Error Containment

Robert S. Hanmer
2000 Lucent Lane 2H-207
Naperville, IL 60566-7033

hanmer @lucent.com

Abstract:

Many computer systems today need to operate with high availability. These
include web servers, network and telephony devices such as routers and switches, e-
commerce applications, and many others. No software is defect free, and neither is the
environment in which the software operates. As a result errors happen. To prevent
errors from causing failures they must be mitigated. A cornerstone of error mitigation is
error containment. The goal is to limit the parts of the system that the error infects with
its incorrectness. This pattern discusses ways of containing errors.

The patterns in this paper describe ways to limit err@pggation through the
containment of errors. Error containment is one efftitur phases of fault tolerance.
The others are fault detection, error recovery antll filmatment. The objective is to
tolerate faults that exist in the system to allow galh&ystem operation to continue. An
aspect of tolerating them is to limit their effec&rors in one part of the system should
not cause errors in other parts of the system. T&serns describe steps to stop the
propagation of errors from one part to another.

A systemfailure occurs when the delivered service no longer complitstive
specification, the latter being an agreed description of the systexpected function and/or
service. Arerror is that part of the system state that is liablee&llto subsequent failure; an
error affecting the service is an indication that aufeiloccurs or has occurred. The adjudged or
hypothesized cause of an error faalt. [Lap91]

A fault is the defect that is present in the system thataase an error. The fault
might be a latent software “bug”, or it might be alded message received on a
communications channel, or a variety of other thingsgeneral, software is not aware of
the presence of a fault until @ror occurs. An example of a software fault is a
misplaced decimal point in a data constant, for exammglewumber of steps needed to
rotate an assembly robot’s arm one degree.

An error is the manifestation of the fault, usually an incarestion taken by the
system. Continuing the misplaced decimal point exantipéeerror is the incorrect result
of an arithmetic computation made with the faulty datastant; for example the number
of steps off by an order of magnitude for a certain desietion because of the
misplaced decimal point.

Copyright © 2006, Lucent Technologies. All Rights Reserve
Permission is granted to copy for the PLoP 2006 conference.
1 08/06/06



Thefailure is the deviation from the agreed-upon correct operafitimecsystem.
In the case of the robots arm, the failure mightha¢ it rotates in the wrong direction
because of the erroneous computation made with the fdedimal point.

These four phases of fault tolerance: fault detecaomoy containment, error
recovery and fault treatment describe the executie lifecycle of a fault that is present
in a system. Assuming that there is a latent faulhe system, at first it must be
detected. This can happen through a routine means sacheaslit (checksum) check,
or it might be detected when an error is detectdee presence of the error is an
indicator that there is a fault present in the systdime fault is no longer latent but is
active when an error occurs. Once detected thetefbéthe faults activation, the error,
must be contained. The error cannot be allowed to progawaspread, to other parts of
the system.

Once the error is contained, steps are taken duringrecovery to mitigate the
error. Examples of this include making corrections, mégaring the software and
system. Fault treatment is done last, and is tlpeist@hich the fault is removed from
the system through software update or patching mechanisms.

Another phase, fault prevention reflects the abilityirpdesign and development
to avoid the insertion of the fault into the systeraulEprevention is performed at design
time, not at execution time.

To say an error is contained is to say that its efidetsot cause failures. Before
an error can be contained it must be detected. A nuofipatterns are available that
discuss detection; for example Watchdog Detection [Hafi84ystem of Patterns for
Fault Tolerance” by Titos Saridakis [Sar02], and alsoyrexamples in Patterns for
Time-Triggered Embedded SystetmsMichael Pont [Pon01].

The patterns here describe error containment. Sommpssas must be
outlined to understand the larger context of these pattérhese assumptions represent
things that will be covered by other portions of the lamerk that includes these
patterns.

= Reporting to the fault tolerance control entity aballérrors detected and actions
taken is a basic function that all objects must do.

= Most of the patterns are narrowly focused so that #8ne small enough that an
individual developer or a small team can include them. wsalt there are these
following assumptions:

0 The basic framework to support fault tolerance isl@&ce in the system.

0 The Fault Observer (An entity of the system that mebulous
responsibilities at the moment) receives reports, tes thot micro-
manage the actions of the objects discussed in thegensatt

o To simplify talking about concepts the activities that @escribed might
be best integrated with other functionality (either &apion or fault
tolerance related). Patterns are used to explaincthatias.

Copyright © 2006, Lucent Technologies. All Rights Reserve
Permission is granted to copy for the PLoP 2006 conference.
2 08/06/06



The system capabilities that are discussed in thessrpstest on top of the
application-required functionality and are orthogonat in many ways.

Achieving fault tolerance and maintaining a state of feldirance are not free. Both
development and execution resources are required.

Copyright © 2006, Lucent Technologies. All Rights Reserve
Permission is granted to copy for the PLoP 2006 conference.
3 08/06/06



1. ERRORCONTAINMENT

The Error Containment pattern describes building barieo your system so
that errors can't propagate from one part of the sysbeamother.

... The system is designed to perform as well as it cameipresence of faults.
This is because the necessary fault tolerance frankesi®ments are in place. The
software knows that it is supposed to be within a highlylalviai system.

There are mechanisms for detection of faults tha¢ lheen designed into the
system sprinkled throughout the variousit$ OFMITIGATION [unwritten].

Errors in one part of the system, or in one computat@onspread and cause
errors or failures in other parts of the system. @am of the system succumbs to it and
then it mysteriously appears in a different part ofsytem. Detection identifies that an
error has occurred but doesn’t do anything with it.

) ) )
LS X X4

*

How do you contain an error and keep it from propagating? Errorsspread
through several mechanisms: erroneous messages, corrupig@acorrect) pooled
memory or actions based on the results of other incorrect aons.

Unless something is done the error will continue throbghsiystem forever or
until it eventually it causes a failure that resultgeirmination. This is the nature of
errors.

The effects of an error cannot always be predictedwarce. Nor can all the
potential errors be predicted. The system must theré&®iadaptable and able to handle
unanticipated errors. Any capability that the softwae tio deal with the effects of an
error must be put in place during the design phase. Theilagsrequire conscious
preparation.

Fault tolerance is living with faults. One thing that siystem must do in order to
live with faults present in the system is to find ayw@ignore or mask them. But some
ways of masking errors result in their still being propadahroughout the system. If the
system doesn'’t just “ignore” errors, what can it do? Qpi®n is to say “HELP” and
terminate. But this does not fit into the frameworHKaafit tolerance within the system
(see MNIMIZE HUMAN INTERVENTION [ACGHK95]). Sometimes terminating is the only
option though, for example when an error is detectetdhthiies the system unsafe.

Another option is to take steps to mitigate the eriidris isn't always possible
though; it depends on the nature of the error and the f&olne errors, particularly data
errors can be corrected by means suchGsRECTIVEAUDITS [unwritten], restoring from
backups or @EckPOINTS[Han03].

In the case of some errors an effective way ofgatton is to mark them for all
other parts of the system to know that they are erronedlus eliminates the need for

Copyright © 2006, Lucent Technologies. All Rights Reserve
Permission is granted to copy for the PLoP 2006 conference.
4 08/06/06



the other parts of the systems to detect the errag;ddin concentrate on taking the steps
appropriate for them to mitigate them.

Therefore,

When errors are detected, contain them using the safesteans possible.
Stop the error from progressing and then invoke appropriatenotification, logging,
repair and recovery functions.

Design the system to prevent the flow of errors from onegut to another.
There are three main ways to accomplish this:

1. Mark the erroneous data for avoidance, as described in the nex
pattern.
2. Correct the erroneous element so that it is no longer err@ous.

This is a repair step, for example ©RRECTING AUDITS [unwritten].

3. Abort execution while reporting the error to any and all fauk
handlers (both internal and via FAULT OBSERVERS [unwritten]) for
higher level mitigation.

In order to be able to contain errors the system teisible to detect them. The
system must also be in close communication witld#tection mechanism. Additionally
it must have the ability to decide what the course tbags the safest given the
circumstances of the error. Detection as clogkdadault in either structural proximity
or time is the best-case scenarios.

) ) )
LSS X X4

*

Hardware error containment can include isolating faultg\ware components
through activity bits and other techniques.

DATA CONTAINMENT describes a method of marking erroneous information to
contain its future use.

DisABLE EXECUTION discusses methods of altering program flow if an esfor
execution paths has been detected. [Unwritten]

“Design Patterns for Fault Containment” by Titosi&alkis [Sar03] contains
three patterns that deal with guarding against errors propggdtwo of the patterns
describe the use ways to detect and contain the spreac s through amiPuT GUARD
or an QTPUTGUARD. The third pattern describes aXrAINER object.

Copyright © 2006, Lucent Technologies. All Rights Reserve
Permission is granted to copy for the PLoP 2006 conference.
5 08/06/06



2. DATA CONTAINMENT

The Data Containment pattern describes marking errorgaias/alues as invalid
to prevent any part of the system from propagating tto.er

... The system has a way to detect errors in data tbhaed. The system is going
to contain errors as much as possibRRERCONTAINMENT (1). An error was detected
and neither aborting nor correcting it is the approprease.

The erroneous data was detected in a message thatirgggassugh this part of
the system, or in an element of data that was seadetr and accessed by this part of
the system, or it is detected as the result of anatiper

) ) )
LS X X4

*

When erroneous data is found, how can it be kept from spaeling?

Sometimes error is in stored data, it is somethingwiaatput away for later use
into a medium to longer term storage (i.e. not RANIhe part of the system that is going
to contain the error might not have enough informatiobe able to determine if it was
incorrect when first stored or if it was corrupted dgratorage. We can presume that it
was correct when stored away, but when it is usedauisd to be invalid. Using the
invalid data will cause a failure; it must be contained t@gaethis from happening. The
corruption might have happened a long time ago but notifiéentntil the data is about
to be used. ®UTINE AUDITS [Unwritten] are used to detect corrupt data before thee da
is needed for processing. In many caseRRECTINGAUDITS [Unwritten] can be written
to correct these elements of faulty data.

The storage medium can be made to tolerate errors owit. For example the
memory of the system can be designed to contain eoroecting codes. These codes can
only detect a certain number of bit errors in a giemory unit, but this will be
sufficient for many error cases. This memory is camnm systems that are designed
from the hardware-up to be fault tolerant, but thessr@orrecting and detecting code
memories add expense.

If the data cannot be corrected it must be contaimedhe short term the entity
that detects that it is erroneous should not use ie d&ta that was erroneous and the
results of any actions taken with that data can bsadied.

In the longer term we don’t want the data to be used by#wer parts of the
system. It can be marked in such a way that other phite system don’t have to spend
much time detecting that it was erroneous, and can qe®tiain the impact of the error.

An IEEE “NaN” is an example of a way to mark a datleas invalid. The
IEEE standard 754-1985 defines standard representations for bo@nyg-point
numbers. While defining the numerical representation aftey define a special value
“Not a Number” or “NaN”. NaN is stored in place ofi@ating-point value as the result

Copyright © 2006, Lucent Technologies. All Rights Reserve
Permission is granted to copy for the PLoP 2006 conference.
6 08/06/06



of certain illegal floating point operations, for exdengivision by zero. The standard
defines rules for how subsequent computations should batereone of the operands
is NaN. [I[EEE754]

Messages sometimes contain data elements that areeuas. These must be
contained also. In some cases the entire messadee aiscarded. This is most
effortless when the protocol supports retransmissioh neaiived and the message has
not been acknowledged yet.

Individual data elements within the message are somgiaeatifiable as being
erroneous. If only parts of a message are incorecta mechanism such as the IEEE
NaN can be used to identify the erroneous part. Thosvaltomputing to continue
subject taking into account the elements that are estusne

When the results of a computation or processing aremlieiesd to be erroneous
the NaN approach can work as well. In some casedeti@etion of an error at this level
indicates that the part of the system that perforrhecomputation is erroneous. In
these cases the entire part of the system shouldadeechand avoided rather than just the
result. Inthese cases a marking is needed, but &ie N&aN is too low level. One
approach is to report to thaliL. T OBSERVER[unwritten] and rely on higher-level system
functions to contain and repair the faulty entity.

Marking data or results so that they aren’t used iseé.fln the case of IEEE
NaN the value is encoded in place of the value, but So@e this flag might require
additional “meta-memory”. Resources are required tolcler the erroneous mark and
take appropriate actions.

Therefore,
Mark data that should not be used because it is found to l@¥roneous.

R/ R/ R/
LC IR X X4

>

The periodic checking of data for correctness is a naohthis pattern. Instead
of waiting for the data to be accessed in normal opersitthe RUTINE AUDIT
mechanism will periodically check for correctness aittike flag or correct.

“CHECKS” by Ward Cunningham [Cun95] introduces the idea ahareptional
value as a computational result. This effectively amstthe error to everywhere
upstream from where it is detected. Failures are ptegidrecause the system does not
use the erroneous value if flagged as exceptional.

Copyright © 2006, Lucent Technologies. All Rights Reserve
Permission is granted to copy for the PLoP 2006 conference.
7 08/06/06



Acknowledgements:

Manythanks to Dirk Riehle who shepherded this paper through many chamges
direction.

References

[ACGHKN96] Adams, M. E., J. O. Coplien, R. J. GamokeSRHanmer, F.
Keeve, and K. L. Nicodemus. “Fault-Tolerant Telecomroations System Patterns.” In
[VCK96], pp 549-573.

[Cun95] Cunningham, W., “The CHECKS Pattern Language ofhmdtion
Integrity.” In [CS95], pp 145-155.

[CS95] Coplien, J. and Schmidt, D., ed&attern Languages of Program
Design Reading: Addison-Wesley, 1995.

[Han03] Hanmer, R. S., "Patterns of System Checkpoiriting,Proceedings of
2003 PLoP Conference.

[Han04] Hanmer, R. S., "Watchdog Detection," in Proaegslof 2004 PLoP
Conference.

[I[EEE754] -.IEEE 754-1984, |IEEE Standard for Binary Floating-Point
Arithmetic. New York: IEEE 1985.

[Lap91] Laprie, J. C.Dependability: Basic Concepts and TerminologyWein,
New York: Springer-Verlag, 1991, p 4.

[Pon01] Pont, M. JPatterns for Time-Triggered Embedded Systems New
York, ACM Press, 2001.

[Sar02] Saridakis, T., “A System of Patterns for Edolerance,” in Proceedings
of 2002 EuroPLoP Conference.

[Sar03] Saridakis, T., “Design Patterns for Fault @owhent,” in Proceedings of
2003 EuroPLoP Conference.

[VCK96] Vlissides, J., J. Coplien and N. Kerth, eBattern Languages of
Program Design-2 Reading, Mass: Addison-Wesley, 1996.

Copyright © 2006, Lucent Technologies. All Rights Reserve
Permission is granted to copy for the PLoP 2006 conference.
8 08/06/06



