
Describing Access Control Patterns Using Roles

Dae-Kyoo Kim, Pooja Mehta, and Priya Gokhale

Department of Computer Science and Engineering

Oakland University

Rochester, MI 48309

{kim2,pmehta,pvgokhal}@oakland.edu

Abstract

Access control patterns describe access control mechanisms at a high level of abstraction. An
access control pattern provides a general solution to a class of access control problems for the
confidentiality, integrity and availability of the information resources of software systems. While
there has been much literature describing the general solution as to how these patterns enforce
access control voluminously, there is little work that describes the patterns in a pattern template
using appropriate notations for an easy and quick reference. In this paper, we present pattern
descriptions of three commonly used access control patterns (DAC, MAC, RBAC) described
in the template of pattern-oriented software architecture (POSA). We use an extension of the
UML for representing the structure and behaviors of the patterns to capture variations of pattern
realizations. We also attempt to give more details on the problem domain of the patterns to
help developers choose an suitable pattern.

1 Introduction

An access control mechanism enforces access control policies which specify high-level requirements
of who can access what information under what circumstances. An access control pattern is an
abstraction of an access control mechanism, capturing the system-independent concepts in the
mechanism. An access control pattern provides a general solution to a class of access control
problems for the confidentiality, integrity and availability of the information resources of software
systems.

There has been a huge volume of literature (e.g., [4, 5, 8, 15, 29]) that describes access control
mechanisms. However, there is only a little work describing them in a pattern template for easy and
quick reference. This includes the work by Fernandez and Pan [6] which presents Authorization,
RBAC and Multilevel Security models in a pattern template. Their work primarily focuses on the
solution domain of the patterns described through a typical example.

In this work, we present pattern descriptions for the three widely used access control patterns,
Discretionary Access Control (DAC) [15], Mandatory Access Control (MAC) [29] and Role-Based
Access Control (RBAC) [8] in the template of the pattern-oriented software architecture (POSA)
[3]. The goal of this work is to provide an easy and quick reference of these patterns for developers
to help them choose an appropriate pattern for a given problem and understand the solution of the
chosen pattern.

An issue in writing a pattern is the lack of suitable notations to describe the structure and
behaviors of the pattern [9, 14, 20]. Most (if not all) of the commonly used pattern descriptions
e.g., see [3, 11, 13, 24, 31]) uses the OMT notation [27] or the Unified Modeling Language [36]

1

“as it is” to describe pattern’s structure and collaborations. A problem with this is that the
structure and collaborations represented in these notations are just a typical realization of the
pattern [9, 14]. In practice, pattern realizations vary depending on the application context, and
even in the same application domain, there can be multiple realizations having different structure
for the same pattern. As such, we argue that the pattern descriptions should be described using a
notation that can capture such variations of pattern realizations.

In this work, we use an extension of the UML developed in our previous work [10, 16] to describe
the structure and behaviors of pattern participants for capturing variations of pattern realizations.
The extension describes a pattern in terms of pattern roles [17] where a pattern role can be played by
model elements (e.g., classes) in a specific application domain. By the nature of roles, a pattern role
can be played by multilple elements which takes into account possible variations. The properties
of a pattern role constrain the eligibility of model elements to play the role. Our work specifically
aims at facilitating the use of the three patterns for developing models of secure software systems
described in the UML.

Based on our study, we also found that most of the literature of the patterns mainly describes the
solutions of the patterns focusing on how they enforce access control, but little attention has been
paid to the problem domain. From the practical point of view, it is equally (or more) important
to know which pattern is suitable to use under what conditions, the applicability of the pattern,
and the pros and cons of applying the pattern. Such informaiton in the problem domain helps
developers choose an appropriate pattern to use. In the proposed descriptions, we attempt to give
more details on the problem domain of the three patterns.

The rest of the paper is organized as follows. Section 2 describes the notion of pattern roles.
Section 3 presents the descriptions of of the DAC, MAC and RBAC pattern. Section 4 concludes
the paper.

2 Pattern Roles

Commonly used pattern descriptions (e.g., [3, 11, 13, 24]) use a typical realization of the pattern
to describe the structure and collaborations of the pattern solution. However, we believe that
they should be described in a way that captures various realizations. For instance, one common
participant in many security patterns is User. In one application domain, there may be several
classes (e.g., Teller, Accountant, Loan Officer) that play the User role, but in another, there might
be only one class (just Client) playing the role. Such variations are very common, and should be
considered in pattern descriptions. In our work, we employ the notion of “pattern roles” [17] to
describe such variations in the structure and collaborations of the problem and solution domain of
DAC, MAC and RBAC patterns. A pattern role represents a pattern participant, and it can be
played by one or more elements in an application domain.

Fig. 1 shows the relationships between a pattern role and the UML infrastructure [36]. In our
work, pattern roles are defined at the metamodel-level (M2) in the UML, and played by model
elements at the model-level (M1) (e.g., classes, associations). In the figure, the MyRole pattern
role, which is denoted by “|” symbol, defines a subset of instances of the Class metaclass which
is the base metaclass of the role as indicated by the bold text label above the role name. Every
role must have one base metaclass in the UML, and only the instances of the base metaclass can
play the role. For example, in the diagram only the instances of the Class metaclass can play the
|MyRole pattern role. Then, a question might arise, can any instance play the role? No. In the
formal definition [17], pattern roles are defined by a set of constraints, and only those instances

2

M1

plays

M2

instance of

<<MyRole>>

Class
Class Role

ClassA

instances of
defines a subset of

|MyRole

Figure 1: Relationship between Model Role and UML Infrastructure

that satisfy the constraints can play the role. These constraints are used to define precise and
rigorous pattern specifications mainly to support the development of pattern tools. We leave out
the discussion as to how to define the constraints since the patterns being described here are very
informal. However, we believe that the use of the pattern role concept in this work is still beneficial
in the light of taking into account variations in realizations. We use the “|” notation to indicate
pattern roles in this paper, and they should be interpreted as being possibly played by multiple
classes in an application domain.

A class role, which has the Class metaclass as its base, may have feature roles (i.e., attribute
roles and operation roles whose base is the Attribute and Operation metaclass, respectively, in the
UML), and several features in a model may play the feature roles. A class role may be connected
with another class role via an association role whose base is the Association metaclass.

|oper (|o:|RoleA)

Class Role
|RoleA

1..1

Class Role
|RoleB

|assocRole

1..*
|attr: Int

Figure 2: An Example of a Pattern Structure

Fig. 2 shows an example of a pattern structure described in terms of pattern roles. The structure
has two class roles RoleA and RoleB where RoleA has an attribute role |attr that can be played
by integer attributes, and RoleB has an operation role |oper that can be played by operations
whose parameter type is RoleA. The class roles are connected by the association role |assocRole.
The multiplicities at the ends of the |assocRole constrain that classes playing the class roles must
have that multiplicities. The formal definition of pattern roles [17] has a more complicated way
of constraining multiplicities, but in this work, we simply constrain that class playing a role must
have the specified multiplicity.

Fig. 3 shows examples of two different model structures that have model elements playing the
pattern roles in Fig. 2. In Fig. 3(a), there are two classes ClassA and ClassB, each of which plays
|RoleA and |RoleB, repsectively. ClassA can play |RoleA because it has an attribute whose type is
integer, playing the |attr role in |RoleA. Similarly, ClassB can play |RoleB since it has two operations
that can play the |oper role in |RoleB. The two operations can play the |oper role because they
have a parameter whose type is ClassA which plays the |RoleA as required in |oper. The arrows
show the mapping between the model elements and the pattern roles played by them. Fig. 3(b)
shows another application domain that has two classes (ClassA and ClassB) playing one class role
(|RoleB), which is very possible, and there might be other applications having different structures
to play the pattern roles. These examples show the benefits of using pattern roles.

3

op1(c:ClassA)
op2(c:ClassA)

ClassB

ClassA

att: Int

1..*

1..1

ClassB

op(c:ClassA)

ClassC

op(c:ClassA)

att: Int

ClassA

1..1 1..1

1..* 1..*1..*

1..1

|assocRole

Class Role
|RoleB

|oper (|o:|RoleA)

Class Role
|RoleA

|attr: Int

plays

(a) Application Domain 1

1..*

1..1

|assocRole

Class Role
|RoleA

Class Role
|RoleB

|attr: Int

|oper (|o:|RoleA)

plays

(b) Application Domain 2

Figure 3: Examples of Model Elements Playing Pattern Roles

It should be noted that the notion of pattern roles is different from the object roles in the UML
at the level which they are defined. Pattern roles are defined at the metamodel level played by
model elements, while object roles are defined at the model level played by objects as shown in
Fig. 4.

objA:ClassA
M0

M1

/RoleA:ClassA

a subclass of
defines

plays instance of

M2
Class

plays

<<MyRole>>

instance of

ClassA

defines a subset of

Class Role
|MyRole

Figure 4: Pattern Roles and Object Roles

In the figure, the object role /RoleA is defined at the model-level (M1), and played by an
instance (objectA at the object-level (M0)) of ClassA, while the pattern role |MyRole is defined at
the metamodel-level (M2), and played by an instance (ClassA at the model-level(M1)) of its base
Class metaclass.

3 Access Control Patterns

This section presents the DAC pattern based on Harrison et al.’s work[15], the MAC pattern based
on the Bell-La Padula model for the MAC pattern [15], and the RBAC pattern based on the NIST
proposal [8] and the book by Ferraiolo et al. [7].

4

3.1 Discretionary Access Control

The DAC pattern enforces access control based on the identity of the requestor and explicit access
rules that define who can or cannot execute which actions on which resources. A user (subject)
who has access to an object requested may delegate the permission of the object to another user.
The DAC pattern is also known as access control matrix [19].

Example

Consider an environment where access control is solely managed by the security administrator. A
problem in such an environment is that it requires much efforts for the administrator to maintain
access control for every single user and to deal with daily-basis requests for permission changes.
Also, related to confidentiality, the administrator may give a permission to a person who is not
supposed to be authorized to access the information. For example, in a medical care system where
patient information should be kept in confidential, access to the information should be limited to
only the doctor who handles the case, or other doctors who have permission given by the handling
doctor. When the administrator is requested for permission to be given to a clerk to access a patient
file, obviously it should not be allowed. However, the request may contain disguised information
about the requestor, deceiving the administrator. Related to availability, such environment may
cause a situation where no one can access information. For example, in the medical case system
above, if DoctorA who handles CaseFile1 has left for a vacation, without making a permission
request for other doctors to access the file, no one can access the file in case of emergency. Fig. 5
illustrates these problems.

User
DoctorA

DoctorB CaseFile1

Clerk

read, write

read

Capability List

DoctorA CaseFile1 : read, write

CaseFile2 : read, write

DoctorB CaseFile3 : read, write

Clerk CaseFile1 : read

Figure 5: A Motivating Example

Context

Development of access control systems that allow user-controlled administration of access rights to
objects.

Problem

In general, the problem environments suitable for use of the DAC pattern usually have access
control that is managed solely by administrators for granting and revoking a user or group an
access permission to an object without concerning the discretion of the users of the object. Use
the DAC pattern

• where users own objects.
• when permission delegation is needed.

5

• when resolution of conflicting privilege is needed. For example, there might be inconsistencies
between the permissions given to a user as an individual and a member of a group to which
the user belongs. The user may be allowed to access an object as a member of a group, but
not allowed in individual permissions. An ordered evaluation of a permission list can be used
to resolve such authorization conflicts. The evaluation stops either when all requested access
rights have been granted by one or more permission entries, or when any one of the requested
access rights has been denied by one of the permission entries.

• when security mechanisms are needed in a heterogeneous environment to control access to
groups of different kinds of resources.

• where Multi-user Relational Database is used.

Solution

The DAC pattern can address the problems above by using the concept of “permission delegation”
which allows a user of an object to give away permission to other users to access the object at her/his
discretion without the intercession of the administrator. Using the DAC pattern, the burden on
the administrator is shared with the users of objects since the users are capable of giving away
permissions. Also, permission delegation can mitigate the confidentiality issue since a user can give
permissions directly to related people in the area, and the availability issue since a user can give a
permission at any time whenever needed.

DoctorA

DoctorB CaseFile1

DoctorA :: read, write

DoctorA :: read, write

DoctorA : DoctorB :: read, write

DoctorB :: read, write

Object

CaseFile1

CaseFile2

CaseFile1

CaseFile3

Access Control List

Clerk

read, write

read, write

Figure 6: DAC Solution

Fig. 6 shows an Access Control List (ACL) that implements the DAC pattern, addressing the
above problems. In the ACL, a delegating user of the object is represented in user::rw and a named
user to which permission is delegated is represented in user:namedUser:rw. For example, DoctorA
is a user of CaseFile1, and has read and write access to the file, and DoctorB is a named user who
is granted to access CaseFile1 by DoctorA, and has read and write access to the file.

Structure

Fig. 7 shows the solution structure of the DAC pattern where the user who owns an object may
grant or deny permissions (privileges) to other users or groups.

• User represents a user or group who has access to an object, or a named user or group who
are granted access to an object by the user or group. The owner or owning group of an object
has full access to the object, and can grant or revoke an access permission to other users or
groups at their discretion.

• Object represents any information resource (e.g., files, databases) to be protected in the
system.

6

|removePermission(|p:|Permission)

Class Role
|Permission

|addPermission(|p:|Permission)

Class Role
|User

|grantPermission(|p:|Permission)
|revokePermission(|p:|Permission)

|doOperation()

Class Role
|Object

|has

|governs

|reqeustOperation(|obj:|Object)

*

|references

*

1

Class Role
|Subject

|checkPermission(|obj:|Object, |op:|Operation): Boolean

ReferenceMonitor
Class Role

*

*

|is_authorized

|is_permitted

|performs *

|operationAuthorized(|obj:|Object)

ClassRole
|Operation

represents1

1

|uses

|grantor

|performs

|grants

|acquires

|beneficiary

Figure 7: Solution Structure

• Operation represents an active process invoked by a user.
• Subject represents a process acting on behalf of a user in a computer-based system, another

computer system, a node, or a set of attributes.
• Permission represents an authorization to carry out an action on the system. In general,

Access Control Lists (ACLs) are used to describe DAC policies for its easiness in reviewing.
An ACL shows permissions in terms of objects and a combination of users and their access
rights.

• ReferenceMonitor: A user requests an operation on an object, and the request is checked
for permission. If the user has a permission to the object, the operation may be performed,
otherwise, access is denied.

Dynamics

Fig. 8 shows the collaboration for requesting an operation. Where there is a request for an opera-
tion, the reference monitor checks for permission of the user for the operation using a permission
list, which is typically described in ACLs. If the permission is allowed, the operation is performed,
otherwise, the request is denied.

Variants

Based on the underlying concept of the DAC pattern, there have been several variants proposed
[28]. The variants differ by the degree of the strictness in owner’s discretion, and they can be
categorized into strict DAC, liberal DAC and DAC with change of ownership. Strict DAC is the
most strict form in which only the owner of an object can grant access to the object. Liberal DAC
allows the owner to delegate access granting authority to other users. Liberal DAC can be further
divided into one-level grant, two-level grant and multilevel-grant, depending on the level at which
access granting authority can be passed on. DAC with change of ownership allows the owner to
delegate ownership to other users.

7

alt

|op:|Operation:|Subject

|requestOperation(|obj,|op)

|checkPermission(|obj,|op)

|obj: |Object:|ReferenceMonitor

|operationAuthorized(|obj)

[else]
access denied

[authorized]

|doOperation()

Figure 8: Requesting Operation

Known Uses

Standard Oracle9i [22] uses the DAC pattern to mediate user access to data through database
privileges such as SELECT, INSERT, UPDATE and DELETE. The TOE [37], a sensitive data pro-
tection product developed by The Common Criteria Evaluation and Validation Scheme (CCEVS),
uses the DAC pattern to mediate access to cryptographic keys against unauthorized access to data.
Windows NT implements the DAC pattern to control generic access rights such as No Access,
Read, Change, and Full Control for different types (e.g., Everyone, Interactive, Network, Owner)
of groups.

Consequences

The DAC pattern has the following advantages:

• Users can self manage the privileges.
• The burden of security administrators is significantly reduced, as resource users and admin-

istrators jointly manage permissions.
• Per-user granularity for individual access decisions as well as coarse-grained access for groups

are supported.
• It is easy to change privileges.
• Supporting new privileges is easy.

The DAC pattern has the following disadvantages:

• It is not appropriate for multilayered systems where information flow is restricted.
• There is no mechanism of restricting rights other than revoking the privilege.
• It becomes quickly complicated and difficult to maintain access rights as the number of users

and resources increases.
• It is difficult to know the “reasonable rights” for a user or group.
• There can be inconsistencies in policies since individual users can give away access permissions

to others.
• Read access can be given to unknown users to the owner of the object since the user granted

by the owner can give away read access to other users.

8

See Also

The Authorization pattern [6] - is an Object Oriented pattern. It also has the concept of delegation
as in th e DAC pattern. Unlike the DAC pattern, the request to access an object may not need to
specify the particular object in the rule. It may be implied by an existing protected object.

3.2 Mandatory Access Control

The MAC pattern governs access based on the sensitivity of subjects and objects which is given
according to a hierarchy of security levels. The MAC pattern is also known as multilevel security
model and lattice-based access control [30].

Example

The DAC pattern controls access based on permissions that describe who should be allowed to
access what object. There are two problems with the DAC pattern. First, there is nothing that
prevents a user granted read access to a file by the owner of the file from copying the content of the
file and granting read access to other users. Second, a user who wants to access a file for which he
has access can write a Trojan horse program to copy the content of the file while the owner of the
file performs some function of the program. For example, suppose a user John wants to access a
file for which he does not have permission to access. Of course, the DAC system will not allow him
to access the file since he has no permission to the file. However, if another user, who is granted
read access to the file by the owner Jane of the file, grants John read access to the file, John can
read the file without Jane being aware of. In another case, John could write a program for Jane
that provides some useful function, and while Jane performs the function, the program can read
and copy the file to a location where John can access. This is illustrated in Fig. 9.

John: rwx

File1

File2

Trojan Horse

Utility Program

executes

Write

ReadJane

John

Jane: rwx

Jane:w

Figure 9: A Trojan Horse Problem in the DAC Pattern

Context

Development of access control systems that handle classified objects, and need to limit users actions
according to the classifications.

Problem

The MAC pattern can solve the problems with the DAC pattern in multi-layered environment
(e.g., military and government systems) by assigning security levels to users and objects. Thus,
the solution of the DAC pattern can be considered as a problem of the MAC pattern. That is, if a
system using the DAC pattern is placed in a multi-layered environment, the MAC pattern can be
applied to improve the confidentiality. The MAC pattern can also be applied to the models that

9

have no access control enforced. In such cases, for the absence of access control, any user can access
any object irrespective of security classification. Use the MAC pattern

• when the environment is multi-layered. A multi-level environment is the one where in users
and objects are arranged. For example in the military domain users and files are classified
into distinct levels of hierarchy like Unclassified, Public, Secret and Top Secret. User access
to files is restricted based on the classification.

• when security policies need to be defined centrally. The access control decisions are to be im-
posed by a mediator (e.g., security administrator), and users should not be able to manipulate
them.

Solution

The MAC pattern solves the above issues in classified environments by assigning security levels to
users and objects as shown Fig. 10.

Sensitive

File1

File2

Trojan Horse

Utility Program Sensitive

Non−sensitive

executes

Write

Read

Jane:w
John: rwx

Jane: rwxJane

John

Non−sensitive

Figure 10: A Trojan Horse Solution in the MAC Pattern

In the MAC pattern, a user can read a file, but cannot write to the file if the security level of
the file is lower than the security level of the user. If the security level of the file equals to or higher
than that of the user, the user can write to the file, but cannot read the file.

CONFIDENTIAL

SECRET

TOP SECRET

Allies

Allies

Allies

SECRET

TOP SECRET

UNCLASSIFIED

U.S.

U.S.

Allies

CONFIDENTIAL U.S.

UNCLASSIFIED U.S.

Classification Category

File1

John

Jane

Smith

Bill

read

read, write

write

John

Jane

Smith

Bill

SECRET

TOP SECRET

UNCLASSIFIED

UNCLASSIFIED

US

US

Allies

US

File Classification

SecretFile1

Category

US

Classification CategoryUser

Figure 11: MAC Example

For example, consider an environment where documents are classified as shown in Fig. 11 In
the diagram, John has read and write access to File1 since his Classification and Category are same
as that of the file. Jane can only read the file since her classification dominates the classification
of File1. Writing to the file for Jane is prohibited by the MAC pattern. Smith cannot read as well
as write to File1 since his category is different than the category of File1. Bill can write to the file
since the classification of the file dominates his classification, but cannot read the file.

10

Structure

The MAC pattern enforces access control based on the level of the user in a hierarchy. Fig. 12
shows the solution structure of the MAC pattern [18].

1

*

Class role
|Object

|doOperation()

Class role
|ReferenceMonitor

|checkAccess(|s:|Subject, |obj:|Object): Boolean |operationAuthorized(|obj:|Object)

Class role
|Operation

Class role
|Subject

|classification: |Classification
|category: |Category

|checkDominatee(|s: |Subject): Boolean

|dominates

|dominatee

|dominator

|SecurityLevel
Class role

|has

*

*

|performs

|is_performed_on

*

*

|requestOperation(|obj:Object,|op:|Operation)

|governs

1

*

|createSubject(|s:SecurityLevel)

Class role
|User 1 *|represents

1 1

*

|references |enforces_on

|is_assigned_to 1 *

*

Figure 12: MAC Solution Structure

• User represents a user or group of users who interacts with the system. A user is assigned a
hierarchical security level (e.g., SECRET, CONFIDENTIAL) and non-hierarchical category
(e.g., U.S., Allies) to which the user belongs. A user may have multiple login IDs which can
be active simultaneously. A user also may create and delete one or more subjects.

• Subject represents a computer process that acts on behalf of a user to request an operation on
an object. For example, an ATM machine being used by a user can be viewed as a subject.

• Object represents any information resource (e.g., files, databases) in the system that can be
accessed by user. An object is assigned a hierarchical security level and non-hierarchical
category to which the object belongs.

• Operation is an action invoked by a subject to be performed on an object,
• SecurityLevel represents a classification assigned to users (subjects) and objects. The classi-

fications are arranged in a hierarchy. Category represents any value from a non-hierarchical
set.

• ReferenceMonitor: A user requests an operation on an object, and the request is checked for
accessibility based on the following constraints.

– Simple security property - A subject S is allowed a read access to an object O only if
L(S) ≥ L(O).

– Star property - A subject S is allowed a write access to an object O only if L(S) ≤ L(O).

If the both constraints are satisfied, the operation may be performed, otherwise, access is
denied. For example, in Fig. 11, a user with the category U.S. and classification as CONFI-
DENTIAL should be able to read an object with category U.S. and classification as UNCLAS-
SIFIED. However, the same user should not be able read an UNCLASSIFIED document from
the category Allies.

11

Dynamics

Fig. 13 shows the collaboration for requesting an operation [18]. The subject tries to invoke an
operation on an object. The Security Level determines the dominatee and donimator. Also, it
determines whether the access should be allowed or not. If the access is allowed, the subject
performs the desired operation.

|s:|Subject :|SecurityLevel |op:|Operation

alt

|requestOperation(|obj,|op)

|checkAccess(|s, |obj)

|checkDominatee(|s)

:|ReferenceMonitor |obj:|Object

|doOperation()

access denied
[else]

|operationAuthorized(|obj)

[authorized]

Figure 13: Requesting Operation

Variants

Biba integrity model [1] can be viewed as a variant of the MAC pattern, emphasizing on integrity
rather than confidentiality. Biba model has access control properties (simple integrity property and
integrity star property) similar to those in the MAC pattern, but their domination relations for
read and write access are reversed.

Known Uses

Security-Enhanced Linux (SELinux) kernel [33], developed by NSA, MITRE Corporation, NAI labs
and Secure Computing Corporation (SCC), enforces the MAC pattern to implement a flexible and
fine-grained MAC architecture called Flask. Flask operates independently of the traditional Linux
access control mechanisms. TrustedBSD [38], developed by the FreeBSD foundation, provides a set
of trusted operating system extensions to the FreeBSD operating system, an advanced operating
system for x86, amd64, and IA-64 compatible architectures. TrustedBSD contains modules that
implement MLS (Multi-Level Security) and fixed-label Biba integrity policies (a variant of MAC).
GeSWall (General Systems Wall) [12] developed by GentleSecurity is the Windows security project
that implements the MAC pattern to provide OS integrity and data confidentiality transparently
and invisibly to user.

Consequences

The MAC pattern has the following advantages:

• The system using the MAC pattern is secure to Trojan horse attacks.

12

• The assignment of a classification and category to users and objects is centralized by a medi-
ator.

• The MAC pattern is appropriate for organizations with distinct levels of hierarchy.

The MAC pattern has following disadvantages:

• Introducing a new object or user requires a careful assignment of a classification and category.
• The mediator who assigns the classifications to users and objects should be a trusted person.

See Also

The Biba’s Integrity pattern [1] - addresses integrity issues rather than confidentiality. Read and
write accesses are based on integrity levels of subjects and objects. The Chinese Wall pattern [2] -
is similar to the MAC pattern in that it has reading and writing rules, and the writing rule takes
into account the Trojan horse problem. However, unlike the MAC pattern, but it has no distinction
between users and subjects. Subjects include both users and processes acting on behalf of the user.

3.3 Role-Based Access Control

The RBAC pattern enforces access control based on roles to facilitate authorization management
for a large number of users and resources.

Example

In a small organization where the application of an information system is narrow and the number of
users and objects are low, access control such as the DAC pattern could be used by direct mapping
between the users and objects. However, in a large organization, such a direct mapping becomes
infeasible, requiring significant time and efforts to maintain the mapping. As an example, suppose a
person is hired as a secretary and given permissions to read commercial letters, advertising letters,
admission letters and conference letters. Once she is removed from the position, all permissions
allocated to her has to be revoked. That is, the administrator has to change all respective entries
in the access control list. If there are many such cases, it would require significant efforts for the
administrator to maintain the access list.

Context

Development of access control systems that handle a large number of users and objects, and are
expected to have frequent changes of access rights.

Problem

The MAC pattern is known to solve the Trojan horse problem (reading an unauthorized file and
writing it to a new file) in the DAC pattern by using security levels. However, the MAC pattern still
allows some security breaches known as “Covert Channels” (e.g., storage channels, timing channels)
which can reveal certain information of the system by a Trojan horse program. For example, the
Trojan horse program is able to transmit information such as when the program runs or waits, or
the usability of shared resources (e.g., by creating and deleting bogus print jobs).

Another issue in traditional access control patterns (DAC, MAC) is that their use is limited to
a specific domain. The DAC pattern rose from small and autonomous environments, and thus its

13

use is limited to environments like academics or small organizations. Similarly, the MAC pattern
rose from rigid environments where users and information are classified. Thus its use is limited
to environments like government and military. The RBAC pattern emerged as an alternative
to traditional access control for other domains. Particularly, the RBAC pattern has gained great
attention from the commercial domain where applications are large and networked for its economics
in security administration. Unlike the domain supported by the DAC pattern where users own
objects, in the commercial domain, the end users generally do not “own” the information to which
they are allowed access.

The RBAC pattern can be used for a model that has concepts of roles, users and objects. A
role represents a job function with certain authority and responsibility in an organization, and a
user assigned to the role acquires the authority and responsibility given to the role. Use the RBAC
pattern

• where control of data and application is restricted to the enterprise.
• where there are a large number of users and data objects to be managed for access control

(e.g., e-commerce applications in cross-enterprise distributed networks).
• when only few security administrators are available.
• when the organization structure is stable, that is, there is infrequent change of job definitions.
• when there is frequent change of job responsibility or high job turnover, requiring dynamic

response to enterprise policy changes.

Solution

The RBAC pattern overcomes the above problem by using the concept of “role” which is an
abstraction of users. Instead of mapping directly users to objects, the RBAC pattern maps roles
(e.g., Secretary, Manager) to permissions, and assigns users to the roles for which the users are
authorized. The users acquire permissions given to the role. Because the access control in the
RBAC pattern is defined in terms of relatively static entities of roles and permissions, access
control becomes much simpler and more efficient to manage.

Mary

Smith

Presciption

Physician
read, write

read, write
read

write

read

read

Role Object

Nurse

Patient

CaseFile

John

Joe

Robin

Brad

User

Figure 14: RBAC Example

Structure

Use of the RBAC pattern introduces concepts of Role, User, Session, Object, Permission and
Operation as shown in Fig. 15.

14

|Permission
Class Role

|deleteDSDRole(|r : |Role)
|addDSDRole(|r : |Role)
|deleteSSDRole(|r : |Role)
|addSSDRole(|r : |Role)
|deleteDescendant(|r : |Role)
|addDescendant(|r : |Role)
|deleteAscendant(|r : |Role)
|addAscendant(|r : |Role)

|getAssignedUsers(): |User[]
|getAscendants(): |Role[]
|getDescendants() : |Role[]

|getDSDRoles(): |Role[]
|getSSDRoles(): |Role[]

|doOperation()

|Object
Class Role

1

1

|CheckAccess(|obj:|Object, |op:|Operation, |r:|Role): |Boolean

ReferenceMonitor
Class Role

1

|operationAuthorized(|obj: |Object)

|Operation
Class Role

|SSD |DSD

|revokePermission (|p : |Permission)
|grantPermission (|p : |Permission)

|Role
Class Role

*

*|plays

1..*

1..*

** |has

*

|governs

*
|references|enforces_constraints_of

1

|User
Class Role

|createSession (|s : |Session)
|deleteSession (|s : |Session)
|assignRole (|r: |Role)
|deassignRole (|r: |Role)
|getAssignedRole(): |Role[]

|op:|Operation)

Class Role
|Session

|addActiveRole(|r : |Role)
|dropActiveRole(|r : |Role)

*

|creates

|getActivatedRole():|Role[]

*

*

*

|requestOperation(|obj:|Object,

|activates

{subset}

|senior

|RoleHierarchy

|junior

|simple

|composite

|RoleComposition

Figure 15: Solution Structure

• Role represents a job function with certain authority and responsibility in an organization.
A role is represented as a relation of users and permissions, and a user assigned to the role
acquires the permissions given to the role. Roles can have overlapping responsibilities and
rights.
Roles may be structured in a hierarchy to reflect an organization’s lines of authority and
responsibility. Role hierarchies define an inheritance relation among the roles in terms of
permissions and user assignments. That is, role r1 inherits role r2 only if all permissions of
r2 are also permissions of r1 and all users of r1 are also users of r2.
Two roles may have conflict of interests each other that prevents a user to be assigned to
both roles. That is, a user whose membership in one role cannot be a member of the other
conflicting role. Static Separation of Duties (SSD) constraints are defined to prevent assigning
conflicting roles to a single user. SSD constraints are enforced during user assignment.
Two roles may also have another type of conflict of interests that they cannot be activated
within the same user session. Dynamic Separation of Duties (DSD) constraints are defined
for such conflicting roles, and enforced during role activation within a session. If one role in
a DSD constraint is activated, the user cannot activate the other conflicting role in the same
session.

• User is a person who interacts with a computer system. A user may have multiple login IDs
which can be active simultaneously. A user can create and delete a session.

• Session represents an instance of a user’s dialog with a system. A session is a mapping of a
user and a set of activated roles assigned to the user. A session can activate and deactivate
a role, and a user may have multiple sessions running simultaneously.

• Object represents any information resource (e.g., files, databases) to be protected in the

15

system.
• Operation is an action to be performed on an object, invoked within a session. Examples

of operations in a file systems are read, write and execute, and in a database management
systems, insert, delete, append and update.

• Permission represents an authorization to perform an operation on an object or multiple
objects. A permission is composed of an operation and an object on which the operation is
performed. Permission checks whether or not the requested operation can be performed on
the target object.

• ReferenceMonitor: A user requests an operation on an object, and the request is checked for
accessibility based on SSD, DSD and role hierarchy constraints for the roles that the user
plays.

Dynamics

Access is checked when a user is trying to perform an operation over an object. The role assigned
to the user is checked whether the role has a permission to carry out the requested operation on
the object, otherwise access is denied. Fig. 16 shows a collaboration for checking access.

:|ReferenceMonitor |op:|Operation |obj:|Object

alt

result = |getActivatedRoles()

|requestOperation(|obj, |op)

:|Session

loop
i = 1...result |checkAccess(|obj, |op, |r[i])

[else]
access denied

[authorized]

|operationAuthorized(|obj)

|doOperation()

Figure 16: Requesting Operation

Variants

There are fours variants (RBAC0, RBAC1, RBAC2, RBAC3) depending upon the different prop-
erties of the RBAC pattern. First and most underlying is RBAC0. It has basic rules of role
assignment, role authorization and transaction assignment. Second is RBAC1 which is an add-on
to RBAC0, has property of hierarchies. Third variant is RBAC2 which provides the support of SoD
(Separation of Duty). The last form, RBAC3 is a combination of RBAC0, RBAC1 and RBAC2,
and the RBAC pattern described in this paper addresses RBAC3. The RBAC pattern can be used
with the DAC pattern [28] and MAC pattern [23, 26].

Known Uses

16

The Sun ONE Identity Server [34] uses the RBAC pattern to map business functions to a logi-
cal group of users by employing roles to define logical group of users. Sun’s J2EE [34] uses the
RBAC pattern for the authorization service for E-Commerce applications by plugging the RBAC
pattern into existing password management systems as provided by the UNIX and Windows [35].
The RBAC pattern is implemented in Solaris 8 for user login and restricting access to tools and
utilities. IBM uses RBAC for security within WebSphere Portal [39] separating users into guests,
users, administrators and super users. In Oracle applications, roles are defined to determine what
data and functions within an application a user has access to [21].

Consequences

The RBAC pattern has the following advantages:

• The RBAC pattern greatly reduces the complexity of access control for a large number of
users and objects by using roles instead of users since in general, there are much more users
than roles. This also facilitates updating access rights of users.

• Organization policies about job functions can be dynamically reflected in the definition of
roles. If there is a change of access rights for a role, the change can be made via role without
interrupting user’s work .

• A user can activate multiple sessions at a time, and a session can activate multiple roles
assigned to the user. This improves the functional flexibility,

• Users are given only the necessary access privileges to perform their duties on an assigned
role. This is also known as least privilege.

• Users can be easily given a different set of permissions by reassigning them to a different role.

The RBAC pattern has the disadvantage:

• The additional concepts (e.g., roles, sessions) and their related constraints (e.g., SSD, DSD)
add complexity to implementation.

See Also

The Abstract Session pattern [25] - is similar to the RBAC pattern, but gives more focus on network
sessions, In general, both patterns are seen and could be implemented together in a networking
environment. The Abstract Session pattern provides a way for an object to store per-client state
without sacrificing type-safety or efficiency through creating sessions

The Thread Specific Storage pattern [32] - allows multiple threads to use one logically global
access point to retrieve thread-specific data without incurring locking overhead. This is similar to
RBAC where multiple users can play a single role, reducing the overhead of administrator.

4 Conclusion

We have presented pattern descriptions for DAC, MAC and RBAC patterns described in an ex-
tension of the UML. The use of pattern roles from the extension for describing the structure and
behaviors of the patterns faciliates capturing varitions of pattern realizations. Pattern roles are
played by model elements in an application domain, and a single pattern role can be played by
multiple elements. The model elements playing a role must satisify the constraints defined for the
role. One can remove or add more constraints to a role to adjust the eligibility of model elements
to play that role.

17

The proposed pattern descriptions also provide more details on the problem domain of the
patterns that can help developers choose a suitable pattern for a given problem. The pattern
descriptions can also be used as a basis for formalizing the problem and solution domain of the
access control patterns to support the pattern-based model development for secure systems [18].

5 Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant
No. CCF-0523101. Any opinions, findings and conclusions or recomendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation (NSF).

References

[1] K. J. Biba. Integrity considerations for secure computer systems. Technical Report ESD-TR-
76-372, Bedford, MA. Air Force Electronic Systems Division, 1977.

[2] D. Brewer and M. Nash. The Chinese Wall Security Policy. In Proceedings of the 1989 IEEE
Symposium on Security and Privacy, pages 206–214, Oakland, CA, 1989. IEEE Computer
Society Press.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System of Patterns:
Pattern-Oriented Software Architecture. Wiley, 1996.

[4] F. Chen and R. Sandhu. Constraints for Role-Based Access Control. In Proceedings of the 1st
ACM Workshop on Role-Based Access Control, Gaithersburg, MD, 1995.

[5] T. Doan, S. Demurjian, T.C. Ting, and A. Ketterl. MAC and UML for Secure Software
Design. In Proceedings of 2nd ACM Workshop on Formal Methods in Security Engineering:
From Specifications to Code, Washington D.C., 2004.

[6] E. B. Fernandez and Pan R. A Pattern Language for Security Models. In Proceedings of the
8th Conference on Pattern Language of Programs (PloP), Monticello, IL, 2001.

[7] D. Ferraiolo, D. K, and R. Chandramouli. Role-Based Access Control. Artech House, 1993.

[8] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST
Standard for Role-Based Access Control. ACM Transactions on Information and Systems
Security, 4(3), August 2001.

[9] G. Florijn, M. Meijers, and P. van Winsen. Tool Support for Object-Oriented Patterns. In
Proceedings of the 11th European Conference on Object Oriented Programming, volume 1241
of Lecture Notes in Computer Science, pages 472–495. Springer-Verlag, 1997.

[10] R. France, D. Kim, S. Ghosh, and E. Song. A UML-Based Pattern Specification Technique.
IEEE Transactions on Software Engineering, 30(3):193–206, March 2004.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

18

[12] General System Wall. http://www.securesize.com/GeSWall/.

[13] M. Grand. Patterns in Java-A catalog of reusable design patterns illustrated with UML. Wiley,
1999.

[14] A.L. Guennec, G. Sunye, and J. Jezequel. Precise Modeling of Design Patterns. In Proceedings
of the 3rd International Conference on the Unified Modeling Language (UML), pages 482–496,
York, UK, 2000. Springer-Verag, LNCS 1939.

[15] M.H. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in Operating Systems. Communi-
cations of the ACM, 19(8):461–471, August 1976.

[16] D. Kim. A Meta-Modeling Approach to Specifying Patterns. PhD thesis, Colorado State
University, Fort Collins, CO, 2004.

[17] D. Kim, R. France, S. Ghosh, and E. Song. A Role-Based Metamodeling Approach to Spec-
ifying Design Patterns. In Proceedings of the 27th IEEE Annual International Computer
Software and Applications Conference (COMPSAC), pages 452–457, Dallas, USA, 2003. IEEE
Computer Society Press.

[18] D. Kim and P. Gokhale. A Pattern-Based Technique for Developing UML Models of Access
Control Systems. In Submission to the 30th Annual International Computer Software and
Applications Conference (COMPSAC), Chigaco, IL, 2006. To be published.

[19] B.W. Lampson. Protection. In Proceedings of the 5th Princeton Conference on Information
Sciences and Systems, pages 437–443, Princeton, 1971. Reprinted in ACM Operating Systems
Rev. 8, 1 (Jan. 1974), pp 18-24.

[20] A. Lauder and S. Kent. Precise Visual Specification of Design Patterns. In Proceedings of
the 12th European Conference on Object-Oriented Programming (ECOOP), pages 114–136.
Springer-Verlag, LNCS 1445, 1998.

[21] L. Notargiacomo. Role-Based Access Control In ORACLE7 And Trusted ORACLE7. In
Proceedings of the 1st ACM Workshop on Role-Based Access Control, page 17, Gaithersburg,
MD, 1995.

[22] Oracle9i. http://www.oracle.com/technology/products/oracle9i/datasheets/ols/OLS9iR2 ds.html.

[23] S. L. Osborn, R. Sandhu, and Q. Munawer. Configuring Role-Based Access Control to Enforce
Mandatory and Discretionary Access Control Policies. ACM Transactions on Information and
System Security, 3(2):85–106, 2000.

[24] W. Pree. Design Patterns for Object-Oriented Software Development. Addison Wesley, 1995.

[25] N. Pryce. Abstract Session: an object structural pattern. In L. Rising, editor, Design Patterns
inCommunications Software, pages 191–208. Cambridge University Press, New York, USA,
2001.

[26] I. Ray, N. Li, D. Kim, and R. France. Using Parameterized UML to Specify and Compose
Access Control Models. In Proceedings of the 6th IFIP TC-11 WG 11.5 Working Conference on
Integrity and Internal Control in Information Systems (IICIS), Lausanne, Switzerland, 2003.

19

[27] James Rumbaugh, Michael R. Blaha, William Premerlani, Frederik Eddy, and William
Lorensen. Object-Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ, 1991.

[28] R. Sandhu and Q. Munawer. How To Do Discretionary Access Control Using Roles. In
Proceedings of the 3rd ACM Workshop on Role-Based Access Control (RBAC-98), Fairfax,
VA, 1998. ACM Press.

[29] R. Sandhu and P. Samarati. Access Control: Principles and Practice. IEEE Communications,
32(9):40–48, September 1994.

[30] R. S. Sandhu. Lattice-Based Access Control Models. IEEE Computer, 26(11):9–19, 1993.

[31] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects. Wiley, 2000.

[32] D. C. Schmidt, T.H. Harrison, and N. Pryce. Thread-Specific Storage - An Object Behavioral
Pattern for Accessing per-Thread State Efficiently. In the C++ Report, 9(10), 1997.

[33] SELinux. http://www.nsa.gov/selinux/.

[34] Sun One Identity Server. http://sunflash.sun.com/articles/62/4/iplanet/9662.

[35] M. M. Swift, A. Hopkins, P. Brundrett, C. Van Dyke, P. Garg, S. Chan, M. Goertzel, and
G. Jensenworth. Improving the granularity of access control for Windows 2000. ACM Trans.
on Information and System Security, 5(4):398–437, November 2002.

[36] The Object Management Group (OMG). Unified Modeling Language: Superstructure. Version
2.0 Formal/05-07-04, OMG, http://www.omg.org, August 2005.

[37] TOE. http://niap.nist.gov/cc-scheme/st/ST VID4048.html.

[38] TrustedBSD Project. http://www.trustedbsd.org/.

[39] WebSphere Portal for Multiplatforms. http://www-306.ibm.com/software/genservers/portal/.

20

