
1

The Configuration Data Caching Pattern
Leon Welicki

lwelicki@acm.org

The CONFIGURATION DATA CACHING pattern describes how an application can consume

efficiently configuration data stored in external repositories (databases, files, etc.). This is

achieved by avoiding reacquisition of the parameters, holding the retrieved parameters in

memory in a cache.

Context A software system has configuration information stored in an external

secondary-memory based repository, so details are not hard-coded in

code. The configuration information is accessed during the program's

execution.

Configuration parameters may change sporadically, so the cache

should be updated (manually by an administrator or automatically by

a synchronization mechanism) to keep the information in the cache

up to date.

Example Consider a web based mortgage simulator for buying houses. When

the user enters the application she is presented with a screen where

she has to introduce her birth date, annual income, amount of money

that she needs and years of mortgage. Using all this data as input the

system makes its calculation and gives the user an average monthly

cost.

The calculation has some special rules: if the solicitant is younger

than a certain age she gets a special discount (a help given by the

government to young people for buying houses). If she has a low

income she gets also another special government help. The system

also checks that the average monthly cost of the mortgage don’t

exceed a percentage of the solicitant’s income (if the percentage is

exceeded the mortgage is denied).

The values used by system to perform the calculation are fixed for

relatively long periods of time, but change according to the markets

and government regulations, so having them “hard-coded” in the

source code of the simulator is a very bad idea. Therefore these

values are stored in a configuration file, having entries for the interest

rate, the maximum age in which a person can apply for the

government help for young people, the threshold for determining low

income and the maximum allowed percentage of the income that can

be dedicated to pay the mortgage.

2

Every time a mortgage is calculated the application needs to read the

configuration file, parse it, and get all the configuration parameters

quoted above. This adds a considerable overhead to the task of

performing the calculation, since every time it is performed the

configuration file should be read and parsed. This overhead may be

significant and may affect the scalability (and as a side effect

availability) of the application, since as more requests for calculations

the application receives, more readings and parsing of the

configuration file must be done (in this case, our mortgage simulation

application can “die of success”).

Problem How can we consume efficiently configuration parameters stored

in a persistent secondary storage repository so they have not to be

reloaded every time they are requested?

Forces � Flexibility. The configuration parameters of an application should

not be hard-coded in the application, because they can change.

� Performance. The cost of repetitious configuration parameters

acquisition must be minimized. The configuration parameters are

often stored in slow secondary memory devices such as hard

drives (which are ostensible slower than memory).

� Scalability. The solution should be scalable regarding the number

of configuration parameters and concurrent users.

� Availability. The solution should allow the cached configuration

information to be accessible even when the repositories are

temporarily unavailable. Additionally, it should not be necessary

to restart the consumer application to clear the configuration

parameters cache.

� Simplicity. The solution should be easy to use. It does not have to

add unnecessary complexity to the application where is included.

� Control. The solution should not make the program state opaque.

The contents of the configuration parameter cache should be

accessible by an administrator to determine the causes of the

behavior of the application.

Solution Store the value of the parameter in memory when it is requested

for the first time. Use the value stored in memory in the next

requests for the same parameter, so data has not to be fetched

again from the configuration repository.

When the application needs to use a configuration parameter, it

3

requests it to the configuration data cache. If the configuration data

cache contains the parameter, it returns the configuration parameter

instance that it has stored. If the configuration data cache does not

contain the parameter, it connects to the configuration data repository

(which can be a file, a data base, etc.), fetches the parameter, buffers

it and returns it to the application. Subsequently, when that parameter

is requested again the cache returns the buffered value.

An application administrator must be able to clear the cache

whenever he desires Additionally, the cache may have some

synchronization or eviction mechanism as presented in the CACHING

pattern in [POSA3].

Optionally, administrators should be able to browse the contents of

the cache and delete specific elements.

This helps to put in practice the principle “put abstractions in code

and details in metadata” [HT00] (in this case metadata refers to

configuration information), by reducing the performance overhead

caused by retrieving the data stored in a secondary memory based

repository.

Structure The following participants form the structure of the CONFIGURATION

DATA CACHING pattern:

� A config param is a configuration parameter, such as a

connection string to the database or the address of a server.

� A config param user uses configuration parameters (config

param).

� A config param cache buffers configuration parameters. Once

a parameter is stored in the configuration parameter cache it is

not fetched again from the repository.

� A config param provider fetches data from the persistent

configuration parameters repository and returns an instance of

a config param.

The following CRC cards show how the participants interact with

each other:

4

The following class diagram illustrates the structure of the Caching

pattern.

Dynamics The following figure shows how the participants interact to get a new

configuration parameter. In this case, the parameter is not stored in

the cache and therefore it is fetched from a persistent configuration

repository.

5

The next figure shows how the participants interact when a

configuration parameter that is stored in the cache is requested.

Notice that in this last case, the Config Param Provider is not

used because the parameter is already stored in the parameters cache

and is not necessary to fetch it from the persistent repository neither

create the parameter instance.

The dynamics in the CONFIGURATION DATA CACHE pattern are

simpler than in the CACHING pattern ([POSA3], pp 87): the cached

resources are always requested to the cache whether the first or the

hundredth request is. The user does not need to be aware of the

caching status of a particular resource. This simplifies dramatically

the usage of the cache at expenses of losing some flexibility that the

CACHING pattern offers. Since one of our forces is simplicity, enhance

eased of use outweighs the loss of flexibility.

Implementation To implement the CONFIGURATION DATA CACHE pattern, the

following steps should be followed :

6

1. Select the configuration parameter type. Select the type of the

configuration parameters that is going to be managed by the

cache. In the case of this sample, for the sake of simplicity,

we will just use strings and we are not going to add

descriptive metadata (added date, etc.) to the cached

configuration parameter.

2. Select the configuration source. Select the configuration

information data source. The configuration data source is

where the configurations parameters are stored persistently.

The information source can be a configuration file, a table in a

data base, etc.

Important note on steps 1 and 2: when an existing application is

retrofitted to use a cache this two steps are already decided

(according to the application’s actual architecture).

3. Create the configuration data cache. The configuration data

cache is the responsible of giving the parameters to the user.

The dynamics diagram in the previous section shows how this

participant handles user requests, stores the parameters in

memory and when a parameter is not found asks it to the data

provider.

In the sample code included next, our cache class is

implemented using a SINGLETON [GoF95] with DOUBLE-CHECK

LOCK [SHR97] that hosts a Hashtable [@NET] with the

configuration parameters instances. The hashtable

represents a collection of key/value pairs that are organized

based on the hash code of the key. It provides a simple and

efficient mechanism for fast access to the cached configuration

parameters (based on a dictionary with a constant lookup time).

It can also safely support one writer and multiple readers

concurrently using a built-in synchronization mechanism

[MSDN].

The modifications to the Hashtable are synchronized using

locks to make the cache thread-safe (this can be observed in

the StoreDataInCache method). As we stated in the step 1, our

cache will manage string values Whenever a user requests a

configuration parameter to the cache (using the GetValue

method), if it is in memory it is given back to the user. If not, it

is retrieved from the repository. The next code snippet shows

how a sample implementation of the configuration data cache

class (in C#):

public class ConfigurationDataCache

7

{

 private static ConfigurationDataCache instance = null;

 private static readonly object padlock = new object();

 private Hashtable data = null;

 private ConfigDataProvider provider = null;

 private ConfigurationDataCache() {

 data = new Hashtable();

 provider = new ConfigDataProvider();

 }

 public static ConfigurationDataCache Instance {

 get {

 if (instance == null) {

 lock(padlock) {

 if (instance == null)

 instance = new ConfigurationDataCache();

 }

 }

 return instance;

 }

 }

 private void StoreDataInCache(string key, string val) {

 lock (instance.data.SyncRoot) {

 if (instance.data.ContainsKey(key))

 instance.data.Remove(key);

 instance.data.Add(key, val);

 }

 }

 public string GetValue(string key)

 {

 string ret = null;

 if (instance.data.ContainsKey(key)) {

 ret = instance.data[key].ToString();

 }

 else {

 ret = provider.GetParam(key);

 if (ret != null)

 this.StoreDataInCache(key, ret);

 }

 return ret;

 }

 public void Clear() {

 lock(instance.data.SyncRoot) {

 instance.data.Clear();

 }

 }

}

Notice that when a value is not contained in the cache, it is

fetched from the repository by the ConfigDataProvider.

The cache does not have any knowledge on how to retrieve the

information from the data source. We will address the data

provider in the next step.

8

Another very important aspect of the class shown above is the

method Clear, which allows clearing the contents in the cache

deterministically at runtime. Invoking

instance.data.Clear() is better than doing

instance.data = null, because removes all entries from

the current instance and lets the instance ready for storing new

elements. Setting the instance to null is worst for two reasons:

1) it lets the instance unusable for storing new elements and 2)

makes a more inefficient use of memory (the instance and all its

data is marked for being garbage collected).

Finally, there is a very important side effect of having the

parameters in this in-memory cache: if the source of

information becomes unavailable it won’t affect our application

availability since we are not fetching the parameters from the

source anymore but using the ones that we already have in

memory.

Create the provider to fetch data. The provider is the

responsible of the communication with the actual persistent

repository where the data lives. The next code snippet shows

the implementation of the provider that fetches the

configuration parameters from the .NET XML configuration

file (through the AppSettings collection of the .NET

framework’s class ConfigurationSettings).

public class ConfigDataProvider

{

 public string FetchParam(string name) {

 return ConfigurationSettings.AppSettings[name];

 }

}

In the sample code in step 3 the ConfigDataProvider is

instance initialized when the ConfigDataCache instance is

created.

The provider could be designed using the STRATEGY [GoF95]

pattern so different data access strategies may be used within

the same cache according to specific needs. In this case the

ConfigDataCache can be initialized (via dependency

injection in the constructor) with a ConfigDataProvider

strategy.

4. (optional) Add an eviction strategy. An eviction strategy may

be used to evict invalid or outdated parameters in the cache.

9

The EVICTOR [POSA3] may need the metadata associated with

the cached parameter. For example, we may have an eviction

strategy that removes from the cache all the values that are

older than one hour or another that removes the unused

parameters. The eviction strategy adds complexity to our

solution, but does not affect the user of the cache, since the

usage interface of the cache is designed for simplicity. The

complexity lies in the internals of the cache and is not

exposed to end users.

Adding eviction to the cache requires having metadata

associated with each cached value to determine when an item

must be evicted. For example having the date when the

element was added allows evicting the older elements; having

the number of times an item is accessed helps to evict less

used items.

5. (optional) Add synchronization. The parameter cache may be

synchronized with the parameters repository so whenever a

parameter changes the cache is automatically updated. A

discussion on this issue can be found in the CACHING pattern

at [POSA3]. The SYNCHRONIZED CONFIGURATION DATA

CACHING variant (presented later in the variants section)

discusses this issue in more depth.

6. Using the configuration parameters cache. The user of the

configuration cache parameters uses the cache. As we stated

above, using the cache must be very easy. The next code

snippet shows a sample usage of the cache created above. In

this sample, a Url and a port are fetched from the

configuration repository (through the cache) to compose a

connection string to a service:

string urlParam = ConfigurationDataCache.Instance.GetValue("url");

string portParam = ConfigurationDataCache.Instance.GetValue("port");

string connectionString = urlParam + portParam;

Consequences The configuration data cache adds performance and flexibility to an

application. The access to configuration data is improved, since data

is fetched only once. Since having all the necessary configuration

information does not hurt performance anymore it supports enhancing

an application’s flexibility (moving fixed values to configuration).

There are several benefits of this pattern:

� Performance. Fast access to frequently used resources is an

10

explicit benefit of caching [POSA3]. In this pattern, we have

fast access to the configuration parameters, since once they

are loaded they remain cached in memory.

� Flexibility. We can bring more flexibility to our application,

since we have an infrastructure that helps to manage the

configuration parameters and performance penalty regarding

using configuration data parameters is minimized.

� Configurability. Using configuration parameters is not a

performance bottleneck anymore. All the variable parameters

can be stored in a configuration repository. The access to this

repository will be managed by the configuration data cache.

� Availability. Once the parameters are stored in the cache, the

original source is not needed until the cache is cleared or a

new parameter needs to be loaded. Reboots are not needed to

refresh the parameters in the in-memory cache.

� Scalability. Access to secondary-memory configuration for

retrieving parameters is minimized; reducing the overhead

and avoiding degradation proportional to the amount of

concurrent users. This also avoids problems like dead-locks in

configuration files when concurrent users try to access to the

same parameter at the same time.

� Better use of resources. The implementation of the parameters

cache makes a better use of resources. Data is only fetched

when appropriate and then is stored in a fast access memory

structure, which provides a very efficient access to it.

There are several liabilities of using this pattern:

� Complexity. The use of caching techniques adds complexity to

an application.

� Synchronization. The parameters in the cache may be

outdated or incorrect. Keeping the cache synchronized with

the repository is a complex issue that when addressed also

adds more complexity to the overall solution.

� Possible “over-effort”. When an entry in the cache is used

only once, it is wasting space in the cache and it has wasted

time to put it in the cache. There is nothing that can be done

against the waste of time when the entry is stored in the cache,

but the memory usage can be fixed having an eviction strategy

11

that harvests the unnecessary information stored in the cache.

Example

Resolved

A configuration data cache is used to manage the parameters. When

each parameter is first requested, it is stored on the configuration data

cache. Therefore, in the next requests for a parameter is not necessary

to fetch it from the configuration data file. This avoids unnecessary

reads and parses to the configuration file, since the calculation

parameters are kept in memory by the configuration data cache.

If the any parameter needs to be changed (according to market trends

or government regulations) the administrator can modify the

configuration file and then clear the contents of the cache. In the

successive requests the process explained in the first paragraph of the

solution is repeated, refreshing the contents stored in the cache. This

avoids a process restart to reflect the changes in the configuration of

the system, keeping the application always up to date and running.

Variants • Synchronized Configuration Data Caching: the synchronized

data cache has a synchronization mechanism that keeps the data

in the cache synchronized with the data in the configuration file.

Synchronization is a very complex issue when dealing with these

caches, since it may add a performance overhead that might

overcome the benefits of using the cache. Therefore it must be

designed carefully, balancing the trade-off of accuracy against

performance. There are several ways to handle synchronization in

the configuration data cache:

o Periodic Rollup: the cached parameter is reloaded

periodically after a fixed number of reads. The possibility

of using outdated parameters is 1/n (where n is the number

of reads until the cache is refreshed)

o Listener: there is a listener process that checks for changes

in the source of information. When a parameter changes,

the cache is informed by the listener and consequently

updated. An OBSERVER [GoF95] can be used to inform the

cache the modifications in the source of information.

ASP.NET [ASPNET] uses a similar approach to keep

configuration up to date (it “listens” for changes to the

web.config file).

o Manual Synchronization: an administrator can trigger

manually a cache reload or synchronization. There are

several ways to do this: if the cache is an eager cache

(explained in the next bullet), the cache is completely

reloaded on demand. If is a regular configuration data

12

cache it just can be cleared and the parameters are going

to be reloaded as they are requested.

o “Manual-Automatic” Synchronization: this method

combines ideas from all the previous. Changes to the

configuration parameters must be done through a user

interface provided by the application. When a parameter is

changed the interface invokes the cache synchronization

(which can be based on removing the changed parameter

and waiting for a new request, reloading the parameter,

clearing all the cache, triggering the active listener

observers, etc.)

• Eager Configuration Data Caching: when a program starts the

cache retrieves all configuration values and stores them in

memory. This eliminates the overhead associated with opening,

scanning and parsing the configuration file each time a parameter

is used for the first time. Once the program has started and the

cache has been loaded, the cost of using parameters is minimal.

This may be better used when a big amount of the parameters are

going to be used every time the program is run. The main

liabilities of this variant is that it can make program start slower

and that memory footprint of the cache may be bigger. The eager

configuration data cache should be synchronized or should

provide a “reload” mechanism (triggered by an administrator) to

avoid application reboot when a parameter change.

Known Uses • Microsoft ASP.NET configuration parameters from the

web.config file are stored in memory after they are read.

When a parameter changes they are synchronized again (but

at the expense of restarting the process, which has the

drawback of dropping the non-persistent sessions).

• Operating Systems (Windows, UNIX, Linux, etc.) store

configuration parameters in memory. In the case of Windows,

there is not a good synchronization strategy, nor cache

clearance mechanism. Therefore, when some parameters

change a reboot is necessary to apply the changes.

• Databases. Databases often keep service configuration

parameters in memory. For example, in Oracle databases

(version 9 and below) the service information is stored in a

configuration file called init<SID>.ora (where SID is the

service identifier of the database). Once the instance is started

the parameters are loaded in a view in memory

(V$PARAMETER). There is no automatic synchronization

13

between the file and the in-memory cache. To apply changes

in the configuration file a reboot of the service is required

(which must be done by a database administrator).

• Struts. Struts’ configuration file (struts-config.xml) is

loaded into memory when the host application is started (this

is similar to the EAGER CONFIGURATION DATA CACHING

explained in the variants section).

Related

Patterns

The CONFIGURATION DATA CACHING is a variant of the CACHING

pattern [POSA3] that refines and extends it in the context of using

configuration data in an application. The management of the cached

resources and overall implementation is more complex and general-

purpose in the CACHING pattern.

An EVICTOR [POSA3] may be used for eviction of configuration data

stored in the cache. For example, never accessed or old values may be

evicted periodically.

The CONFIGURATION DATA CACHE participant is often a SINGLETON

[GoF95]

STRATEGY [GoF95] may be used to change the provider strategy to

fetch data (a provider may have several strategies aimed to fetch data

from different kinds of repository, e.g., XML, relational database, flat

file, etc.)

FACTORY METHOD [GoF95] can be used to control the way in which

Config Params instances are created in the provider.

References

[GoF95] Gamma, Erich; Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:

Elements of Reusable Object Oriented Software. Addison-Wesley. 1995.

[HT00] Hunt, Andrew; David Thomas. The Pragmatic Programmer: From Journeyman

to Master. Addison-Wesley. 2000.

[POSA1] Buschman, Frank et al. Pattern Oriented Software Architecture, Volume 1: A

System of Patterns. Wiley & Sons. 1996.

[POSA3] Kircher, Michael; Prashant Jain. Pattern Oriented Software Architecture,

Volume 3: Patterns for Resource Management. Wiley & Sons. 2004.

14

[SH97] Schmidt Douglas; Harrison Tim. Double-Checked Locking: An Optimization

Pattern for Efficiently Initializing and Accessing Thread-safe Objects.

http://www.cs.wustl.edu/~schmidt/PDF/DC-Locking.pdf

[NET] Microsoft .NET Home Page. http://www.microsoft.com/net/default.mspx

[ASPNET] Microsoft ASP.NET Home Page. http://www.asp.net

[MSDN] Microsoft Developers Network: Visual C# Developer Center.

http://msdn.microsoft.com/vcsharp/

