
RPC Arranger Design Pattern

Yoad Gidron
NewACT

Apollo House, Shaar Yokneam,
Yokneam Illit, Israel
+972-52-689-9929

yoad.gidron@newact.com

Lev Kozakov
IBM T.J.Watson Recearch

Center
19 Skyline Drive,

Hawthorne, NY, U.S.A.
+1-914-784-7002

kozakov@us.ibm.com

Uri Shani
IBM Haifa Labs

University of Haifa Campus,
Mt. Carmel, Haifa, Israel

+972-4-8296282

shani@il.ibm.com

ABSTRACT
Remote Procedure Call (RPC) is a commonly used
mechanism for synchronous communicating client/server
applications. RPC implements a tightly synchronized
client/server interaction that is analogous to the regular
procedure call in non-distributed applications. The general
underlying principle common to all RPC-based tools and
standards is that both client and server share a common
interface definition file (e.g., IDL). Automatic tools
process the interface definition file and generate source
files that, when compiled with the application, ensure
client/server run-time compliancy. With DCE, CORBA
and Web Services (SOAP), client and server do not have to
be implemented in the same language, although the most
common language used in these application had initially
been C, then C++, and later Java and C#. With the modern
languages, such as Java, the built-in Remote Method
Invocation (RMI) method provides a very easy solution for
developing distributed applications.

We introduce a new design pattern for single-language
RPC-based object-oriented client/server applications that
offers a solution based on sharing of base classes, in place
of an interface definition file. This pattern provides the
developer with full control on how client and server
interact, while releasing her from the dependence on, and
need to learn complex RPC infrastructures, tools and
standards. We implemented this pattern in C++ to provide
a convenient and safe solution to a real problem. An
implementation in Java was done too.

The pattern is presented using the GOF pattern template
[1].

Categories and Subject Descriptors
C.2.4 [Computer-Communication Network]: distributed
Systems – client/server, Distributed applications; D.1.3
[Programming Techniques]: Concurrent Programming –
Distributed Programming;

General Terms
Design Pattern, Remote Procedure Call, Synchronous
Communication

Keywords
RPC

1. RPC ARRANGER SCOPE
Distributed client/server applications. Remote Procedure
Call (RPC) mechanism implementation.

2. INTENT
Encapsulate synchronous RPC mechanism for both client
and server parts in a distributed application providing
direct control of the process to the developer rather than
hiding it within third-party services and component.
Ensure seamless interaction between client and server by
sharing of the same class declarations. Simplify writing
reliable RPC-based applications without requiring the use
of external tools.

3. FORCES
• Synchronized communication between client and

server must also be maintained in full synchrony
between client and server code

• Developer of RPC needs to have full control over
progress of RPC at execution time.

• Need full control on how RPC passes parameters
between client and serve, how they are coded, and
how much of the data is passed.

• External RPC tool imposes dependency on the
tool, require to learn the technology, and
dependency on its revisions.

• External RPC tools may require the use of an
additional mediator broker server to facilitate the
client/server interaction.

4. MOTIVATION
Remote Procedure Call (RPC) is a widely used paradigm
and a classic method for developing client/server
applications [2][3]. The essence of RPC is that clients and
servers are tightly synchronized and exchange information
and control analogously to procedure calls in a regular
non-distributed application [1]. RPC is implemented
usually via tools provided in products that are generally
also based on international standards for development of
such applications [4][5][6][7]. The underlying principle of
operation of these tools is that the compliance between the
client and server comes from a common interface
definition file, which defines the functions, their
parameters, and their types. Interface files are written in
an Interface Definition Language (IDL). A stub compiler
generates stub files from IDL file. The stubs are compiled
and linked with the client and server application code.
Thus the same source interface definition is shared
between applications to ensure workable protocol and
seamless interaction.

The stages in an RPC are depicted in Figure 1. The remote
procedure call mechanism is encapsulated in stubs, which
consist of source and header files. The applications need to
compile their code using stub header files and link with
the compiled stubs. In addition, the applications will link
with the runtime support of the RPC package. Input and
output parameters are encoded and streamed via the
communication protocol in a process called marshaling.
Marshaling ensures that parameters are correctly
transferred between different machines and processes. For
that reason, the IDL file defines precisely the semantics of
built-in and compound types so that the exact byte
ordering (little/big endian) and number of bytes per data
element is clearly and unambiguously specified.

Figure 1. RPC Mechanism. Client application code invokes a
regular procedure call in the client stub, which marshals
input and output parameters via a communication layer.
Server stub plays the partner role, which invokes the actual
service routine in the server application.

This pattern comes to alleviate several issues; Firstly, some
of the tools providing access to classical RPC mechanism
are quite complex, and depend on special tools and run-
time libraries. Yet, that is not always true, specifically with
modern RPC such as the Java RMI [14]. The later is pretty
easy to use. Secondly, all RPC tools, including Java RMI,
leave very little control to the programmer as to how the
interaction between client and server are done. In fact, the
“protocol” between the parties is totally sealed behind the
limited freedom of defining the parameters of the RPC and
their direction – whether input to the server, or a return
from it. More control of the application over the RPC
execution may serve additional purposes. For instance,
RPC operates on independent calls with no sense of a state
in the server that is preserved across calls. This limitation
is not necessarily true in all RPC systems, e.g. program
partitioning [13] and in some sense also Java RMI [14]
can preserve state.

The RPC Arranger design pattern comes to fill this niche.
The main idea of the pattern is to share the same stub code
between client and server applications by the use of a
common base class, instead of generating the stubs from
the same interface definition file. Within that process,
programmer can also explicitly control how the RPC call
protocol is implemented down to the most primitive data
element exchanged between client and server.

The RPC Arranger is described and demonstrated using
the C++ language. A Java version of this design has been

implemented in order to evaluate efficiency comparing this
design and the use of Java RMI [16].

The RPC Arranger pattern borrows its structure from the
known Bridge and Template design patterns [8], and the
Dispatcher design pattern [15]. To clarify the mechanism
of the RPC Arranger, consider a fragment of a simple
client/server application, depicted in Figure 2A (object
diagram) and Figure 2B (class diagram). This fragment
presents a remote login operation.

Figure 2A. Fragment of RPC based client/server application
(object diagram).

Figure 2B. Fragment of RPC based client/server application
(class diagram).

The client application issues the RPC to the server
application, providing user's name and password as string
parameters. The server application checks the user's
attributes and returns boolean parameter (answer) to the
client application.

The objects in this fragment interact in the following way:

• The client calls the loginUser() method of its
ServiceAgentClient object.

• This method sends appropriate request to the
server to identify the required service and
then calls the loginUser() method of its base
ServiceAgent class, which performs the
client stub of the RPC.

• The server identifies the request and calls the
loginUser() method of its
ServiceAgentServer object.

• This method allocates space for the input
parameters and then calls the loginUser()
method of its base ServiceAgent class, which
performs the server stub of the RPC.

• The loginUser() method of the ServiceAgent
class (wich comprises the common stub
code) calls the input() methods of the
CommAgent class to transfer input
parameters, then it gets the output parameter
value, calling the checkUser() method (the
actual service function), and calls the
output() method of the CommAgent class to
transfer the output parameter.

The input() method in the client object sends parameters,
while in the server object it receives parameters. The
output() method in the client object receives parameters,
while in the server object it sends parameters. The
checkUser() method is implemented in the server object
only to perform actual user authentication.

The key objects in this fragment are the service and
communication agents.

Base communication agent class defines marshaling
methods for built-in data types. These methods are
implemented differently in the client and server
communication agent objects (in the client input() means
sending and output() means receiving, while in the server
input() means receiving and output() means sending).

One service agent object is required for each of the client
and server to implement the RPC (loginUser()). The
common base class for these objects implements the stub
for this procedure. It uses marshaling (input()/output())
methods, implemented in an appropriate communication
agent object, and calls the actual service function
(checkUser()), which completes the task (user
authentication). The actual service function is
implemented in the server object only.

Note that the loginUser() function is an instance of the
Template Method [8] design pattern - it is composed of
functions, that are defined in abstact classes and
implemented differently in concrete classes.

By sharing of the same base class between client and
server service objects, the same common code (stub) will
run on both sides, ensuring synchronous interaction
between client and server parts of the application.

In real distributed applications each semantically related
group of services requires one set of service agent objects
as follows:

• One common base class, which implements
common stubs

• One object for each client and server, whose
class is derived form this common base
class.

Each RPC will be identified in two levels:

• High level dispatcher - to resolve the group
(class) of services (service agent object)

• Low level dispatcher - to resolve the specific
procedure in the service group

High level dispatcher is implemented in the server
application itself. The service-specific low level
dispatchers are implemented in each service agent object
of the server.

5. APPLICABILITY
The pattern could be useful for developing RPC-based
object-oriented distributed applications, when both client
and server parts are written in the same programming
language and use the same underlying communication
interface. Depending on the low-level marshaling
implementation, it may be possible to walk also between
heterogeneous machines.

6. STRUCTURE

Figure 3. Class diagram of the RPC Arranger design
pattern.

7. PARTICIPANTS
7.1 Abstract level
7.1.1 CommAgent
Abstract class. Defines the marshaling interface
(input/output methods) for built-in data types; it also
implements all methods needed for the RPC initiation;

7.1.2 ServiceDistributor
Abstract class. Defines an interface for the low level
dispatcher; a reference to an instance of this class could be
used for registration of service groups in the high level
dispatcher (not shown here);

7.1.3 ServiceAgent
Base class for all application-specific service agent classes;
it provides an access to the communication agent object.

7.2 Application level
7.2.1 CommAgentServer
Derived from the CommAgent class; it implements the
server side of the marshaling interface (input/output
methods) for built-in data types (in the server input means
receiving and output means sending);

7.2.2 CommAgentClient
Derived from the CommAgent class; it implements the
client side of the marshaling interface (input/output
methods) for built-in data types (in the client input means
sending and output means receiving);

7.2.3 AppGroupAgent
Base service agent class for a particular group of services,
derived from the ServiceAgent class; it implements the
application-specific group of common procedures (stubs)
for both client and server; it may also implement the
common marshaling interface (input/output methods) for
the application-specific group of data types; it defines the
application-specific group of actual service functions, as
well;

7.2.4 AppGroupAgentServer
Service agent class for a particular group of services,
provided in the server, derived from both the
ServiceDistributor and the AppGroupAgent classes; it
implements the low-level dispatcher as well as the
application-specific group of actual service functions for
the server application;

7.2.5 AppGroupAgentClient
Service agent class for a particular group of services, used
in the client, derived from the AppGroupAgent class; it
overrides the base procedures (stubs), defined in its base

class, so that it sends the service specific request before the
base procedure is called.

8. COLLABORATIONS

Figure 4. Collaborations between the RPC Arranger objects.

• The client invokes a specific remote procedure
by using a method of the appropriate service
group (AppGroupAgentClient class).

• The ID of this call is sent to the server as a
request message. In the server, a top-level
dispatcher is awaiting incoming messages,
and will receive the request ID, identify the
proper service group (AppGroupAgentServer
class) and invoke the low level dispatcher of
the group.

• The group dispatcher, defined in the service
distributor (ServiceDistributor class) and
implemented in the service agent object of
the server (AppGroupAgentServer class) will
invoke the correct procedure.

• From this point, both client and server run
exactly the same common service method
(stub), which is implemented in their mutual
base class (AppGroupAgent class). This
method transfers parameters by using
marshaling functions of two kinds. For the
group-specific data types, marshaling is
implemented in the base service agent class
(AppGroupAgent class). For built-in data
types, marshaling is defined in the proper
communication agent object (CommAgent
class), which is accessed through the
common base class (ServiceAgent class) .

Note, that the latter functions are
implemented differently in the client and
server communication agent objects
(CommAgentClient/CommAgentServer
classes). To accomplish the task, the
common service method calls appropriate
service functions, defined in the base service
agent class (AppGroupAgent class) and
implemented in the server object
(AppGroupAgentServer class).

9. CONSEQUENCES
The benefits and liabilities of the RPC Arranger pattern
include the following:

• It eliminates the need for interface definition
(IDL) files and tools, used to generate
client/server stubs. Instead both client and
server parts of the application use the same
code (stub) to implement the actual RPC.

• It gives a developer more control over the
marshaling process. The marshaling
methods for all built-in data types as well as
other necessary methods of the
communication agent could be shared
between different applications. The
marshaling methods for application-specific
data types should be based on methods
provided by the communication agent. The
application-specific marshaling methods are
written by a developer of the server
application.

• It adds certain overhead when implementing
new services, as described in the
Implementation section.

• It makes using new services easy. To make use
of a new available service procedure a client
application should be recompiled and linked
with the new/updated service agent class
code.

10. IMPLEMENTATION
To make new service procedure available a
developer should go through the following steps:

1. Implement common part

• Add two methods (new common
procedure stub and new service
function definition) to existing base
service agent class (or add new base
service agent class);

• Add marshaling methods for new
service-specific data types (if
necessary);

2. Implement server part

• Add one trivial method (new service
procedure) to existing service agent
class (or add new service agent class,
derived from the appropriate base
service agent class);

• Implement the actual service function
in the service agent class;

• Add new entries to the high level and
low level dispatchers.

3. Implement client part

• Add one trivial method (new service
procedure) to existing service agent
class (or add new service agent class,
derived from the appropriate base
service agent class).

The following are further implementation
details:

• Each application initializes a communication
channel via TCP/IP. The most useful
method is via sockets, but the pattern does
not prefer any mechanism as long as it can
be considered a reliable stream of bytes in
both directions.

• In our sample we use the Socket++ library [9],
which encapsulates the standard socket
library API. The Socket class in our sample
inherits from the standard iostream class
and uses the buffer of streambuf. Thus, we
can write to the socket by using the '<<'
operator, and read from the socket by using
the '>>' operator. Data is sent over the
socket implicitly (when the buffer is full) or
explicitly by calling sync(). End of input
data stream is sensed when the input buffer
is empty. Our Socket class definition is very
similar to the iosockstream in the Socket++
library.

• The registration of available service groups
could be done after the communication
channel has been established. Each service
group is associated with one service agent
object. To register particular service group
its service agent object (presented as a
pointer to the ServiceDistributor object)
should be added to the registrar object,

accompanied by all service specific request
IDs. In our sample the registrar object is
implemented as the STL - like [10] Map
class instance.

• If certain application-specific data types are
used by more than one service group, the
marshaling functions for these data types
could be defined separately.

• To avoid multiple inheritance in the service
agent object (server) one could use the
alternative structure of this object, depicted
in Figure 5.

Figure 5. Alternative structure of the service agent object in
server application.

11. SAMPLE CODE AND USAGE
11.1 Sample Application
Our example is of a simple calculator. The calculator can
perform the four basic arithmetic operations: '+', '-', '*',
and '/' on integer operands. We define the arithmetic
operations as a type:

typedef char Operator;
#define PLUS '+'
#define MINUS '-'
#define MULT '*'
#define DIV '/'

The calculate() function returns the result of a given
expression:

int calculate(int a, Operator op, int b)
{
 switch (op) {
 case PLUS: return a + b;
 case MINUS: return a - b;
 case MULT: return a * b;

 case DIV: return a / b;
 default: // should throw an
exception
 }
}

The application is as simple as:

main()
{
 int a, b;
 Operator op;

 cin >> a >> op >> b;

 cout << calculate(a, op, b) << endl;
}
To adapt this application to a client/server model, the
client will invoke the calculate() function via an RPC to
the server, after passing to it the operands and operator as
input parameters. The result will be returned as an output
parameter.

11.2 The RPC Staff
Two enumerated types are defined: Request IDs that are
sent from the client to the server and Return Codes that
are sent from the server to the client.

enum RequestId {
 NO_REQUEST = 0,
 // Here the application adds more RPC
 // ids (e.g. CALCULATE for our example)
};

enum ReturnCode {
 SUCCESS = 0,
 INTERNAL_FAILURE,
 COMMUNICATION_FAILURE,
 CONNECTION_REFUSED,
 INVALID_REQUEST,
 FUNCTION_FAILED
};

The Communication Agent CommAgent is an abstract
base class that defines the input and output methods for the
built-in data types (which have different implementations
in the client and server) as pure virtual functions. Here, we
are only using characters, integers and strings, but more
input/output functions can be defined for other built-in
types or user-defined types. The Communication Agent
also defines the first two steps in the client/server protocol:
connect and request. The isValid() method is used to
identify the client application. It validates that the client
and server were indeed compiled with the same shared
stub code. This method is implemented in the server only.

class CommAgent {
private: // private methods
 virtual boolean isValid() const {
 return True; }
protected: // protected attributes
 Socket &socket;
public: // authentication string

 String clientAuthentication;
public: // base methods
 CommAgent(Socket &sock) : socket(sock) {}
 virtual ~CommAgent() {}
public: // abstract methods
 virtual void input(char &character) = 0;
 virtual void input(int &number) = 0;
 virtual void input(String &string) = 0;
 virtual boolean endOfInput() = 0;
 virtual void output(char &character) = 0;
 virtual void output(int &number) = 0;
 virtual void output(String &string) = 0;
 virtual boolean endOfOutput() = 0;
public: // public methods
 ReturnCode connect() {
 // client: send; server: receive
 input(clientAuthentication);
 // check if the input was successful
 if (!endOfInput())
 return COMMUNICATION_FAILURE;
 ReturnCode response;
 // server: check client authentication
 if (isValid())
 response = SUCCESS;
 else
 response = CONNECTION_REFUSED;
 // server: send; client: receive
 output(response);
 return endOfOutput() ? serverResponse :
COMMUNICATION_FAILURE;
 }
 ReturnCode request(RequestId &requestId)
{
 // client: send; server: receive
 input(requestId);
 return endOfInput() ? SUCCESS :
COMMUNICATION_FAILURE;
 }
};

The Communication Agent Client CommAgentClient
implements the actual input and output methods for the
built-in data types. In the client, input means sending, and
output means receiving.

class CommAgentClient : public CommAgent {
public: // base methods
 CommAgentClient(Socket &socket) :
CommAgent(socket) {}
 ~CommAgentClient() {}
public: // marshaling methods
 void input(char &character) { // send
 socket << character; }
 void input(int &number) { // send
 socket << number; }
 void input(String &string) { // send
 socket << string; }
 boolean endOfInput() { // flush
 return socket.sync(); }
 void output(char &character) { //
receive
 socket >> character; }
 void output(int &number) { //
receive
 socket >> number; }

 void output(String &string) { //
receive
 socket >> string; }
 boolean endOfOutput() { // check
 return socket.good(); }
};

The Communication Agent Server CommAgentServer
implements the actual input and output methods for the
built-in types. In the server, input means receiving, and
output means sending. It also implements the isValid()
method that checks the authentication of the client.

class CommAgentServer : public CommAgent {
private: // private methods
 boolean isValid() const {
 // check the client authentication
 }
public: // base methods
 CommAgentServer(Socket &socket) :
CommAgent(socket) {}
 ~CommAgentServer() {}
public: // marshaling methods
 void input(char &character) { //
receive
 socket >> character; }
 void input(int &number) { //
receive
 socket >> number; }
 void input(String &string) { //
receive
 socket >> string; }
 boolean endOfInput() { // check
 return socket.good(); }
 void output(char &character) { // send
 socket << character; }
 void output(int &number) { // send
 socket << number; }
 void output(String &string) { // send
 socket << string; }
 boolean endOfOutput() { // flush
 return socket.sync(); }
};

The Service Distributor ServiceDistributor is an abstract
class that defines the pure virtual function dispatch()
which serves as the low level dispatcher. A pointer to an
instance of this class will be used for the registration of
services.

class ServiceDistributor {
public: // base methods
 ServiceDistributor() {}
 virtual ~ServiceDistributor() {}
public: // abstract low level dispatcher
 virtual boolean dispatch(RequestId
requestId) = 0;
};

The Service Agent ServiceAgent is the base class for all
service agent classes. It holds a reference to a
Communication Agent.

class ServiceAgent {
protected: // attributes
 CommAgent &commAgent;
public: // base methods
 ServiceAgent(CommAgent &aCommAgent) :
commAgent(aCommAgent) {}
 virtual ~ServiceAgent() {}
};

11.3 RPC Version of the Application
The Calculator Agent is the base class (AppGroupAgent
class) for the client and server service-specific classes. It
implements the calc_RPC() method - the common
procedure for both client and server. The calc_RPC()
method takes three input arguments (two operands and an
operator) and returns the result as an output argument.
This method defines the protocol of passing arguments
between the client and server. The doCalculate() method
performs the actual calculation and is implemented only in
the server by calling our original calculate() function.

class CalcAgent : public ServiceAgent {
private: // dummy service functions
 virtual ReturnCode doCalculate(int &a,
Operator &op, int &b,
 int
&result) {
 return SUCCESS; }
protected: // common RPC methods
 virtual ReturnCode calc_RPC(int &a,
Operator &op, int &b,
 int &result)
{
 // This is the common RPC stub
 commAgent.input(a);
 commAgent.input(op);
 commAgent.input(b);
 if (!commAgent.endOfInput())
 return COMMUNICATION_FAILURE;
 // The following call does nothing in
 // the client, but in the server it
 // performs the actual calculation.
 ReturnCode rc = doCalculate(a, op, b,
result);
 commAgent.output(rc);
 // needed to verify success of the
 // function itself.
 if (rc == SUCCESS)
 commAgent.output(result);
 return commAgent.endOfOutput() ?
SUCCESS : COMMUNICATION_FAILURE;
 }
public: // base methods
 CalcAgent(CommAgent &commAgent) :
ServiceAgent(commAgent) {}
};

The Calculator Agent Client overrides the calc_RPC()
function of the base class. First, a request is sent to the
server and then the the base calc_RPC() function is called.

class CalcAgentClient : public CalcAgent {

public: // base methods
 CalcAgentClient(CommAgentClient
&commAgent) : CalcAgent(commAgent) {}
public: // service RPC methods
 ReturnCode calc_RPC(int &a, Operator &op,
int &b, int &result) {
 RequestId reqId = CALCULATE;
// send request
 ReturnCode rc =
commAgent.request(reqId);
 if (rc == SUCCESS)
 return CalcAgent::calc_RPC(a, op, b,
result);
 else
 return rc;
 }
};

The Calculator Agent Server implements the
doCalculate() function. It also implements the low level
dispatcher that selects the method to invoke. The
calculate() function with no arguments is defined because
the server should allocate parameters before calling the
calc_RPC() function.

class CalcAgentServer : public
ServiceDistributor,
 public CalcAgent {
private: // actual service functions
 ReturnCode doCalculate(a, op, b, result)
{
 result = calculate(a, op, b);
 return SUCCESS;
 }
private: // methods to be invoked by
dispatcher
 ReturnCode calculate() {
 int a, b, result;
 Operator op;
 return CalcAgent::calc_RPC(a, op, b,
result);
 }
public: // base methods
 CalcAgentServer(CommAgentServer
&commAgent) : CalcAgent(commAgent) {}
public: // public interface
 boolean dispatch(RequestId requestId) {
 // low level dispatcher
 ReturnCode rc = INVALID_REQUEST;
 switch(requestId) {
 case CALCULATE:
 rc = calculate();
 break;
 default:
 break;
 }
 return (rc == SUCCESS) ? True : False;
 }
};

The Client class defines the methods of the client
application. The connect() method is used for establishing

a connection to the server. It also provides an interface to
the calc_RPC() function of the Calculator Agent Client.

class Client {
private: // attributes
 Socket socket;
 CommAgentClient *pCommAgent;
public: // base methods
 Client() {}
 ~Client() {
 socket.close(); }
public: // public interface
 ReturnCode connect(const char *hostName,
int portNumber) {
 if (!socket.connect(hostName,
portNumber))
 return COMMUNICATION_FAILURE;
 pCommAgent = new
CommAgentClient(socket);
 // The client should initialize the
 // clientAuthentication string in the
pCommAgent
 return pCommAgent->connect();
 }
 void disconnect() {
 socket.shutdown();
 delete pCommAgent;
 }
public: // service methods
 ReturnCode calculate(int &a, Operator
&op, int &b,
 int &result) {
 CalcAgentClient calcAgent(*pCommAgent);
 return calcAgent.calc_RPC(a, op, b,
result);
 }
};

The Server class defines the methods of the server
application. It contains the top-level dispatcher that selects
the agent class to service the request and calls the low-
level dispatcher. The handleRequest() method receives a
requestID from the client and calls the top level
dispatcher.

class Server {
private: // attributes
 Socket socket;
 CommAgentServer *pCommAgent;
 Map< RequestId, ServiceDistributor * >
registrar;
private: // private interface
 // service registration
 void registerServices () {
 registrar.insert (CALCULATE, new
CalculatorAgentServer(*pCommAgent));
 }
 // top level dispatcher
 boolean dispatch(RequestId reqId) {
 ServiceDistributor *pAgent =
registrar.find (reqId);
 if (pAgent != NULL)
 return pAgent->dispatch(reqId);
 else
 return False;

 }
public: // base methods
 Server(int portNumber) {
 socket.bind(portNumber); }
 ~Server() {
 socket.close(); }
public: // public interface
 void listen() {
 socket.listen(); }
 boolean connect() {
 Socket sock(socket.accept());
 pCommAgent = new CommAgentServer(sock);
 registerServices();
 return (pCommAgent->connect() ==
SUCCESS) ? True : False;
 }
 void disconnect() {
 registrar.erase(registrar.begin(),
registrar.end());
 delete pCommAgent;
 }
 boolean handleRequest() {
 RequestId requestId = NO_REQUEST;
 if (pCommAgent->request(requestId) !=
SUCCESS) // receive a request
 return False;
 return dispatch(requestId);
 }
};

Client code example:

Client client;
client.connect("hadar.haifa.ibm.com",
1997);
int a, b;
Operator op;
cin >> a >> op >> b;
int result;
client.calculate(a, op, b, result);
cout << result << endl;

Server code example (this server handles only one request per
connection):

Server server(1997);
while(1) {
 server.listen();
 server.connect();
 server.handleRequest();
 server.disconnect();
}

12. KNOWN USES
This methodology was first presented at the Eighth Israeli
Conference on Computer Systems and Software
Engineering [11].
The RPC Arranger design pattern was assumed as a basis
for the implementation of the client/server solution in the
large-scale hospital Picture Archive and Communication
System (PACS) [12]. The primary purpose of the
client/server solution was to provide remote Windows-

based image viewers with an access to the central UNIX-
based system archive. The solution alleviated the need to
implement security and data access on the Windows
platform based on the implementation already available on
the UNIX platform. The server part was implemented as
an UNIX-based application, while the client part - as a
Windows-based API. Low level marshaling interface was
implemented by using the Socket++ library [9].

13. RELATED PATTERNS
The RPC Arranger has something in common with a few
classical design patterns. The structure of the
(ServiceAgent, CommAgent, AppGroupAgent) triad
reminds the structural Bridge pattern [8]. The construction
of the common ‘stub’ procedure in the ServiceAgent and
its different implementations in the ServiceAgentServer
and ServiceAgentClient remind the behavioral Template
Method pattern [8]. The Dispatcher pattern [15] may be
used to implement the dispatcher component of the RPC
Arranger pattern.

The major distinction of the RPC Arranger pattern is that
it combines several classical structural and behavioral
ideas to form a specialized design pattern for a wide class
of distributed systems.

14. REFERENCES
[1] A.D. Birrell, B.J. Nelson, "Implementing Remote

Procedure Calls", ACM Trans. on Computer Systems,
vol.2(1), pp.39-59, February 1984.

[2] W. Richard Stevens, "UNIX Network Programming",
Prentice Hall, 1990, ISBN 0-13-949876-1.

[3] Open Software Foundation, "OSF DCE Application
Development Guide", Prentice Hall, 1993, ISBN 0-13-
643826-1.

[4] Object Management Group, "The Common Object
Request Broker: Architecture and Specifications",
Object Management Group, Inc., edition 2.0, July
1995.

[5] Douglas C. Schmidt, "ACE: an Object-Oriented
Framework for Developing Distributed Applications",
Proc. of the 6-th USENIX C++ Technical Conference,
Cambridge, Massachusets, USENIX Association, April
1994.

[6] J. Dilley, "OODCE: A C++ Framework for the OSF
Distributed Computing Environment", Proc. of the
USENIX Technical Conference on UNIX and
Advanced Computing Systems, New Orleans,
Louisiana, January 16-20, 1995, USENIX Association,
Berkeley, CA, USA, ISBN 1-880446-67-7.

[7] I. Gold, U. Shani, "Wrapping DCE/OSF Client/Server
Applications", Proc. of the USENIX UNIX
Applications Development Symposium, Toronto,
Canada, April 25-28, 1994.

[8] Erich Gamma, Richard Helm, Ralph Johnson, John M.
Vlissides, "Design Patterns: Elements of Reusable
Object Oriented Software", Addison-Wesley
Professional Computing Series, 1995, ISBN: 0-201-
63361-2.

[9] Gnanasekaran Swaminathan, C++ Socket Library
(Socket++), copyright by SAIC/ASSET, 1996.

[10] David R. Musser, Atul Saini, "STL Tutorial and
Reference Guide: C++ Programming with the Sandard
Template Library", Addison-Wesley Professional
Computing Series, 1996, ISBN: 0-201-63398-1.

[11] Y. Gidron, L. Kozakov, U. Shani, "An RPC-Based
Methodology for Client/Server Application
Development in C++", Proc. of the 8-th Israeli
Conference on Computer Systems and Software
Engineering, pp.39-46, Herzliya, Israel, June 18-19,
1997.

[12] Y. Gidron, L. Kozakov, E. Salant, U. Shani,
"Deploying a Large-Scale Hospital-Wide PACS", to be
published in the Proc. of the SPIE Conference on
Medical Imaging, vol.3339, paper 58, San Diego,
California, USA, February 21-27, 1998.

[13] U. Shani, et. al., "C Programs Partitioning for
Heterogeneous Machines", Proc of the 6-th Israeli
Conference on Computer Systems and Software
Engineering, pp. 136-145, June 2-3, Israel, 1992.

[14] P. Heller and S. Roberts, "Java 1.1 Developer's
Handbook", Sybex, 1997, ISBN 0-7821-1919-0.

[15] Christian Thilmany and Todd McKinney, “BizTalk
Implement Design Patterns for Business Rules with
Orchestrated Designer,” From the October 2001 issue
of MSDN Magazine.
http://msdn.microsoft.com/msdnmag/issues/01/10/BizT
alk/default.aspx

[16] Anat Hashavit, Sigal Ishay and Vladimir Lazebny, ”An
RPC-Based Methodology for Client/Server Application
Development in Java,” DSL Lab, Computer Science
department, Technion – Israel Institute of Technology,
Haifa, Israel. Final project report in:
http://dsl.cs.technion.ac.il/completed_projects/rpc-
pattern/index.htm, 2004.

