Universal E-Catalog pattern

Hesham Saadawi

School of Computer Science,
Carleton University

1125 Colonel By Drive,
Ottawa, Ontario, Canada, K1S 5B6
hsaadawi@connect.carleton.ca

Abstract

This paper introduces a data modeling design pattern that can help organize and
persist information of a catalog in any RDBMS. The catalog would not be bound
to a specific business context and does not need any code maintenance to be re-
deployed in different business contexts. Hence this pattern describes a universal
electronic catalog. The catalog supports unlimited number of categories and their

attributes, and facilitates easy searches and comparisons of stored items.

I ntroduction

In E-Commerce systems, like online shops, there is a need to present a variety of
products to online customers. These products can be unrelated like food and
books, or related in a hierarchical classification structure. The product information
needs to be organized in a way that enables the customer to do searches,
matches, and comparisons between different products based on some common
product attributes. The common solution for this is to represent all products in a
store in a catalog, either in a print format, or in case of online store, an electronic

catalog.

To simplify the catalog building process and customer browsing of a catalog,
products are often classified into categories where similar products that share
common attributes are in one broad category. An example would be footwear,
where each product in this category shares some common attributes like size,
material, color, gender (male, female, or children), and then can have more
specialized sub-categories like sports footwear. Another example would be an
appliances category where all products share common attributes as an operating
voltage, color, energy consumption, dimensions (height, width and length), and

further have some special sub-categories like refrigerators.

An online store would be interested with categorizing its products to be able to
add new products efficiently, as it would only need to add the new product to its
sub-category and specify values for its attributes that were defined in the product
sub-category and all the parent categories. Therefore, re-using previously

defined attributes for a product category.

A typical customer would be interested with selecting a product based on certain
attributes, like selecting a stainless steel refrigerator, and then to compare on

other attributes like getting the most efficient refrigerator for its capacity group.

Hence, for electronic catalog systems, the requirement is often to internally
represent and then persist information about different products or items. Each of
these products would have a certain number of attributes that describe it. These
attributes are important to enable product searches, comparisons and product

classification.

Another context for using a catalog may be a scientific research agency that is
building a catalog with different plantation types or species found in certain
geography. In this example, the classification of plants in a hierarchy of

categories occurs naturally and each of these categories would need to have its

attributes defined. Categories in lower levels would inherit the attributes of their

parents, and add more attributes to it.

In those catalog applications however, it should be noted that there is a
distinction between the number of product types, i.e. product categories and sub-
categories, and the number of concrete products stored in the catalog. This is
important as per a typical catalog; we could have hundreds of product types.
Each of these types may contain several identical products. A group of identical
products needs only to be represented in a catalog once with a quantity attribute
that indicates how many of this product is available in stock. This is different from
a banking system for example, where it has few bank account types (which are
similar to different product categories in a catalog), but those types do not
change often and each account type contains millions of different customer
accounts. The latter is an example of a high volume database system with few
varieties of product types. This distinction would become important later when
discussing advantages and consequences of using the e-catalog pattern.

A universal e-catalog pattern is introduced here using the canonical pattern

format.

Pattern Name.

Universal E-Catalog

Problem.

An electronic catalog can be defined as an electronic repository of information
about items, products, or species. This makes it a general database storage
structure that can be used in many applications like storing inventory items,

manufactured products and components, or a catalog of some living organisms.

In such a general electronic catalog, we need to dynamically, i.e. at runtime,
define item categories and their attributes. This would enable many different
application contexts to define their own categories and for each category, its list
of attributes.

Normally, categories of products in an inventory, or of some living species would
follow a simple hierarchical structure in which a parent category may have one or

more child categories.

The representation of the e-catalog would need to be persisted in a database
system in order to be useful. The challenge here is that a store cannot anticipate
all the products it would have during its lifetime. Even if they do, it is a waste of
storage space to create and populate database tables for products that may
come after years if they come at all. The same is true for a species catalog.
Further, creating all products, or species categories as concrete tables in the
database would make the e-catalog inflexible when used for other types of

applications, hence it won't be a universal e-catalog.

This presents a challenge to the Data Model designer as these items and
products would need to be persisted in a database, typically using a relational
database management system as these currently are the most available and

commercially used database systems.

Context

You are building an e-catalog for a large variety of products or items that
need to be stored, searched and compared with each other.

Different products or items have different attributes.

You need to add, remove, or modify product attributes at runtime. New

products and items would need to be defined with their attributes

whenever they become available. Moreover, there may be a need to add
or remove some existing product attributes depending on the market.

You do not want software system maintenance whenever there is a need
to add, remove or change products.

You need to reuse the catalog in other business contexts without the need
to change the code or the database structures.

You have a large variety of product types that may keep growing.

Forces.

« An e-catalog needs to store a wide variety of product categories, to cover
all possible products of a business during its lifetime. Many of these may
not be known at design time.

- To design a data model for the e-catalog, all information about categories
and products would need to be identified at design time

« Changing structure or re-coding the e-catalog, as a software application, is
expensive and may introduce new bugs: Thus, this should be avoided as
much as possible.

- Different contexts or subject areas would need to store different types of
products and items: These are usually unrelated like foods, books and
furniture. The e-catalog application should work well within almost any
context, i.e. to be able to capture product attributes, store them and
display different unrelated products on demand.

+ E-Commerce systems need a high availability e-catalog: Any application
software accessing RDBMS tables must have a priori information on table
structure and data types stored in them. Modifying one or more of these
database tables, for example to define a new product type, would usually
require modification of code accessing these tables. Therefore, it is not

possible to change table structure or add new tables in the catalog

database at application runtime. This must be done off-line and the
application code would need to be retrofitted and redeployed.

« Product attributes data need to be stored in atomic form: In order to
support accurate product searches and comparisons, these operations
need to be done on atomic data values stored in columns. Storing all
product information in one large text field would not enable extraction of
this information when needed. For example, a customer wants to get a list
of refrigerators between the sizes of 18c.f. and 22c.f, with best energy
efficiency. This means that we need to base our search on “Size” and
“Energy Consumption” attributes of the Refrigerator category. If this
information were embedded in a description text field with other
properties, it would be a difficult task to extract them for the purpose of this

search.

Solution

Organize your product types (categories) in a hierarchy of parent-
child relationships (use the inheritance pattern): Each parent would
contain common attributes that are common to all of its children, i.e. a
child would inherit the attributes of its parent. Choose this scheme to
represent the product or item categories in your catalog. Try to capture
common attributes in the hierarchy top. For example, a common attribute
for all products in a store would be price, quantity, manufacturer, discounts
offered, and product name. This scheme would allow new categories to be
defined with minimal effort, as they would inherit attributes from existing
ones.

Allow the administrator system user to define a new category when
needed: Define the category name, its parent category, its attribute
names and their types.

Store user defined categories in memory in a flexible data structure:

for example, in a Java HashTable.

. Create database tables and structure: As shown in Figure 1 to persist
the product information. This database structure is represented in a
traditional entity relationship diagram. More details about the notation
used in this diagram and a reference is given in Appendix 2.

ATTRIBUTE_VALUE -
PRODUCT_ID: INTEGER
ATTRIBUTE_ATTRIBUTE_ID: INTEGER (FK) | [FRopucT =
R/3 # ATTRIBUTE_CATEGORY ID: INTEGER (FK) | [proouCT 107 INTEGER
9 VALUE: VARCHAR(255) CATEGORY_ID: INTEGER (FK)
ATTRIBUTE -
ATTRIBUTE_ID: INTEGER
CATEGORY_ID: INTEGER (FK)
& ATT_NAME: VARCHAR(ZSS) | ,
& ATT_TYPE: INTEGER 21
& URDT_DTTM: DATETIME
R4
Rf2
CATEGORY -
 ID: INTEGER. L
L}

@ PAREMT _ID: INTEGER (FK) |

@ MAME: WARCHAR(235) —l—é
@ ABSTRACT_IND: INTEGER
@ UPDT_DTTM: DATETIME

Figure 1: Catalog Data M odel

In the model shown in Figure 1:

« CATEGORY: Relational table that stores information about catalog
categories. Each row in this table would represent a category. The ID
column stores unique id for this category and it is the primary key for the
table. PARENT_ID contains the parent category id. This is also a foreign
key referencing the ID column, as any parent category would be a
category itself. This column would contain a NULL value for the category

at the hierarchy top, as it has no parent. NAME contains the name of the
category. ABSTRACT_IND is a flag to be set if this category should have
no concrete products in it. UPDT_DTTM contains the timestamp that this
row has been last updated. This information would be used to apply an
optimistic concurrency control pattern. This table is related with relation
R1 to itself as a category may have multiple child categories.

ATTRIBUTE table: contains the attributes of a category. Each row
represents an attribute. The ATTRIBUTE_ID is a unique id for the
attribute, and it belongs to the category defined by CATEGORY_ID.
ATT_NAME contains the name of the attribute. ATT_TYPE contains the
attribute type.

ATTRIBUTE_VALUE table: contains values of those attributes defined in
ATTRIBUTE table. This value is stored in VALUE column. This table
would store attribute values ATTRIBUTE_ATTRIBUTE_ID values
associated with concrete products defined by PRODUCT _ID that belongs
to a category identified by ATTRIBUTE_CATEGORY _ID.

PRODUCT table: contains the information about which product
(PRODUCT_ID) is of which product type (CATEGORY_ID).

Relation R/2 means that a category would have many attributes, and each
attribute belongs to one category.

Relation R/3 shows that an attribute may have many values stored, each
value is associated to a different concrete product.

Relation R/4 shows that a category may have zero, one or multiple

products stored in the catalog of that category type.

One variation of the implementation would be to define attributes common
to all products as columns in the PRODUCT table, instead of defining and
storing them as attributes in ATTRIBUTE and ATTRIBUT_VALUE tables.
This is shown in the known uses section examples. This would enhance
the system performance, however, it would limit the use of the e-catalog
system for certain contexts like online stores. Other contexts, for example

in a scientific research lab, may be interested with storing other common

attributes for its research specimen catalog.

Dynamic behavior

To illustrate the use of the e-catalog to build a list of categories and products, we
walk through a typical use case.

* A typical user of the e-catalog would need to add a new product. If no
suitable category for this product exists in the catalog, the user would
need to define a new category for this product.

e The user would then define a category for the product. This entails
defining category name, number of its attributes, their types and their
names.

o After the category has been defined, the system would persist this
definition in the corresponding database structures (CATEGORY and
ATTRIBUTE tables).

 The user would repeat the above process to define a hierarchy of the
categories that may exist at the business context.

» The user then proceeds to store the information about the product. The
system would present the user with a list of pre-defined categories; the
user would pick a category from the list to add the product in that
category. The system then gets a list of all attributes defined for this
category. This list would be composed of attributes defined for this
category and all attributes inherited from its parent categories. The system
would present the user with a form with all attributes to be filled. The user
fills the information. The system persists the information in
ATTRIBUTE_VALUE and PRODUCT tables.

Searching and browsing the catalog would be similar to the Catalog Pattern
previously identified at [1].

Example.

An example of a context where the E-Catalog pattern could be used is in an E-
commerce application that is displaying a catalog of products for online
shoppers. The products are usually ordered in a group of categories for ease of
browsing. There may be also a search facility to enable shoppers to find products

based on some criteria they enter on the online form.

One of these applications is osCommerce (www.oscommerce.com), which is an

open source e-commerce tool. In this tool, an e-catalog is implemented with an
administration tool that enables the administration of the catalog and the

application. A snapshot of this application is shown in Figure 2.

'3 osCommerce - Microsoft Internet Explorer =18 l!

File Edit ‘Wiew Favorites Tools Help |-

gack » = -) 4] A} Qisearch GFavories Slvede (3 | B S5 - 5] @

Address I@j htkp: [y, oscommerce. com/osCommerce22ms2 findesx, php?cPath=120sCsid=7b4ar057daGaal 74dd2ebeba 7a2d7ba9 ;I F GO |Lin|_<s i
& o<Commerce o B B
o~ - i ._ =
wa (egories St

Hardware-= (&)
CDROM Drives

0 iternz

Graphics Cards (2]
Keyboards (1)

m,amo;,l 01. Hewlett Packard
|ce.(1 Laserlet 1100
Monitors

Keyboards 02, Matrox G400

Printers (1)
Speakers = F2MB
Software-= (4] E 03, Microsoft |
DWD Movies-> (17) \ IntelliMouse
N Explarar
J i 04, Microsoft
Mernory Mice Maonitars Internet

Keyboard PS/2
05, Microsoft
IntelliMouse Pra
06, Matrox G200
MME

IPIease Select ;I

)

Printers

C

The Wwheel of Time

499,99 P
|§| hittp) funse, nscommerce. comfosCommercez 2ms2/indes . php ’_ ’_ ’_ Iﬁ Internet
Pstart ||| A2 Q) @ P & D > | & &ll& =] H ORI BGHERS W sorem

Figure 2: osCommer ce demo snapshot

10

In this e-commerce solution, a catalog administrator can define categories and
add products. An online shopper would be able to interact with the catalog to
browse, search and select products. This application uses a relational database

to persist categories and products.

Another open-source e-commerce system is ofbiz at

http://www.ofbiz.org/index.html. A portion of its data model for products and their

type is illustrated in Figure 4.

More details about the data models can be found at the documentation on these
application web sites as explained in appendix 1.

Resulting Context

This pattern is most similar to the Name-Value Pair Table approach presented in
[6], with some variation. A formal study on this pattern and other variant
structures performance for e-catalogs is presented at [7]. This study shows
experimental results for different catalog queries and different catalog structures.
However, we present here some general advantages and disadvantages for

using this pattern over conventional database design models.

By applying the pattern we obtain the following:
Pros.
= The ability to add new product categories and products to the e-catalog
even when these are not known at design time.
= Unlimited number of categories can be added in a hierarchical scheme
to represent large variety of products and items that may exist in a

business context.

11

Ability to execute advanced user queries against the catalog
information.

Flexible e-catalog structure that can be used in many contexts without
the need to change its code or database structure.

Effort of defining new categories is minimized, as these would inherit
their parent’s attributes without the need to redefine them.

This pattern works well for a database that stores a moderate volume
of concrete products, but with large variety of product types that keep
changing over time. This is typical in a store catalog, as we may have
hundreds of product types, but for each type we store information of

one product with a quantity value that reflects store inventory.

Consequences

Complicated data model that needs complex code to deal with it. This
is true with application code as well as Data Management Language
(SQL in case of RDMS). For example, to get all the refrigerators with a
size of 18c.f. and with a price less that $900, it would need a query
joining all of the four tables with a relatively complicated SQL. On the
other hand, if the refrigerator product were represented with a single
table, as in conventional database design, it would be much easier to
write the query against that table.

When implementing catalogs in RDBMS using this pattern, there would
be a gain of flexibility on the expense of performance. Some
performance penalty is incurred due to storing product information in
many rows and tables, thus the need to join these to get product
information, instead of getting one row from a single product table as
implemented traditionally. This penalty would grow with the growth of
data volume, thus this technigue may not be suitable for large
databases where we know that product types (categories) would not
change in the future, and data volume (i.e. number of actual distinct

products) is always high. Such systems, like those found in banking

12

industry for example, would have few bank account types that rarely
change, and huge volume of customer account information with high
transaction rate.

= This technique would be more complicated to deal with products that
may have some relation to each other. Such relations are usually
defined in RDBMS with foreign keys and data constraints. In this
pattern, these DBMS managed constraints would not work and they
would need to be enforced through application code adding much
more complexity to the application. A framework that encapsulates the
pattern implementation in the DBMS and provides simple API to

access its stored information would better handle this complexity.

Rationale

Without using the above pattern, we would need to define a data base table for
each product we wish to represent in our catalog. This solution would prove
impossible as the number of different products could go to the hundreds. In
addition, new products may appear after the system being built, and thus new
data base tables would need to be defined and application code would need to
be altered to read these new tables. On the other hand, if all products are stored
in a generic table with its attributes stored in one large text column in that table,
doing searches and comparisons would be difficult as there is no easy way to
extract a particular attribute value from the large text field. Also, comparing two
attributes for two different products would not be possible unless we know the

type of these attributes and make sure they are compatible.

The presented pattern works well in the given context above for the following
reasons:
= The solution defines a generic catalog system that can be used in many

business contexts without the need to change its code or database structures.

13

It provides a basic e-catalog structure that is able to store a variety of
products and items that are typically found in a store or other subject areas.
The e-catalog can keep information about unlimited types of products without
the need to change its structure.

Definition of hierarchical category tree minimizes the effort when populating a
new product into the catalog. A user, entering a new product to the catalog,
would enter values for those attributes defined for the product category
without a need to redefine them with each product.

Accurate product searches and comparisons can be made, as all product
attributes are stored in an atomic format, as opposed to one large text field.
The performance of the e-catalog would still be acceptable when there is a
need to store many types of products, with small data volume and low
updates to stored data. This is typically the case with most commercial and
manufactured product catalogs, where there is a need to capture the
properties of many different product types, but, transactions changing product

types are not frequent.

Known uses

Details of obtaining data models documentation from project web sites in this

section are explained in appendix 1. All known uses in this section come from

open source projects. This is due to the availability of the source code including

the database design models.

The data models diagrams are presented here in a simplified Entity Relationship

notation. In this notation, an entity is represented with a rectangular box. The

entity name is written at the upper cell of the box. The entity attributes are listed

at the lower cell of the box. Each attribute has a data type that may be shown on

the diagram as in Figure 3, or omitted for brevity. An attribute could also be part

of the entity primary key, and in this case it is denoted with PK on the diagram.

14

Any attribute in an entity could also contain values of another entity’s primary
key. In this case, this attribute is called a foreign key and denoted with FK on the
diagram. An arrow from one entity to another shows a reference from the entity
at the arrow base (a child) to the one at the arrow head (the parent). This
reference is an indication that a FK (in the child entity) contains values of a PK (in
the parent entity). An arrow originating from, and pointing to the same entity
relates two attributes in the entity. One of these is acting as a PK and the other
as a FK pointing to that PK. This self-referencing usually indicates a hierarchical

parent-child structure that can be represented in that entity.

OsComerece
As per the documentation found at [3]. Products are stored in this e-commerce

system in a catalog modeled as shown in Figure 3. In this model a hierarchy of
categories is represented as indicated in our e-catalog pattern (in categories
table). Storing a row in products_to categories Table represents product

association to a category.

15

products_id = procucts_id

e I esingees: * categones |0 = categones o
prooucts_lo catagories categones calegoriss_oescnplion
procucts 0 Inseger|S) <pkfeie| |CSiE00nes 10 Integersi k=) |Caleqones ld - InSEger|S) i fEis
categodes 1J Iniegerid) -pifkds| |calegonies image warchanid) farquags Inszgens) -os
parent_fd Integer(s) <%= | | CHlEGOriEE_name varchasal) —
Eort_orosr Infegerd) :
dabe_acded databime languages_id -
last_midified datetime
products_d ¢ procucts_id i
categoriss_|o = parent_ld
¥]
oroduchE progusis_gescrplion
— 3 = = F!TﬂiﬂEEJﬂ : : =pk.fit=
DroouCls quanety ntegesid) langquace i Infegers) cokfkes
g PrOfuCts_madal varchar12) products_name Erenan 5dy
progucls_image varcharsa peeducls_osscription tet
products price: decimal{10.2) procucts_ un VEMNET 255
—prooucts_data adoed daletime products wiewsd InSeger|S)
—&={ nrocusts_lasl modfier daletime
producls_date avalatle datstime
— i proncTs_walght oEcimali7, 2} producis_Id products_id
— o producte_stats tnyinti 1)
— | Droducts AN class i mbegens) <fi2-
manulaiLrers. |o ntegens) <[k 1] procustE_oolions
T porili o | procucts omtlons i nlegens] ke
products_optlongt—ortom—is T n i
——— | pracucts_ootions_name vanchar 32)
= procucts_oplions_io § products_optlons_d
orofucis atrbules
products atiributss 18 Infeger(s Dl
produets_id inegens] =is
— oalione i infeger(s) s propucs pptions values io producis oplions
oolions_vaues_id Irtegers] a procucts cotions vates fo orocusts oobions 1F [ni=ger|s) <ph-
options_values price decimai10,2) producs_ootions_ K IntEgars) <M 1=poRE_ld = langua
price, prefls chari 1} procucts_ootlons. values_|d Ini=gens) <Ms
products_opions_valuss i = products_options_valus_id
r languages_|d - lanfuags_id
ahucts_optiong_ | = =
ey T products opdlons, values
" rogucts oolions values Id nlegens: =pk-
rocucis_oplions_vaius B T,
|;|n . O e Enca =
3 el procucts ootions valuss_name vanchariee)

Figure 3: Part of Catalog data model at osCommerce [3].

Open For Business (ofbiz)

Is an open source e-commerce solution [4]. It describes itself as “The Open For
Business Project is an open source enterprise automation software project
licensed under the MIT Open Source License. By open source enterprise
automation we mean: Open Source ERP, Open Source CRM, Open Source E-

Business / E-Commerce, Open Source SCM, Open Source MRP, Open Source

CMMS/EAM, and so on.” [4].

16

Part of the data model for Product is shown in Figure 4. In this data model,
category hierarchy is captured with multiple rows in PRODUCT_CATEGORY
table. Each category has some attributes defined with multiple rows in
PRODUCT_CATYEGORY_ATTRIBUTE table. Different products are associated
with a category and stored in the PRODUCT table. Products could also belong to
a product_type that is stored in PRODUCT_TYPE table, each poroduct_type
contains some attributes defined in PRODUCT_TYPE_ATTR table.

PRODUCT
PE |PRODUCT ID

FK1 |PRODUCT_TVPRE_ID
Fk2 |PRINARY_PFRODUCT CATEGORY_ID

PRODUCT ATTRIBUTE NANUFASTURER_PARTY (D
INTRODUCTION_DATE
PE.FK1 | ERODUCT 10 S4LES DECONTINUATION DATE

Pk AIIE HANE SUPPORT_OECONTINUATION_DATE
PRODUCT_NAME

ATTR_WALUE INTERHAL_HANE

ATTR_THWPE COMMENTS

DESCRIFTION

LONG_DESCRIPTION
INYENTORY_IESS0G E

REQUIRE_INVENTORY
¥ | SMALL_INRGE_URL

L 3

PRODUCT CATEGORY MEDIUM_INASE URL
= LARGE_IMAGE_URL
Pk |EEQDUCT CATEGORY ID DETAIL IMASE_ URL
DETAIL_TEMPLATE PROCUCT TWRE
FH1 |PRODUCT CATEGORY_TYRE_ID QUANTITY_UOM_ID
Fk2 |RRIMARY_FARENT_CoTEGORY_ID| QUANTTY NG LT DED " Pr |EEQRUCT TYFEID
DESCRIPTION -+ P IEC ES_ING LUDED »
LONG_DESCRIFTION WEKGHT_UOM_ID FK1 | RARENT TYRE_ID
CATEFDRY_IMAGE_URL WEGHT HAS TABLE
LINK_ ONE_IMAGE_URL TaxRELE DESCRIPTION
LINF_TIO_IMAGE_ URL TAX_CATEGORY Fy
DETEIL_TEMPLATE TAx T CODE
Ta_DUTY_CODE

4 CHARGE_SHIRP ING

AUTO_CRESTE_KEVWORDS
5 WIRTUAL

5 VARLNT
CREATED_DATE

CRESTED_BY_USER_LOGIN
LaST_MODIFIED_DATE PRODUCT TYPE_ATTR

L&ST MO DIFIED_BY_USER_LOGIN PE.FE1
Pk’ |&TTE NAWE

PRODUCT CATEGZORY ATTRIBUTE

PE,FK1

PK ATTR _HAME

ATTR_WALUE

Figure 4: Product data model in ofbiz application [4]

Hipergate
Is an open source Customer Relationship Management (CRM) solution [5], and a

well-documented application suite. It has a product catalog component that
persists its information using a similar pattern. In this implementation, categories
are organized into hierarchies or trees. Each hierarchy starts with a root

17

category. The parent/child relation in the hierarchy is represented in table

k_cat_tree as shown in the data model in Figure 5.

k_cat_root

PK,FK1 | gu_category

v

k_cat_expand k_categories
4’ PK | gu_category k_cat_labels
FK1 | gu_rootcat ’ gu_owner PK,FK1 | gu_category
FK2 | gu_category nm_category F PK id_language
od_level bo_active
od_walk > dt_created tr_category
FK3 | gu_parent_cat dt_modified url_category
nm_icon
id_doc_status
nm_icon2
v_cat_tree k_cat_tree
nm_parent PK,FK1 | gu_parent_cat
nm_child PK,FK2 | gu_child cat

Figure 5: hipergate Categories Sub-modé [5]

Product is an object defined in a category. Products share a set of common
attributes (defined in k_prod_attr) , and each product could add more custom
attributes (defined in k_prod_attrs). The data model is shown in Figure 6. More

details can be found at [5].

18

k_prod_locats k_products k_prod_attrs

PK | gu_location PK [gu_product PK.FK1 | gu_object

PK nm_attr

gu_product > dt_created
dt_created gu_owner vl_atfr
gu_owner nm_product
pg_prod_locat dt_modified
id_cont_type dt_uploaded
id_prod_type id_status k_prod_attr
xprotocol is_compound —
xhost id_language |q—— PK.FK1 | gu_product
xport de_product
xpath pr_list
xfile pr_sale
xanchor id_currency
dt_modified pect_tax_rate k_prod_keywords
dt_uploaded is_tax_included
de_prod_locat dt_start < PK,FK1 | gu_product
status di_end .
nu_current_stock tag_product dt_modified
nu_min_stock id_ref tx_keywerds
vs_stamp
tx_email
tag_prod_locat
xoriginalfile
len_file

Figure 6: Products sub-model [5]

Related Patterns

This pattern makes use of inheritance pattern. It can also be used with optimistic
concurrency control pattern to control concurrent changes to rows of product
categories and products in the catalog. Other variations of data models for e-
catalogs could be found at [6] and electronic commerce patterns at [8].

Appendix 1

To obtain osCommerce data model shown in Figure 3, download the whole
"Windows package" from the project web site download section (at
http://www.oscommerce.com/solutions/downloads) that is "osCommerce 2.2

Milestone 2 Update 051113", and un-zip the package into a local folder. In that

19

folder, the file "oscommerce-2.2ms2-051113\tep_database-pr2.2-CVS.pdf"
shows the complete data model for osCommerce. Figure 3 shows the part of the

model that implements the pattern presented in this paper.

To obtain Ofbiz data model as shown in Figure 4, go to the documentation web
page at http://incubator.apache.org/ofbiz/documents.html, then select "Data
Model Documents & Diagrams" which takes to
https://ofbiz.dev.java.net/servlets/ProjectDocumentList?folderID=236.

On this page, the file "ofbiz.product.20020826.vsd" is a MS VISIO diagram that
contains the complete data model for products and catalogs in ofbiz. Figure 4

shows only the components that implement the pattern under study.

To obtain hipergate data model as shown in Figure 5, go to the programmer's
guide from page http://www.hipergate.org/docs/#user. This takes to the
documentation at
http://www.hipergate.org/docs/files/2.1.0/prog_guide-2.1.0-en.pdf.

Figure 5 corresponds to the model on page 22, and Figure 6 corresponds to the
model on page 50. Description of model fields is also included in the same

document.

Appendix 2
Entity Relationship Model Notations

The database structure in Figure 1 is represented in a traditional entity
relationship diagram. This diagram uses the crow's foot notation for Entity
relationship diagrams. For notation details, the reader may refer to any of
database design books. One of such books is [9]. Figure 7 summarizes the

notation and could be found at [9], chapter 3, figure 3-2.

20

Relationships are shown as lines between boxes.

l

EntityOne HO— € EntityTwo

Entities are shown in boxes.

A single bar indicates “ong”: ——F
A crow’s foot indicates “many”; ——&

A circle indicates “optienality”, ————Q-
{It can be read “zero™.)

Symbals may be combined.

This symbol means “one or many™; —|-€
Figure 7: Entity Relationship Diagram Notation, Fig 3-2 [9]

Acknowledgements

| would like to thank my PLOP shepherd, Rosangela A. Delloso Penteado, for her
valuable suggestions and comments that greatly improved this paper. | would
also like to thank Dwight Deugo for his review, discussions, and helpful

comments on the initial draft of this paper.

References

1. Eduardo B. Fernandez, Yi Liu, and RouYi Pan, Patterns for Internet
shops, in PLOP 2001.

2. E. Gamma, E. Helm, R. Johnson and J. Vlissides, Design Patterns —
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

3. osCommerce project at http://www.oscommerce.com as accessed on July
2006.

4. ofbiz documentation at http://www.ofbiz.org/index.html as accessed on
July 2006.

21

. Hipergate documentation at http://www.hipergate.org as accessed on July
2006.
. Dongkyu Kim, Sang-goo Lee, Jonghoon Chun, Sangwook Park, Jaeyoung

Oh, Catalog Management in E-Commerce Systems, proc. of Computer
Science and Technology (CST 2003).

. K. Kim, et al, An Experimental Evaluation of Dynamic Electronic Catalog
Models In Relational Database Systems, Proc. of the Information
Resources Management Association International Conf., 2002.

. André Widhani, Stefan Bdge, Andreas Bartelt, and Winfried Lamersdorf,
Software Architecture and Patterns for Electronic Commerce Systems,
Ninth Research Symposium on Emerging Electronic Markets 2002.

. Rebecca M. Riordan, Designing Relational Database Systems, Microsoft
press, 1999.

22

