Conference on Computer Systems and Software 
Engineering [11].  
The RPC Arranger design pattern was assumed as a basis 
for the implementation of the client/server solution in the 
large-scale hospital Picture Archive and Communication 
System (PACS) [12]. The primary purpose of the 
client/server solution was to provide remote Windows-

based image viewers with an access to the central UNIX-
based system archive. The solution alleviated the need to 
implement security and data access on the Windows 
platform based on the implementation already available on 
the UNIX platform. The server part was implemented as 
an UNIX-based application, while the client part - as a 
Windows-based API. Low level marshaling interface was 
implemented by using the Socket++ library [9]. 

13. RELATED PATTERNS 
The RPC Arranger has something in common with  a few 
classical design patterns. The structure of the 
(ServiceAgent, CommAgent, AppGroupAgent) triad 
reminds the structural Bridge pattern [8]. The construction 
of the common ‘stub’ procedure in the ServiceAgent and 
its different implementations in the ServiceAgentServer 
and ServiceAgentClient remind the behavioral Template 
Method pattern [8]. The Dispatcher pattern [15] may be 
used to implement the dispatcher component of the RPC 
Arranger pattern. 

The major distinction of the RPC Arranger pattern is that 
it combines several classical structural and behavioral 
ideas to form a specialized design pattern for a wide class 
of distributed systems. 
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