Functional Testing: A Pattern to Follow and the Smells
to Avoid

Amr Elssamadisy Jean Whitmore
Valtech Technologies
345 Lincoln Ave, #921 1860 Sherman
Ambherst, MA 01002 Evanston, IL
++1-435-207-1225 ++1-312-782-7156
amr@elssamadisy.com jeanimal@gmail.com
ABSTRACT functional testing have lacked the right tools and techniques.

Functional tests are automated, business process testsied-ow After all, how many unit tests would you write without xUniida

by customers (a.k.a analysts) and developers. They help? contlnu_ous_bund’? Hov_v much ref_actorlng would you (_10 if you
elucidate requirements, make project progress visible, and ofVere codm_g in a text editor? The right tools and techniques can
course improve code quality. We present functional testing in Make functional testing easy and cheap.

pattern format, aggregating our experiences with functional |n particular, we recommend techniques for making functional
testing over several agile development projects. Howewer testing fast enough to be in the continuous build (and at least as
have also seen functional testing become more costly than it fast as the typical check-in cycle in a non-agile developme

benefits, so we describe the symptoms—“smells"—of potentially environment). We also explore techniques that make diagnosis
costly problems. These problems can be rooted in testoftest failures relatively easy.

implementation practices or in the architecture of theesayst

under test. We suggest solutions to these problems that mak&iowever, sometimes even the right tools aren’t enough. If
functional testing cost-effective and fun. setting up a functional test is onerous, the root problembmaay

the architecture of the system under test. This phenomenon is
similar to the idea that if setting up an object in a unit tes

harness is especially hard, then the object probably has too many
dependencies. We will suggest architectural changes such as

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications] D.2.5 [Testing and

Debugging] improved modularization of subsystems and moving business

logic out of the Graphical User Interface (GUI) and inszevice
General Terms layer [1]. These changes make functional testing easiee whil
Testing, Patterns, Agile Development Practices making the architecture better.

In this paper, we assume functional testing is done within an
Keywords agile developmen{2] environment, although we offer a few
Functional Testing, Acceptance Testing, Patterns, Agile yariations for a traditional development environment. Oougo
Development Practices is also on functional tests that exercise all layerspxte GUI,

but most of our patterns and smells apply to other types of
1. COST-EFFECTIVE FUNCTIONAL functional test. We will point out when they do not.
TESTING We begin by describing functional testing in a pattern format s

Functional testing—the practice of customers and developers cothat readers can determine whether the practice is apprdjpriate
writing business process tests that execute automatically—hasgheir projects. Then we identify functional testing smellsghsi
been touted as a practice that increases the quality and business costly problems—and the technical and architectural solutions
value of software. Functional tests can automaticallgrdehe that address them. We hope people will recognize the need for
whether an application is doing what is expected from a businessetter techniques rather than giving up on functional testing.
perspective. They can also help customers communicateThe benefits are just too good to pass up.

requirements in a precise, consistent way to developersauBe

of these features, functional tests have sometimes beled cal 2. Functional Testing: An Agile Practice

“executable requirements.” Pattern

So why has functional testing not been embraced as strongly agatterns allow us to propose development practices as pbtenti
unit testing in the agile community? Why do many of our solutions to a common set of problems. By describing fumatio

colleagues complain that the costs of functional testingeeikce testing in a pattern format, we empower readers to make the
the benefits? We believe that people who have given up onown evaluation of this development practice. Using functional

testing is then not a stark black or white decision; it depends pushing us to try functional testing are too many bugs, delayed
how much a development team has experienced the problemseleases, and poorly captured requirements.

and whether this pattern as a proposed solution is within .
reasonable costs. We include several stories and nasraive 2-2-1 Bugs Increase As Inter-Module Dependencies

bring home the points based on specific experiences we haveGrow

had. Most development groups that we have seen try functional
. testing were motivated primarily by a desire to reduce BLigst

2.1 Automated, Business Process Tests is, when they hear the phrase “functional testing,” they

In this paper, we definkinctional testas particularly focus on the word “testing.” Unit tests can keep

individual classes fairly free of bugs, but they do not address
inter-module bugs. Furthermore, as the code base grows, the
+ co-owned by customers and developers and that number of potential inter-module bugs grows faster.

e can be automatically executed.

e business process tests that are

2.2.2 Delayed Releases

Functional tests can be better understood by comparing themas the application grows and the product matures, the testing
with what they are not. department cycle can take longer, causing increasingly delayed
First, functional tests are not owned by a testing departmentreleases.

(which may or may not be part of a Quality Assurance
department). Instead, they are owned by—i.e. created an
maintained by—customers. In order for customers to be owners
the functional testing tool must provide a way for custoners
read, write, and execute test specifications, although devslope
may implement tests and the testing department may help
develop more effective tests.

Manual testing by a testing department will take significantly
longer with a large product than a small one. Because manual
testing is slow, the feedback about a bug occurs long after the
code changes that caused the problem were made. The delayed
feedback makes it hard to diagnose which change caused the bug,

] so fixing a bug found by the testing department takes longer, too.
Second, functional tests are not manually run. No one needs to

click on screens or set up data in order to execute theneathst 2.2.3.1 Slow Patches
functional tests, like unit tests, are completely automated. A corollary of slow releases is slow patches for buggrorted in

However, unlike unit tests, functional tests are not focused the field. In many development environments, developers have
isolated units of code, whose proper behavior a developert® S€t up a full database and perform many manual steps to
defines. Instead, they exercise a useful business procesg whod€Produce a bug. And they must reproduce the bug both to
correct outcome is defined by a customer. We speak of ad!agno_se it and to confirm they have e_hmmated it. How_ much

businessprocessbecause we mean more than just the static M€’ if they had an easy way to script the system with the

business rules: we mean also the sequence of steps that invok@inimal conditions to reproduce the bug!

the business rules to generate a useful outcome. If usear@se o 5 4 Not Knowing When a Task is Done

used_, then each scenario .Of a use case can be covered byﬂmost everyone has experienced a project that was declared
functlon_al test. Our goal is to assure that the prograns doe “done” and then continued for weeks or months afterward. With
something useful for a real user. functional testing, the customer writes tests that exertise

If functional tests cover more than a unit, just how much should business process (represented in a use case, story or)feature
they cover? There are several options, depending on theftype oscheduled for the current iteration. When the functional tests
testing you want to do. Our experience is primarily with pass, the work is done.

functional tests that are driven from thervice layer(or control .

layer or system-facade layer), a layer between the &tdl 2.2.5 Poorly Captured Requirements

domain layers on n-tier systems. That is, our functioaesist 2251 Imprecise Requirements

exercise all layers except the GUI so that they are alemabto- One of the reasons projects drag on after they are declare
end. We will call these service-driven functional tests. “done” is that the original requirements were impreciserbsle
Many functional testing tools drive tests through the GUWM& requirements do not provide enough detail for coding.
of the patterns we describe also apply to these GUI-driveis.to ~ Developers guess what the customer meant and call the project
However, the tests of GUI-driven tools are often mivegile done. But if the developers guessed wrong, the code will lpave t
than those of service-driven tools because they may breakavhen be re-worked.

button is moved. More importantly, GUI-driven tools do not . .

have the architectural benefits of service-driven toolst Fo 2.2.5.2 Contradictory Requirements

. : : Many “done” projects get stuck in the testing phase because of
le, th t hel I f th I . .
example, they do not help drive business logic out of the GUI 3] bug cycles. An example of a simple cycle is that when bug A i

2.2 Forces fixed, bug B appears; and when bug B is fixed, bug A re-appears.
The forcesin a pattern are the driving factors that lead to the BUt the cycle is rarely that obvious, especially if A andrB in
implementation of the pattern. Patterns can be considered adlifferent parts of the system or take a long list of masteps to

problem/solution pairs. The forces are the problems that are®Produce.
addressed by the pattern as a potential solution. The maaés forc

An automated test suite could quickly show that both bugs arereported either by the testing team or the customer cotoetle
never fixed at the same time. At that point, one mightostesc developer as a set of steps for reproduction. The immediate
that A and Bcannotboth be true at the same time because they response for a developer when functional testing is avaiiguixe
are contradictory. Functional tests help “test” our requargsh write a failing functional test to reproduce the steps. Tsten

for contradictions. digs in, finds the problem, writes a failing unit test, anddithe
. problem, causing both the unit and functional tests to go green
2.2.6 Outdated Requirements (most of the time). This technique, which is enabled by

Finally, requirements are also often outdated. The longerfynctional tests, catches the “false fixes” where the dpeelo

running the project, the more likely that at least somehef t finds the bug, writes the unit test, and assumes the bug has been
requirements have fallen behind the code. Let us be frank—haveixed when it truly is not.

any of us really had requirements that were 100% up-to-date

after a year of development? Note that for all of these benefits, the functional testesoiust

be part of the continuous integration build. If functional tasts
Outdated requirements can be more nefarious than nonet in the build, they can easily become a liability instead of
requirements. If there are no requirements, developersryvtib t benefit, a situation we describe in the smells below.

extract them from the customer, the code, or the unit telbtsf

which are likely to provide fairly up-to-date informatiorBut 2.4 Variations

outdated requirements amésinformation. They can waste alot 5 4 q Covering the Domain Only

of time by sending developers down the wrong track. This paper focuses on functional tests that execute logictirem

2.3 Description service layer through the domain layer all the way down to
ersistence. Not all functional tests must exercise halse

ayers; in fact Mugridge and Cunningham [3] argue for writing

functional tests to exercise the domain logic only. Suds tae

still useful, but they do not cover the subsystem boundaries,

which are bug-prone. The domain-only approach is a viable

_ o] _ _ alternative if running end-to-end tests within a developer eheck
Unit testing is often practiced with test-driven developméiite in cycle is infeasible.

developer writes a test for a case the code cannot yetehandl

Because the case has not been implemented yet, the test fail®.4.2 Functional Tests Written By Committee

resulting in a red bar in the unit test GUI. Then the codedgs pa We argue that customers or analysts should write functiestd t
the test is written, which turns the bar green. Then the ¢ycl because they are in the best position to write requirements.
repeated in a red-green-red rhythm. However, testers and developers can join customers andtanalys
to co-write tests.

Functional testing is much more than automated acceptange test
the set of tests can be considered “executable requirements.
That is, they are requirements written by the customer
(sometimes with the help of a developer depending on tool
support) that can be run and either passed or failed.

Functional tests take the red-green-red loop of unit tesditige
level of red-green-red loops for adding new business Testers bring their expertise in test-case development and help
functionality to the application. From that point of view, write requirements that cover the necessary details. |Qpars
functional tests allow the developer to know when she is donemay be needed to help make the requirements executable
with the task at hand as indicated by the customer. They reduceslepending on the tool. For example, the Framework for

a large amount of effort where code is submitted to themest Integrated Tests (FIT) tool [4] requires developers totewri
or testing group only to be found lacking in functionality and be fixtures before tests can execute. We have found that writing
brought back into the development group. tests by committee usually happens primarily in the beginning

stages of adoption of functional testing as analysts |eatimirik

like a tester, and developers build their domain language. In
later stages, writing tests by committee tapers offthedorunt

of test authoring falls to the analysts with occasiongb ffireim
others in the development group.

A major—often uncited—contribution of functional testing is the
improvement of the architecture of the system under test.
Functional tests force business logic to be removed frorsthie
and moved into the service layer, where the functional tests
exercise it. Functional tests also encourage modularitytteand

separation of subsystems, analogous to how unit testslfose 2.4.3 Functional Tests Written With Unit Testing
coupling between objects for testability. This idea i$ séiv to Tool

us but we have found that it rings true with others with similar
experiences Some teams write their functional tests with a unit testood

] o _ o) such as NUnit or JUnit. Using an xUnit testing tool covaide
Another major contribution of functional testing is that dtsean adequately but loses involvement from customers and analysts,

entire set of possible errors that is not addressed by stiiige since the tests are now coded in a language that they carr neithe
As any experienced object-oriented programmer knows, arite nor read. It becomes the developer's job to tramstee
significant part of the complexity of an object-oriented etysts requirements into these tests. The status of the tegmsaig

in the relationships between the objects. Functional testingor fajling is also not visible to either the customertesting
exercises these complexities as unit testing cannot (and is NOkroup.

intended to). Software quality increases. And development canW ider f ional . . b her hobbl
proceed at an even faster pace than unit testing enabled. e consider functional tests in xUnit to be rather hobbled

o))) because of the exclusive focus on coverage. These tests ar
A fourth contribution of functional testing shows up more in the

later stages of a project as it enters maintenance niomggs;

indeed better than no functional tests but could be considered an executable reproduction of the bug that can be used for

smell. digging into the code repeatedly without having to keep setting
. o . up the environment “just so”.

2.4.4 Functional Tests Within a Traditional P J _ _

Development Environment 2.5.4 Testers Have Time to Be More Pro-Active

Our experience with functional testing is within an agile If “Slow Manual Testing” is a reason to try functionaltieg,
development environment, but there is no reason it cannot bethen quick automated testing is a benefit. The consequence is
used on non-agile projects. The key point is that the functionalthat testers are relieved of much of the day-to-day burden of
tests must be run at a frequency that matches the developefanual testing of the main business rules. Instead, testers ha
check-in cycle. That way, the source of failing tests ba more time to be pro-active, collaboratively helping depets
identified. All of the benefits of agile functional testiage design more testable code, rather than waiting to “clean up” a
achieved, just at a slower cycle time because there is nothe end of an iteration.

continuous integration build. When done in this environment, 255 When a Task Is "Done" is Visible for All
g;ﬁec?(r-ri]r? r;ai;zso;; ?e?galcl) f :#S gr:r}gnte:rts Is reduced because trI‘R?ecall that without functional testing, we are driven by tireef

4 ypicatly ger. of “Not knowing when a task is done.” Using functional testing
2.5 Benefits does help us know When a task is done, bu'_[i_t’s more than jyst
Whereas forces push us toward a pattern, benefits pull usthat. Functional testing makes progress visible to theeentir
Forces describe a problem that the pattern will solve. In development team—customer, analyst, developer, tester, and

contrast, we obtain the benefits even if we do not currently ha Manager. At any point in time all passing (and failing)steah
any problems. be viewed. With a little effort business value produced at a

functional level can be analyzed for management needs.
2.5.1 Development Team Has More Confidence . .
There is a defirgte sense of confidence that developers acquir 2'5'6_ Better_ Des!gn, Better Architecture .
when there is a solid test framework that they rely upon.t Uni Functional testing drives better layer and subsystem separatio
testing and TDD have gone a long way in making developerscons_'der the layers of a multi-tier arch_ltecture. Sinlce t
more confident of their code. This is not merely a “wéuezy” fungtlonal te_sts execute through the service layer, eve_rybfblt
feeling (which is always good for morale), but enablesefast Pusiness logic that has found its way into the presentatien lay
development because developers change what needs to peust either be duplicated in the_ test fixture or _p_ul!ed into the
changed via refactoring. Functional tests take this confidepce ~Service layer. We explore this point in more detail irisect. 1.
a notch or two above and beyond unit testing. They also improveSimilarly, consider the subsystems of the system—the modules
the confidence of the customers/analysts and testers bebayse t with functional responsibility, such as a module for tax
have a direct relationship to the requirements and regressiorcalculations. As we show in section 4.2, any tax logic hiast
tests. They know a green test is a non-ambiguous indichtion t leaked out of the tax module will be duplicated in the test fixture
the related scenario vgorking unless it is moved into the tax module. Functional tests help

solidify the responsibilities of a subsystem.
2.5.2 Robust Tests fy p Y:

Service-driven functional tests skip the GUI and focus on 2.5.7 Analysts Think Through Requirements in
business logic. Business logic tends to be fairly stalle,sa Greater Detalil

the tests don’t have to change much. In contrast, automated teé Anaysts think through requirements in greater detail to achieve
that hit GUI elements break when GUI elements are re-amange the descriptions needed to write a test. For example, aysanal

2.5.3 Errors and Bugs are Reproducible Quickly might state that textboxes should be disabled whenever they are

e not needed. But when he writes a functional test for this
Once a bug is found, a functional test is written, and that bu
doesn't con?e back to haunt us. A unit test should also berwritteg requirement, he is forced to get explicit about which conditions
around the buggy code, of cburse but when developers firstCause which textboxes—or really their representations in the
begin investigating a bug, they don’t know where to write the underlying service layer—to be disabled.

unit test because they don’t know which unit caused the problem.2 5.8 Improved Customer-Developer Communication
But they (hopefully!) know which use case caused the problem, The concrete examples codified in the functional tests are not
so they should be able to write a functional test immediatly gyfficient to specify requirements. Customers would not know
writing tests as soon as bugs are discovered, we elimihate oy to create such detail by themselves, anyway. Instea, i
bug-fix-break thrashing that happens when systems becomene collaboration between customers and developers that helps
brittle. flesh out requirements for both of them.

We have found that when a system moves from initial
development to production that the amount of time spent
developing new functionality decreases. With a functional
testing framework at hand the “business language” has alread
been built and it becomes very straight-forward (more than for
unit testing) to build a functional test that exactly reprodtices
error based on the bug report. This allows the developewn& ha

On the whole, functional testing with requirements specifinatio
can improve communication between developers and customers.
Over time, the discussions of the functional tests help ta te
ydevelop a common vocabulary and a common vision for the
system [4]. Examples of the development of such collaboratio
can be found in Mugridge and Cunningham’s recent book [5].

2.6 When to Use It Keep the scenario “slice” thin and deep. That is, test d seta
There are several tool requirements when it comes to émadti ~ Of functions at a time and run it from the service layethal way
testing. Only use functional testing if you are able to miake [0 the database. We would recommend selecting a high-igsk sl
part of your build process. On agile development projects this fi'St; €. replicating a recent bug, so that team memtgmes
means that it must be part of the continuous integration build. 200Ut the outcome.

On more traditional projects, the functional test suite roasun 2. Minimize the amount of data in your database snapshot used
within the granularity of a typical check-in cycle. for your testing. Remember, the smaller the databasdaster

If you cannot run your test suite within the normal check-iitecyc the refresh and the actions that are performed in the database.

time, you may find that your tests are noisy and oftenntil 3. Mock out external systems whenever possible for speed and
because they cannot keep up with the current build (more detailindependence. A good example would be mocking out an
in section 3.1). For functional tests realistically toplaet of the external credit card authorization service for an e-comgnerc
build, the functional test suite should not take more than 20 application.

minutes to run (as a rule of thumb for agile projects). croexe

. . . 4. However, you may want to include a few tests that aterf
this, the following strategies have been found helpful: A y

“high risk” external systems that could cause (or already have
e Database where test set is present and caused) your system to fail if you misunderstand their ARle
refreshable/loadable within an acceptable time. That tests can then help document the API.
means we have to actively keep a snapshot to support

. 5. Whenever a functional test strip gets too “thick"—e.gt if
our suite of tests.

includes more than one scenario—separate it into differest test
¢ Tests can use transactions and rollback at the end of
the test instead of committing (usually 5-10 times 2-8 When Not To Use It—Are you ready for

faster than a committed transaction). Functional Testing?
« Distribute functional tests on separate machines every The long and short of it is this: don’t use functional tesigif
time one machine’s run takes too long. are not willing to put the effort to write the tests. sThiay turn

out to be a non-trivial effort—there are definite cosn if you
are not willing to daall of the following, then maybe functional
testing is not appropriate at this time:

Finally, you are ready to introduce functional tests if yorehtae
attitude that testing is a primary development practice and not
secondary practice that can be dropped in a crunch or if it

requires a large effort. Functional testing does not chee * Introduce a technique to determine what coding
and we will see below in section 3 that the cost of cuttimgers modifications have broken a build. We recommend
is very expensive. that you make functional testing part of the continuous

build, but if not then at least have a functional testing
2.7 How to Use Functional Testing cop. This is discussed in detail in section 3.1.

Functional testing is much more than just testing. It is al®ut
communication between developers, analysts, and testeis. It
about understanding the requirements, the business domain, and
your system as a solution addressing business problems.

¢ Modify your existing system for testing. Most systems
built without functional testing in mind will need
modifications. Many of these modifications are not
simple and may involve architectural changes. Section
Jim Shore states, “In the same way that test-driven davelat, 4 discussesrchitectural smellghat will require these
when done well, facilitates thinking about design, [functional types of changes to enable useful functional testing.
testing] done well facilitates thinking about the domain. This .
thinkig]g happens at the requirements level and at the design2.9 Suggested Adoption Strategy
level” [6]. Ultimately functional tests become a domzivel Like almost everything in agile development, functional testi
language spoken among the various members of the developmerthould be adopted iteratively. Be careful that you keep “people”
team. So as you embark on functional tests, be sure todocus ahead of “process.” That is, iterate to get developers and
communication of requirements and building up of the domain customers trained and have them build a few functional tests.
language. In factFunctional Tests Written By Committae Then, after the team has a few working functional testsatteat
section 2.4.2 is an excellent way to start off. part of the build, ask them for feedback on the tools and
processes. Improve your tools and processes until the gexglo
and customers are happy with functional testing. Then
iteratively expand the practice to the team.

We would add that service-driven functional testing also
facilitate thinking about system architecture. You simply'tca

put much logic in your GUI if you have to run your functional
tests without the GUI! When functional tests are not part of the build, they can cause
much more harm than good and may not catch on or ever be

Functlonal_ testing is also very tool sensitive. If tbelg are not useful. We have seen this happen and it is not a pretty sight.
up-to-par in speed and feedback then functional tests lose much

of their benefit. Once you have the right tools, you nedahow Adding functional tests to a legacy system—i.e. one that niies
how to use them. Functional tests should iteratively coger ~ already have functional tests—can be challenging because the
cases, one thin scenario slice at a time. architecture might not allow excluding the GUI or testing a

s . single use case scenario at a time. You also may leve r
1. Choose one specific example of a path through a business 9 y

; . architect some of your system to speed up the functiona test
process—e.g. one scenario through a use case—to tesinat a ti y Y P P

enough to be part of the continuous build. Functional tests can
initially be added for new features or to reproduce bugs, with
supporting unit tests added for the implementing code. As we
describe below, we do not recommend adding functional tests
without unit tests.

During the transition to functional tests, it can help toggssi
developer the role of "Functional Test Cop." The cop’s jolmis
track down the developers who break the functional tests, help
them see why their code broke the test and help them fix the
problem. See the narrative in section 3.1.3 for more detail
this role.

3. IMPLEMENTATION SMELLS

Your first attempt at functional testing might encounter
problems. We've encountered two broad classes of functional
testing problems. The first class involves the implemumtadf

the functional tests themselves; the second is related to the
(un)suitability of our system under test.

We describe these problems in terms of “smells,” whiclearly

Functional Tests Rollback Database Transactidhis

is a very simple but effective idea — don’t commit your
database transactions if you are testing end-to-end. We
have seen this practice emerge independently on
different projects and this usually gives about an order
of magnitude increase in speed.

Functional Tests Refactored to Thinner Slice®y
testing a small scenario within each test instead of
several scenarios (or even all scenarios) for a use cas
we get a finer granularity for splitting up tests. We
have also found that larger tests tend to have more
redundancy — breaking them up allows for faster
individual tests.

Functional Tests Grouped By Business AiGaouping
functional tests by business area allows a developer to
test the subset of relevant tests on their machine
without running the full suite. This allows for a faster
red-green-red test loop and will keep a test suite from
slowing the pace of development.

warning signals that the development process needs to b
“refactored” [7]. In this section, we consider smells obmpo
implementation and offer the techniques that can alleviate them.

®Note that having independent database sandboxes for each
functional test run is a prerequisite for the above advitewo
functional tests run against the same database, one mayaeport
incorrect “failure” because of interactions with the dateiitesd

3.1 Little (or No) Accountability for Broken by the other test.

Tests . . .
If there is no accountability for broken tests, then they dgett ~ 3.1.2 Related Smell: Confidence in Functional Tests
fixed. In general there is no accountability if it is difficto tell is Lost

whose code change broke the test. We have found that thig eaving tests broken takes away from much of the value of the
usually happens when the test-run cycle is significantly slower functional test suite as a “safety net” that prevents bums fr
than the check-in cycle of developers; that is, if several entering the build in the first place. The tests aren’t cagctiie
developers have checked in their code since the last time thebugs and helping us keep the code in working order as we would
tests were run, it is difficult to determine whose changekebr expect. Without this safety net, confidence in the testesis |

the tests. Test writing is reduced, and in the more serious casesatieey

. . . . deleted and finally dropped as a whole.
3.1.1 Solution: Functional Tests In Continuous Build “¢¢ oo and inaly dropp

We strongly recommend including functional tests in the 3.1.3 Narrative: Slow Tests Removed From Build
continuous build. Inclusion in the continuous build was also Stay Broken

recommended in Gandhi et al.’s experience report [8]. N athe context of the following example is from a large legsi
traditional development environment without a continuous build, gnpjication after one year of practicing XP with a 50-person
the functional tests should be run after every check-in. Another geyelopment team consisting of about 30 developers, 7 analysts,
variation is to use a “functional test cop” as describecatian 8 testers and management. The code base was over 500,000

351-3- Remember, the goal is to identify the check-in tha&tebro |ines of executable code and the technology was J2EE with EJB
the tests. 1.0.

3.1.1.1 Technical Tips for Speed When we first started implementing functional tests we weren’

In order to get functional tests into the continuous build, tiste ~ duite sure how much value they would have, but we had a very
must be made fast enough. First, the team must make sSmart and experienced consultant advising us to do so. We knew
commitment to functional testing as a primary development W€ Were missing inter-object testing and our xUnit testswer
practice instead of a secondary one. When it is not an dption testing unit and more increasingly “integration” tests byings

drop the tests, then teams find creative solutions. The mainSyStems of objects together. We had greatly reduced toes er
thing is to speed up the running of the functional tests so theyfound by the testers in QA, but there were still many getting

can be run effectively by developers on their local machines through. Also, we had several cases of the developer siyipg
before checking in. Effective strategies we have found are were “done,” but when his code was reviewed, there was either

missing or incorrect functionality even though the unit tests

* Functional Tests on Separate MachineBy grouping passed. So those were the driving factors to implement
tests into related suites then each suite can easily begnctional testing.

run on its own machine. This effectively parallelizes
the test suite and can give a speed increase
proportional to the number of machines used.

But functional tests were slow and the build went from 20
minutes to 50 minutes. We decoupled the functional tests from

the build and their time shot up from 50 minutes to 120+ minutes code that mediates between a test specification (e.d. &lblke)

over the next few months. Now every 4 or 5 builds, one set ofand the appropriate object in the system under test [5]. Since
functional tests would be run, and we didn’t know who exactly many parts of the system were “upstream” of the code tleey w
broke the test. Several check-ins had happened and everyoneorking on, they had to write many fixtures before they could
knewthe failure wasn't caused by their code. The tests wouldreach the part of the system that they intended to testreshé
break and stay broken for over a week, and frequently we needeavas then when anyone made a code change “upstream” of project
someone to step up and be a “hero” to clean up those stupidB, all of the tests for project B failed and had to be updated.
tests! Sometimes (ok many times) we thought they weme mo Developers became extremely frustrated with the burden of test
trouble than they were worth. maintenance.

Thankfully, we didn't drop them. | dont remember who, but One solution is to mock out parts of the system that aré¢heot
someone on the team stepped up and proposed that we havefgcus of your current test. We can use mock objects agowe
coded functional test (CFT) cop. This person had the painful jobwith unit tests, and for functional testing we can also mock
of watching the CFTs and fixing them when they broke. Of sybsystems. Mocks mean you don’t have to write “real” fegur
course this was a pain, and one cop got tired of it and dug intofor everything upstream.

the CFTs to try to make them faster. With a few sahstisuch . o .))
asFunctional Tests on Separate Machirsewl Functional Tests ~ Similar principles are echoed in Mugridge and Cunningham’s
Roll Back Database Transactimd Functional Tests 00K [5], which advises teams to "avoid over-commitment to
Refactored to Thinner Slicgdescribed in the section above) the details that are not essential to the specific business rafed].[

CFTs were running in less than 20 minutes and brought backfocus on only one business issue, so that it is less vulndmble
into the build. change” (p. 156).

Surprisingly the functional tests stopped being broken because3 3 Functional Tests Try—and Fail—to Catch
developers could run them effectively on their local machines Unit-Level Bugs

before checking in. Even if they missed something, the CFST wa - 3
g y g If functional testing does not reduce the bugs found by your

run with every build, so broken unit tests were immediatelylfixe . q h bl be that the b
because it was (almost always) obvious who the culprit was. testing group and customers, the problem may be that the bugs
are at the wrong level for functional tests.

3.2 Small Code Changes Break Many Tests 3.3.1 Solution: Unit Tests Support Functional Tests

When many tests fail, one normally assumes that a big COdeFunctionaI tests armot a replacement for unit tests, even if the
change must have been checked in. However, if only a small P ’

change caused many failures, then there must be a large amourb?f)v:;zgsi;:]a“tsﬁgsccl;%k r:'g; IiltJerI“t :sst:rseipr;?/retrﬁ??tt 'gﬁr
of overlap of the tests. y g y ,

deep in otherwise inaccessible parts of the system under test.
3.2.1 Solution: Each Test Focused on One Thin Slice Use unit tests for unit-level bugs and functional tests for
When each test focuses on one thin slice of functionality andinteraction bugs.

does not overlap much with other tests, _th(_an it's more Illtgly 3.3.2 Related Smells

only one or two tests break when a bug is introduced. It ifimuc
easier to diagnose why a thin test failed. Thus, writiststeo
exercise one thin slice of functionality in one major system
provides the best feedback on that example of a business process. ¢ It's hard to diagnose failed tests

If you use functional tests without unit tests, you may expegie
several smells:

3.2.2 Related Smells . T_est fix_tures qul_(around known issues rather than
If your functional tests cover too much ground, you may notice diagnosing and fixing them
these smells: 3.3.3 Narrative: Pathological Functional Tests

¢ Many test fixtures must be used in a single test The previously mentioned project with 15 developers had a

cluster of three or four classes that was repeatedlyaiinees of

bug reports. The classes already had unit tests, so theried

to reduce the bug count with functional tests. But the developers
3.2.3 Narrative: Trying to Test Everything writing the test fixtures coded around the buggy classes so that
We experienced the smell of small code changes breaking manyhey could get their use case for the functional test dore. F
tests on a project of about 15 developers who had developed &*ample, the developers discovered that their fixture had ito cal
code base over two years (though it was integrated wihgar, “Save” twice to get the object saved properly.

10-year-old code base). At that point, the team decided to addwhy didn't the developers fix the “Save” method? They
functional tests, beginning with the code they were currently explained that saving was only a small, initial part of thesie
working on, called project B. They thought it would be best to case, and their usage did not go deep enough into the code for

test with all real objects (rather than mock objects) ofeoto them to diagnose the problem. So the bugs were not getting
maximize the test coverage for each functional test. fixed.

« Developers get frustrated with updating many tests for
small code changes

The team spent a month setting up their first functional test. Finally, the team assigned two developers to refactomtioiule
This set up included writing test fixturefor each class, which is and improve its unit test coverage. They quickly discovdrat t

the unit tests were inadequate because they were some of th
first unit tests the team had ever attempted to writeterAd
month of work, the module was cleaned up. It was no longer the
source of bug reports. The functional test fixture could call
“Save” only once. But it was the unit tests, not the funetio
tests, that ensured this basic functionality.

3.3.4 Unit Testing Complements Functional Testing
Unit tests make sure the units are working properly; functional
tests make sure the units interact properly. It is veficdlif to

use a test of interactions to improve the units themselJes.
basic functionality is buggy, focus on refactoring and uniirtgst
the individual classes. If the units are solid but don't intera
correctly, use functional tests. We need both kinds of tests.

A commonly cited reason for adopting agile development
techniques is the increased communication between the
developer and customer teally solve the problem and use
iteration and feedback to come up with a good solution. Well,
unit testing does not address this issue at all and functional
testing greatly improves this communication. Asking, “Which
testing is more important” is equivalent to asking, “Are
requirements quality or code quality more important?” You
cannot drop either—yomusthave both for a successful software
system.

With that said, let us provide detail on how unit testing isemo
powerful than its coverage numbers would suggest.

3.3.5 Unit Tests Cover Important Code Paths

Unit tests exercise the most important code paths moréy easi
than functional tests can. Imagine two classes, A and @&, ea
with 5 code paths, Athrough A and B through B. Consider
writing unit tests for the two classes; &nd A are a getter and
setter respectively, so we don’t write unit tests fomtheWe
write one test for each other code path for a total efs&t A
code path coverage metric would tell us we have 80% coverage
But because we did white box testing, we know we covered the
80% that was most likely to break.

Now consider functionally testing the two classes. Latsume
class A is called before class B and that it's easgtag three
of the tests: Test 1 exercises fallowed by B, Test 2 exercises
A, followed by B, and Test 3 exercises; followed by B. All
three tests incidentally exercise the gettenAd setter & With
just these three functional tests, we again have 80% coverage

Unfortunately, the functional tests have failed to exercome c
paths B and B. These code paths are triggered by exceptional
circumstances that are difficult to set up in a functiondl t€er
example, B could deal with a division by zero that results when
certain combinations of values are produced by class A, and B
could handle an exception thrown by a resource. So the

exception so the test can make sure E handles the exception
correctly. It's much easier to just write a unit testE.

3.4 Our Testing Tool is in the Foreground

An immature functional testing tool can lead developerp¢od
more time getting the tool to work right than they spend on
understanding the domain and specifying the tests with
customers. Of course, it's important that developerdrameed

in the functional testing tool, and there will be some stprt
costs when they first start using the tool. But if thd iedhe
root of the problem, you will notice functional testing sisiel

It takes a long time to write tests and test fixtures; the
team spends more time on fixtures than test
specification

It’s hard to diagnose incorrect test fixtures

Developers and customers complain about functional
testing

3.4.1 Solution: Don’'t Rebuild the Wheel — Use a

Mature Tool

We recommend starting functional testing with an established
tool that has a track record of providing good feedback for
customers and developers. Framework for Integrated Tests,
called FIT for short, is an example of a widely used tbalt t
provides good feedback [5]. Teams may already have their own
tools, of course. But if the tool is taking over youstiteg, you

may want to reconsider.

3.4.2 Narrative: Changing Tools

Recall the 15-developer team who spent a month writing their
first functional test. This team was using a home-grown
functional testing tool. The tool had a number of advanced
features, but it did not provide good feedback when a test was
incorrectly specified or fixturized: it was common to getull
reference exception somewhere deep in the tool code. Customer
simply could not diagnose the test output. Developers had to
attach a debugger and step through the test. They spent
significantly more time in the debugger than collaboratindy wit
customers to write tests. Both developers and customers
complained about working on functional tests.

This team is now in the process of switching to FIT. Tée/v
same developers who complained about functional testing are
now clamoring to be the first ones to try the new tool.

A good tool lets you focus on the domain and the requirements;
the tool itself “fades into the background” [6]. If the td®lin
the foreground, you need a better tool.

4. ARCHITECTURAL SMELLS

functional tests’ 80% coverage does not include the code that idlf you are using good tools and techniques and it's still hard to

most likely to break. Instead, functional tests tend to facus
the “main success scenarios” of the use cases. That'suhelpf
coverage, of course. But it is unit tests that fercgttbe most
common bugs.

Furthermore, as the code base grows, it becomes harder fo
functional tests to cover code that is many classes deephiat

system. The functional test has to provide the input to A that
leads B to output something to C that causes D to throw an

write functional tests, then the root problem may be your
system’s architecture. In particular, if your test fixeupsntain
business logic, rather than merely translating test spesoifics
into method calls, then you will want to consider the smells
pelow. We also consider a smell when it is hard for a ifomak
test to run through a single, complete use case.

Functional tests help push business logic into the correct layer
(in a tiered architecture) and the correct functional module.

When business logic has found its way into the wrong place,
functional tests expose the misplacement.

4.1 Fixtures Contain Business Logic To
Mirror GUI Work

If you find yourself writing fixtures that must perform business
logic so that they mirror what is done in the GUI, you rhaye

an architecture smell. A common cause of such duplicated
business logic is the use of a canonical three-tiered actiriée
having presentation, domain,

mass with the number of fixtures present so that other devsloper
began to feel comfortable writing test fixtures easily.

4.2 Fixture for a Module Contains Business
Logic That Belongs in the Module

There is another way that business logic can turn up in a test
fixture—when a functional module fails to contain all the
business logic that belongs in it. An example can best iltestra
this point.

and persistence layers. Such

architecture does not always succeed in keeping business logi&€t US assume that one of our subsystems is a tax module that

away from the presentation layer. In fact, it is vesgnmon for
GUIs in this setup to contain “control” logic.

For example, a simple GUI to transfer money from oneuattco
to another §ccountl, accounj2often does the following in the
GUI:

(1) Accountl.withdraw($100)
(2) Account2.deposit($100)

This is simple logic, but it i®usinesdogic and not view logic.

So, if your fixture for theransfer(accountl, accountZ)nction

has this logic in it, then you have code duplication with the Ul
(which is bad), and you have uncovered business logic in the
presentation layer (which is worse).

4.1.1 Solution: Service Layer Gets Control Logic
When you encounter this type of problem, the solution is to pull
out the duplicate code in a common place.
service layer [1], which lies between the presentation andidoma
layers and contains control logic. In this way, functiomresitd

responsible for doing all tax-related calculations. Before
introducing functional testing, we wrote this module and
believed we had good functional separation. Unfortunately, over
the development of our project not everyone using the tax module
was completely familiar with it, so some “pre-calcuati was
made outside of the tax module depending on special tax-exempt
days. This functionality should have been in the tax module; in a
sense, the tax module’s boundary was breached.

When functional tests were written for the tax module, we avoul
find that the fixture code had to perform the “pre-calculdtion
that depended on the tax-exempt days. At that point, a
responsible developer would notice the duplication and refactor
the calculation into the tax module and out of the fixture and the
non-tax-module code.

We have found that functional testing frequently solidified the
boundaries and responsibilities of our subsystems. Our

That place is thefunctional tests help us focus our modules.

4.3 Functional Tests Difficult To Run

help in proper separation of business and presentation logic andfhrough A Single, Complete Use Case

encourage a new logical layer to hold control logic.

4.1.2 Narrative: Building Up Fixtures For

Functional Testing

This story is one from the 50-person J2EE leasing application.
As stated earlier, we introduced functional testing afterhad
gained experience with XP as an agile development
methodology. Building our initial functional tests took agkar
amount of work upfront because we had to build a fixture for
every single test. Moreover, we discovered as wetestar
building these fixtures that there was a significant amount of

business logic that had seeped into our GUI even though we han

both a domain and service layer. The first developers working
on these tests had not only to build the fixtures but also to
understand the Uls in detail so that they could refactor thmeim a
pull outall the business logic into the service layer.

We took two full iterations with a five-person team toadset of
large refactorings for the entire presentation layee tidén had
a design session to explain the problem with the old ways of

Legacy systems—that is, systems that were not designéd wit
functional testing—can be especially difficult to test. Stmes
they do not let you easily run through a single example of a
business process. This is a very difficult smell to eeddjcand

the solution depends on the architecture.

In some cases, the source of the problem is that a module
assumes that multiple use cases are run simultaneously. When
you try to isolate a single use case, you discover yihinave to
perform the set up for all the other use cases or thensyste
crashes. We provide an example of this situation below. We
highly encourage you to listen to your tests—if they are bard
rite, then they are indicating a larger problem.

4.3.1 Narrative: An Executable Calculator

The project with 15 developers mentioned earlier had an
architecture that made some of its primary uses casésutlitb

test. The system used C# for presentation; this codeealltve

user to enter input data and view output data. The system used
C++ for the main business logic and calculations. However,

doing things and how they were not testable to the rest of thewhat made the system tricky was that the main medium of inter

group. Finally, for the next few iterations, whenever someo
was to write their first fixture, they would pair-prograrithnone

of the team who did the large refactorings. Over a pesfod
three to four months, we had made several large refactoring

language communication was the database. The C++ was an
executable that accepted a handful command line parameters; it
read hundreds of additional inputs from the database and wrote
its outputs to the database.

the presentation layer and solidified the boundary betweenTo execute a single business process in such a system, wee had t
presentation and service layers. We had also reachedlcritic set yp a fairly complete database with a lot of extraneous
information that did not matter for the process we wanteelsto

Atfter this set-up, we could enter the one record we wish&gbsto
through the service layer of C#. Then we would fire off@ke-

executable, which would perform far more calculations than we 6. ACKNOWLEDGMENTS

actually needed for our test. Finally, we would check theltes
in the service layer of the C# output screen.

We would like to thank Robert Osborne, Steve Sparks, Jason C.
Yip, and two anonymous reviewers for thoughtful comments and

Because testing one use case was so burdensome, the &shm trisuggestions.

shortened use cases. They wrote functional tests thatcitiere
data in the input screen’s service layer and then confirmed that7
the values were saved correctly to the database. Thsise te [1i
failed to exercise the most important business logic of the
system, so the analysts were not very interested in whetagr
passed or failed. After all, these tests rarely found bogs
really mattered. After a few months, both customers and
developers resented the functional tests as a waste of time

(2]

3]
To make this architecture more amenable to functional testing
we would have had to convert the C++ code into a library é.9

dil). Then we would have exposed individual methods so that [4]
the calculator would not always process everything in onéabatc
Then a test could set up just the data needed in C#, call a handful
of C++ library methods, presumably through a new service,laye [3]
and confirm the results in C# again.

These architecture changes would not have merely made the code
more testable; they would have made it more agile. Glikter [6]
requested real-time updating of the calculations as new input
data became available throughout the day. If the C++ code had7)
been a library that could fire off single requests, addingtiee!
updating would have been a snap. As it is, the system is not
expected to offer real-time updating for years. 8]

5. CONCLUSION

Functional testing is a practice that can have great betefite
development process as a whole. When done properly, it
increases the communication between analysts, developers and
testers. The progress of the entire project is objégtigble at

any point in time to management by examining the passing (and
failing) functional tests. Eventually, the speed of develaogme
increases because well-communicated requirements resulsin les
re-work. The tests also drive a more modular architectuth
subsystems that have clear responsibilities.

However, functional testing is not free. A significantéstment
must be made tget it right Cutting corners can cause myriad
problems that we have outlined in the smells sections. If the
smells are not addressed, the costs of functional testimg ca
outweigh the benefits.

So we recommend that you evaluate your current environment to
determine whether functional testing addresses your needs and
provides useful benefits. Then, take a careful look at ths tms
functional testing as indicated in thi¢hen Not To Use Hection

to make sure that you are willing to make the commitmdémid

if you adopt functional testing, pay attention for smellsyso

can catch problems early.

With the right techniques, we have seen developers and
customers get excited about functional testing. They enjoy
learning about the domain and its requirements in a deep way.
And they take great pride in the high-quality software that
results, on time and within budget. Functional testing is a
pattern that works.

REFERENCES

Fowler, M.,Patterns of Enterprise Application
Architecture. Pearson Education, Boston, MA, 2003.

Highsmith, J. Agile Software Development Ecosystems,
Pearson Education, Boston, MA, 2002.

Marick, Brian. “Bypassing the GUL.” IBoftware Testing
and Quality Engineering,September / October, 2002), 41-
47.

Evans, E.Domain Driven Design: Tackling Complexity in
the Heart of SoftwareAddison Wesley, 2003.

Mugridge, R., and Cunningham, VFIT for Developing
Software: Framework for Integrated TestBearson
Education, Upper Saddle River, NJ, 2005.

Jim Shore, “A Vision For Fit,”
http://www.jamesshore.com/Blog/A-Vision-For-Fit.html

Elssamadisy, A., and Schalliol, G. “Recognizing and
Responding to ‘Bad Smells’ in Extreme Programming.”
ICSE 2002pp. 617-622.

Gandhi, P., Haugen, N., Hill, M., Watt, R. “Creating a
Living Specification Document with FIT,”
http://www.agile2005.0rg/XR22.pdf

