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Abstract

The classic UNIX principle to write code that generates code instead of
writing this code yourself [Ray03] experiences a revival these days. Much
research was done, the techniques are better understood now, and the
generation tools were refined.

This pattern catalogue consists of adaptations of the Gang of Four de-
sign patterns [GHJV96f] Abstract Factory, Adapter, Strategy, and Visitor
to the metaprogramming level. It shows that replacing runtime polymor-
phism by static polymorphism helps to move variation from the code level
up to the meta level. Some of the patterns proposed are especially useful
to facilitate portable code.

The patterns shown can be used to build static Frameworks [RJ98].
A simple example is also presented.

For all patterns proposed usage examples in popular existing applica-
tions or libraries were identified.

Each pattern presentation is accompanied with an example. These
examples show sample code in C++. The template metaprogramming
capabilities of C++ [AG05, CE00, VJ03a] allow to express both the code
level and the meta level in the same programming language.

∗Copyright c© 2006 Philipp Bachmann <bachlipp@web.de>. Permission is granted to copy
for the 13th Pattern Languages of Programs (PLoP) conference 2006. All other rights reserved.
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Chapter 1

Overview

Code generation can help to assemble a series of applications from the same set
of separate parts at compile time, to explicitly represent the building plan in
the generation software, and to allow for future adaptations by changing the
building plan.

Generative programming [CE00] provides another way to deal with varia-
tion additionally to patterns based on runtime polymorphism. Domain specific
languages (DSLs) describe how a system should be generated. If generative pro-
gramming is available and understood some points of variation can be moved
up from the software built into the DSL. This often leads to better optimization
opportunities.

With generative programming at hand the recurring problem of software
portability can be solved in an appropriate and more elegant way than with-
out. Usually portability means cross platform portability. The availability of a
product for many platforms can provide a significant competitive advantage as
can be seen e.g. with Adobe FrameMaker, which is one of the very few publish-
ing tools available for different operating systems. The term platform not only
refers to a certain hardware architecture and operating system, but can also
refer to other software subsystems the product interfaces with, e.g. database
management systems from different third party vendors. Portability also has
a temporal aspect. Portable code more likely can still be built in the future
with future versions of operating systems, libraries, and compilers. As software
often needs to be maintained for periods much longer than once planned this is
an important goal. Building software with portability in mind can reduce risk
and cost, which becomes manifest if the customers demand the product on a
platform not requested before.

Different roles need different qualifications during the development process
of portable applications:

1. Architects need a good sense of where to build variation in and where not.
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2. Designers need to come up with a solution on how to represent variation
in the software.

3. Implementors need in–depth knowledge on the concrete platform.

Patterns were identified on the metaprogramming level. This pattern cata-
logue assists you in both understanding variability necessary for portable appli-
cations and filling the gaps where supportive libraries are not available or can
not be used. Goals always aimed at were to centralize the configuration and to
reduce the need for conditional compilation.

The following table lists the patterns proposed.

Section Title Intent

2.1 Static Strategy Delegate certain tasks a class implementation
needs to perform to another class or instance.
Allow for static configuration of the implemen-
tation of these tasks.

2.2 Static Visitor Different from the Visitor pattern the Static
Visitor pattern does not depend on compile time
polymorphism at all. It breaks the dependency
cycle present in the original Visitor design pat-
tern.

2.3 Static Adapter Adapt a series of different interfaces to a com-
mon interface. The decision which interface is
actually to be adapted can be done at com-
pile time. It has to be ensured that regardless
of which interface is going to be adapted each
adaptation results in the same interface not to
break client code.

2.4 Static Abstract
Type Factory

The Static Abstract Type Factory provides an
extensible means to associate expressions on the
level of the domain specific language with appli-
cation data types.

3 Static Frame-
work

The purpose of writing portable code is not
only to provide an application for a variety of
platforms, but to do so in a way that on each
platform certain requirements concerning per-
formance are met. Static Frameworks assist you
in writing code that can be adapted more easily
to multiple platforms while making sure that on
each platform the application can fulfill its orig-
inal purpose.

The presentation of each pattern follows the style well known from [BMR+00c]
and [SSRB02d].

For the code examples C++ was chosen as the programming language, be-
cause its generative programming capabilities allow to stick with a single lan-
guage for both the basic and meta level.
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What can be said at all can be
said clearly.

Ludwig Josef Johann
Wittgenstein: Preface of

Tractatus
logico–philosophicus [Wit60]

Chapter 2

Metaprogramming Patterns

This chapter proposes the use of generative and template metaprogramming
techniques [AG05, CE00, VJ03a] to express classic patterns by the Gang of
Four [GHJV96f] on the metaprogramming level.

After reading this chapter the reader will know how to refactor code to move
points of variation from the code level to the metaprogramming level.

As domain specific languages (DSLs) statically describe a system, using
metaprogramming patterns can help with the design of portable code the same
way as patterns help with the design of the concrete implementation for one
platform.

Metaprogramming variants of other Gang of Four patterns can be found e.g.
in [CE00, pp 224–234].

2.1 Static Strategy

An instance or class based bahavioral pattern

2.1.1 Also known as

Policy [Ale03, pp 27–51], [VJ03b, pp 429–436]

2.1.2 Intent

Delegate certain tasks a class implementation needs to perform to another class
or instance. Allow for static configuration of the implementation of these tasks.
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2.1. Static Strategy

2.1.3 Example

Suppose a stack is to be implemented. The stack abstract data type itself does
not depend on how exactly memory is allocated. Suppose this independence
should be reflected by the design of the stack data structure to allow for plugging
in different allocation strategies, for example one using allocation on the heap,
one using allocation in shared memory segments, and another one allocating
memory in terms of memory mapped files.

Traditionally such allocation code would be dynamically added by means of
the Strategy [GHJV96k] design pattern as sketched in Listing 2.1.

Listing 2.1: Dynamically injecting a stack with an allocator

1 struct AllocatorIf {

2 virtual ~AllocatorIf () {}

3 virtual void *allocate (std :: size_t ) =0;

4 virtual void deallocate (void *) =0;

5 };

6

7 struct NewAllocator : public AllocatorIf {

8 void *allocate (std :: size_t n) {

9 return operator new(n);

10 }

11 void deallocate (void *p) throw () {

12 operator delete (p);

13 }

14 };

15

16 class IntStack {

17 AllocatorIf *allocator_ ;

18 ...

19 public :

20 // Doesn ’t take ownership over allocator

21 explicit IntStack (AllocatorIf &a) : allocator_ (&a), ... {}

22 ...

23 void pop () throw () {

24 // Calls "allocator_ ->deallocate()"

25 ...

26 }

27 void push(int data) {

28 // Calls "allocator_ ->allocate()"

29 ...

30 }

31 };

The details of IntStack do not matter here. They are similar to the imple-
mentation shown below in Listing 2.2. An implementation of the AllocatorIf

interface is injected into IntStack on construction. Note that different instances
using different allocators do not differ in type.

The Template Method design pattern [GHJV96j] was another implementa-
tion option. A disadvantage compared to Strategy was that implementation
details factored out into subclasses can not be reused as Strategies can.

As the allocator can not be changed during the lifetime of the instance of
IntStack with the exception of a potential assignment operator, using dynamic
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CHAPTER 2. METAPROGRAMMING PATTERNS

polymorphism may be considered too much of a good thing. So a way is sought
to statically bind allocators to the stack instance while still separating allocator
from stack code.

2.1.4 Context

The implementation of certain classes representing e.g. abstract data types con-
sists of different concerns that crosscut each other [KLM+97]. These concerns
are often bound to the class, not to its instances, and must then be kept im-
mutable for consistency reasons.

2.1.5 Problem

How to inject implementation details into a class to allow for a flexible way to
replace these details?

2.1.6 Forces

• Abstract data types are by definition independent of a special implemen-
tation. Their representation in code should be decomposed into a generic
essence and implementation details to keep code duplication to a mini-
mum even in the case that the implementation details need to be adapted
to use the code within another environment.

• The decomposition into several parts should not result in runtime over-
head.

• The implementation details itself should be general enough to be reused
in the context of other abstract data types.

2.1.7 Solution

Separate an abstract data type into its essence and an exchangeable class or
instance of another class it delegates implementation details to. Define a concept
for the classes that represent these implementation details. Statically configure
the abstract data type with the type of a model of this concept.

A first sketch of the solution is shown in Table 2.1.

Participants

AbstractDataType Class template that delegates implementation details to
the Static Strategy it gets statically configured with. A Concrete Strategy
might be offered as a default Static Strategy.

Client Client code instantiates the Abstract Data Type template for a Concrete
Strategy.
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2.1. Static Strategy

Table 2.1: Class–Responsibility–Collaboration Cards

AbstractDataType
Delegates im-
plementation
details to

StaticStrategy

Provides inter-
face to

Client

(a) Abstract Data Type

Client
Instantiates
template

AbstractData-
Type, Concrete
Strategy

Calls member
function of

AbstractData-
Type

(b) Client

ConcreteStrategy
Binds template
argument of

AbstractData-
Type

Model of StaticStrategy-
Concept

Encapsulates
algorithm imple-
mentation

(c) Concrete Strategy

StaticStrategyConcept
Declares inter-
face to algorithm

(d) Static Strategy Concept

Figure 2.1: Class diagram illustrating Static Strategy

ConcreteStrategy Provides algorithms that can be used by Abstract Data
Types within their implementations. Concrete Strategy is a model of
Static Strategy Concept.

StaticStrategyConcept Defines interface each Concrete Strategy has to con-
form to. Static Strategy Concepts provide a contract to Abstract Data
Types the latter can program against.

Figure 2.1 sketches the participants and their relations to each other.

Dynamics

The Client binds the Abstract Data Type template passing a Concrete Strategy.
The Client instantiates the resulting type. It then calls member functions, which
in turn delegate some implementation details to the Concrete Strategy.
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CHAPTER 2. METAPROGRAMMING PATTERNS

Rationale

Some configuration issues can be decided early at compile time. In fact, some
Abstract Data Types only work correctly, if their Strategies will remain fixed
during the life time of the instance of the respective Abstract Data Type. As-
sembling code at compile time instead of virtual calls at runtime results in fewer
indirections and less bias against inlining.

2.1.8 Resulting Context

Implementation details were factored out of the Abstract Data Type. The
AbstactDataType is more reusable than before, and the Static Strategies can
also be used to determine the implementation details of other Abstract Data
Types. The Client can define its own Static Strategies.

Pros and Cons

The Static Strategy pattern has the following benefits:

1. No runtime overhead. As the compiler binds Concrete Strategy to Ab-
stract Data Type, at runtime everything is readily prepared.

2. Extensible. If the Static Strategy Concept was published, the Client can
replace a Concrete Strategy with customized implementations.

The Static Strategy pattern has the following liability:

1. No relationship among different instantiations of Abstract Data Type. Ab-
stract Data Types bound to different StaticStrategies do not relate to each
other. If it is intented to assign them to each other, there have to be special
member function templates to enable this [Suta, Sutb], [Mey05b].

Additionally to these general pros and cons the following implementation specific
ones were identified.

The implementation technique of the Static Visitor pattern shown has the
following liabilities:

2. No concept of Concrete Strategy. The Concrete Strategies have to be mod-
els of the same concept Static Strategy Concept: They all have to provide
member functions of the same names. Such concepts cannot currently be
expressed in C++. There are matured proposals to overcome this issue,
e.g. [DRS06, GS06].

3. Definitions must be inlined. This technique reveals implementation details
in header files. This might not be appropriate.
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2.1. Static Strategy

2.1.9 Implementation

Once a decision was made what is the essence of the Abstract Data Type and
which parts better should be factored out into a Static Strategy, the data struc-
ture repesenting Abstract Data Type has to be made statically configurable by
turning it or its member functions into templates. A Static Strategy Concept
has to be developed that declares the interface between Abstract Data Type
and the Concrete Strategy.

Example Resolved

The code shown in listing 2.2 shows a stack data structure capable of storing
integral numbers only and a simplified version of the Allocator concept of the
C++ Standard Library. The NewAllocator shown as an example for all models
of the simplified allocator concept acquires memory from and releases it to the
freestore.

Listing 2.2: Statically injecting a stack with an allocator

1 struct NewAllocator {

2 static void *allocate (std :: size_t n) {

3 return operator new(n);

4 }

5 static void deallocate (void *p) throw () {

6 operator delete (p);

7 }

8 };

9

10 template < typename Allocator =NewAllocator > class IntStack {

11 struct IntNode {

12 int data_ ;

13 IntNode *next_;

14 IntNode (int data ,IntNode *next)

15 : data_ (data), next_(next) {}

16 };

17 Allocator allocator ;

18 IntNode *top_;

19 public :

20 IntStack () : top_ (0) {}

21 IntStack (const IntStack &rhs) : top_ (0) {

22 try {

23 for(const IntNode *ci=rhs .top_ ;0!=ci;ci=ci ->next_)

24 push(ci->data_ );

25 }

26 catch (...) {

27 clear ();

28 throw;

29 }

30 }

31 ~IntStack () {

32 clear ();

33 }

34 IntStack &operator =( const IntStack &rhs) {

35 IntStack tmp (rhs );

36 swap(tmp );
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CHAPTER 2. METAPROGRAMMING PATTERNS

37 return *this;

38 }

39 void swap(IntStack &rhs) throw () {

40 IntNode *const tmp=top_;

41 top_=rhs .top_;

42 rhs.top_=tmp;

43 }

44 void clear () throw () {

45 while (top_)

46 pop ();

47 }

48 bool empty () const {

49 return !top_;

50 }

51 void pop () throw () {

52 assert (top_ );

53 IntNode *const tmp=top_;

54 top_=top_ ->next_;

55 // Call destructor to get plain , raw memory

56 // (not really necessary here because of trivial destructor)

57 tmp ->~ IntNode ();

58 // Delegate deletion to Allocator

59 allocator .deallocate (tmp );

60 }

61 void push(int data) {

62 // Delegate allocation to Allocator

63 IntNode *node=allocator .allocate (sizeof (IntNode ));

64 try {

65 // Construct instance into raw memory

66 new (node) IntNode (data ,top_ );

67 top_=node;

68 }

69 catch (...) {

70 allocator .deallocate (node);

71 throw;

72 }

73 }

74 int top () const {

75 assert (top_ );

76 return top_ ->data_;

77 }

78 };

Note that different instances using different allocators differ in type in contrast
to the version using the Strategy pattern as shown in Listing 2.1. Concepts
are less restrictive than interfaces regarding to the exact signatures of member
functions prescribed; the above stack will also compile bound to allocators with
e.g. non–static member functions.

The dynamics of IntStack< NewAllocator >::push() is shown in Figure
2.2.

2.1.10 Variants

Depending on the purpose of the Strategy there are two different implementation
options with respect to the granularity of configuration possible. Either the
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2.1. Static Strategy

Figure 2.2: Sequence diagram illustrating Static Strategy

Strategy affects the whole class template Abstract Data Type and remains fixed
during the whole lifetime of the template instantiation, or the member functions
of Abstract Data Type are declared as templates, such that for each member
function template and on each call a different Strategy can be chosen. This
description concentrates on the first option. The second one can be implemented
similar to the Static Visitor pattern (see Section 2.2).

2.1.11 Known Uses

Examples of Static Strategy can be found in existing software.

C++ Standard Library Allocator concept

The C++ Standard Library contains various containers, e.g. associative con-
tainers like std::map<>, arrays like std::vector<>, and list like structures like
std::stack<>. All of these delegate allocation of their elements to a Static
Strategy that must be a model of the Allocator concept.

C++ Standard Library StrictWeakOrdering concept

The associative containers of the C++ Standard Library additionally pose the
requirement on their so called keys that for their type a binary function or
function object exists that is a model of the concept StrictWeakOrdering. In
other words the keys must be strict weakly ordered, and this order is represented
by a comparison function or function object. The respective container instance
delegates the task of comparing two keys to this.

The Standard C library contains e.g. the Quicksort implementation qsort().
It uses the Strategy pattern instead to both make the function independent of
a special data type and delegate the comparison to user code, not the Static
Strategy pattern and thus forbids inlining of the comparison function.
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CHAPTER 2. METAPROGRAMMING PATTERNS

C++ Standard Library Algorithms

The C++ Standard Library provides a lot of algorithms that map a unary
function to each element of a container. They cast popular uses of loops into
function templates. On instantiation these templates are configured by an It-
erator [GHJV96h] type and the type of the unary function, which in fact is a
Static Strategy.

If the Static Strategies furthermore statically reflect their argument and re-
turn types using certain member type definitions e.g. by inheriting from std::

unary function<> or std::binary function<> the functions can be chained:
Binary functions can be turned into unary ones using one of the binders std::
bind1st<> or std::bind2nd<>, and unary functions can be negated using
std::negate<>.

2.1.12 Related Patterns

The Static Visitor pattern also inverts control flow.

The Strategy design pattern uses (runtime) polymorphism to allow for sub-
stitution of a concrete strategy by another implementation. The Static Strategy
pattern is its static counterpart.

2.2 Static Visitor

The Visitor design pattern [GHJV96d] uses both polymorphism twice and over-
loading once. One purpose of polymorphism with the Visitor pattern is to keep
the accept() member function general enough to accept more than one spe-
cific Visitor. Inside of each Visitor class overloading is used to let the compiler
statically choose the correct member function. The other use of polymorphism
in the Visitor design pattern is to allow for double dispatch. The class diagram
corresponding to the original Visitor pattern is shown in Figure 2.3. The use
of overloading shows, that the original Visitor pattern already contains strong
aspects of compile time decisions.

2.2.1 Intent

Different from the Visitor pattern the Static Visitor pattern does not depend
on compile time polymorphism at all. It breaks the dependency cycle present
in the original Visitor design pattern.

2.2.2 Example

Consider you have a fixed set of classes representing the different entities a file
system consists of. One of these classes represents a directory. Directories are
Composites [GHJV96i] that contain instances of classes within the given set
including directories. A user might want to traverse the directories recursively
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2.2. Static Visitor

and apply arbitrary functions on the elements encountered. From a UNIX shell
he or she would use find -exec to do so.

A traditional implementation looks as shown in Listing 2.3.

Listing 2.3: Classic Visitor with double dispatch

1 class File;

2 class Directory ;

3

4 struct VisitorIf {

5 virtual ~VisitorIf () {}

6 virtual void visit(File &) =0;

7 virtual void visit(Directory &) =0;

8 };

9

10 struct FileSystemElementIf {

11 virtual ~FileSystemElementIf () {}

12 virtual void accept (VisitorIf &) =0;

13 };

14

15 class File : public FileSystemElementIf {

16 ...

17 public :

18 void accept (VisitorIf &v) {

19 v.visit (* this);

20 }

21 ...

22 };

23

24 class Directory : public FileSystemElementIf {

25 ...

26 typedef std ::list < FileSystemElementIf * > list_type ;

27 public :

28 void accept (VisitorIf &v) {

29 v.visit (* this);

30 list_type ls;

31 ...

32 for (list_type :: iterator in(ls.begin ());ls.end ()!=in ;++ in)

33 (*in)->accept (v);

34 }

35 ...

36 };

The details of File and Directory do not matter here. They are similar to the
implementation shown below in Listing 2.4.

Concrete visitor classes have to realize the interface VisitorIf.
It is worth noting that the visitor interface depends on the (incomplete)

types of all possible elements the file system can consist of, and that FileSys-
temElementIf, the interface all file system elements realize, depends on the
(incomplete) visitor interface. This cyclic dependency can also be seen in the ac-
companying Figure 2.3 and could hardly be tighter. Adding another file system
element class not only requires its definition, but also requires the modification
of the visitor interface and thus of all concrete visitors. The latter is a hard task
and can even be impossible as the supplier of the file system class hierarchy
might not have control over all visitor classes. Therefore this implementation
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Figure 2.3: Class diagram illustrating the classic Visitor with double dispatch
[GHJV96d]
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applies only if the class hierarchy to visit is nearly stable. Furthermore strong
dependencies can lead to much longer compilation times, if code was changed.

It is also worth noting that this implementation supports double dispatch
due to the fact that the function FileSystemElementIf::accept() is lately
bound by means of the virtual specifier. The implementation of Directory

exploits this fact—it does not depend on any concrete file system element class.

As the hierarchy of all classes implementing FileSystemElementIf needs to
be stable anyway, however, it might be beneficial to replace runtime by static
polymorphism.

2.2.3 Context

A fixed set of classes is given. Some of them are object structures that can
aggregate instances of classes from the set and thus instances can be arranged
in a hierarchical manner. Changes to this set can nearly be ruled out.

2.2.4 Problem

Different algorithms will be applied to the instances arranged in the hierarchy
possibly using different traversal strategies. The algorithms are not known in
advance. So it is not an option to add all algorithms to the set of classes given.
The problems therefore are as follows: How to a priori add minimal function-
ality to each of the classes the set consists of to allow for maximal extensibility
regarding applying arbitrary user defined algorithms to each instance reachable
though an instance aggregating others? How to shield the traversal from the
user? How to offer typesafe extensibility?

2.2.5 Forces

• A user may want to traverse the object structure both just to accumulate
data and to change the elements.

• Dependencies and associations among classes should be kept to a mini-
mum, especially cyclic ones.

2.2.6 Solution

Instead of repeatedly adding functionality to each class the set consists of once
and for all equip these classes with a member function template accepting an
instance of any class that is a model of some visitor concept. Whenever new
algorithms should be applied to the hierarchy of instances these algorithms
will have to be represented by an appropriate visitor class. The visitor can
differentiate between the different classes of the set by means of overloading.

A first sketch of the solution is shown in Table 2.2.
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Table 2.2: Class–Responsibility–Collaboration Cards

Client
Instantiates Visitor
Passes Visitor to ObjectStructure

(a) Client

ClassN
Offers interface
to

Visitor

(b) Class N

ObjectStructure
Accepts Visitor
Contains in-
stances of

ClassN

Traverses
through its
instances of

ClassN

(c) Object Structure

Visitor
Declares mem-
ber function
overload for
each

ClassN

Is model of VisitorConcept
Potentially ac-
cumulates some
state

(d) Visitor

VisitorConcept
Declares inter-
face to

ObjectStructure

(e) Visitor Concept

Participants

ClassN One class of a bounded and known set of classes. Object Structure
aggregates one or more instances of these classes. Each class likely provides
an interface that differs from the interfaces of the other classes contained
in the set. The Visitor interacts with Class N by calling its member
functions.

Client The Client intends to execute a function on all elements directly or
indirectly contained within Object Structure. To do so it instantiates a
Visitor that represents the function and passes it to Object Structure.

ObjectStructure A special variant of Class N. A collection of instances of
Class N and other classes from the well–known, bounded set. Object
Structure provides a template member function to accept any Visitor that
is model of Visitor Concept. Often this function is responsible to traverse
the member instances and call the member function of the Visitor for each
instance encountered.

Visitor A model of Visitor Concept that overloads a member function pre-
scribed by the concept for all classes similar to Class N. If some of these
classes have a common superclass, then the Visitor might only overload
its member function for the superclass.

VisitorConcept All Visitor classes must be models of a Visitor Concept to
offer Class N and Object Structure a single way to use Visitors.

18



2.2. Static Visitor

Figure 2.4 sketches the participants and their relations to each other.

Dynamics

The Client instantiates a Visitor and passes it to the instance of Object Struc-
ture. The Object Structure traverses through its elements and repeatedly and
potentially recursively calls the member function on the Visitor instance pre-
scribed by Visitor Concept passing the current element to the Visitor. Because
of strong typing the compiler binds this function call early to the appropriate
function overload.

The dynamics of Static Visitor is shown in Figure 2.5.

Rationale

It is well known that the application of the Visitor design pattern in its original
version introduces cyclic dependencies: The Visitor depends on Class N and
its siblings, and every class that accepts a Visitor depends on the Visitor class.
Therefore the visitor especially works if the set of classes is fixed and bounded.
Then the Visitor helps to add arbitrary functionality to existing classes without
the need to modify them.

In the original publication of Visitor polymorphism is used twice: First, it
enables double dispatch. The Object Structure can contain elements of arbitrary
classes as long as each class implements an interface that enables its instances
to accept a Visitor. Second, it makes the accept member function independent
of a concrete Visitor class.

Here the second aspect is substituted by static polymorphism.
Now classes accepting visitors do not depend on any visitor interface any

more. Instead they accept instances of all visitor classes that are models of
the same visitor concept. As no virtual call is involved any more, the traversal
through the class hierarchy and the application of the visitor happen without
indirection and can be inlined by the compiler.

2.2.7 Resulting Context

The Clients can apply arbitrary functions to the elements of Object Structure
without knowledge in how to traverse it. Class N and its siblings do not have
to be modified to add functionality common to all of them. For each new task
a new Visitor class will be developed.

Pros and Cons

The Static Visitor pattern has the following benefits:

1. No virtual calls to Visitor. As the Visitor is statically bound to the pa-
rameter of the accept member function of Object Structure and Class N,
the calls to the overloaded member functions of the Visitor instance are
direct and can be inlined.
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Figure 2.4: Class diagram illustrating Static Visitor
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Figure 2.5: Sequence diagram illustrating Visitor

2. Accept does not depend on Visitor The accept member functions do not
depend on a Visitor interface anymore. Instead they depend on a Visitor
Concept.

Additionally to these general pros and cons the following implementation specific
ones were identified.

The implementation technique of the Static Visitor pattern shown has the
following liabilities:

1. No double dispatch possible. As member function templates cannot be
declared virtual, the Static Visitor does not implement double dispatch.
As long as Object Structure is not part of a Framework [RJ98] while
placing the responsibility over Class N and Visitor to the user of the
Framework this issue is a minor disadvantage only because the benefit of
double dispatch is undermined by the fact that for the Visitor pattern
the set of classes Object Structure can contain has to be known a priori
anyway. With Frameworks, however, Object Structure must not depend
on any Class N for extensibility reasons, so double dispatch is necessary.
Static Frameworks (see Section 3) may point at a way out.

2. No concept of Visitor. The Visitors have to be models of the same concept
Visitor Concept: They all have to provide member function overloads of
the same name. Such concepts cannot currently be expressed in C++.
There are matured proposals to overcome this issue, e.g. [DRS06, GS06].

2.2.8 Implementation

This section shows the implementation of the pure Static Visitor design pattern.
It is not combined with other variations of the same pattern.
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Example Resolved

Listing 2.4 shows the two classes Directory and File. For simplicity reasons it
is assumed that file systems consist of instances of these classes only. In the real
UNIX world you would additionally expect classes like SymbolicLink, Device,
and Process. Directory is a container that can hold an arbitrary number of
Directory and File instances. Instances of both Directory and File can
be asked to tell their size, a property with very different meaning among the
different file system objects.

Extensibility is given by the fact that instances of both File and Directory

can be visited by arbitrary visitors.

Listing 2.4: Static Visitor

1 class File {

2 const std :: string name_;

3 public :

4 explicit File(const char name []) : name_ (name) {}

5 template < typename Visitor > void accept (Visitor &v) {

6 v.visit (* this);

7 }

8 std :: size_t fileSize () const {

9 stat s;

10 stat(name_ ,&s);

11 return s.st_size ;

12 }

13 };

14

15 class Directory {

16 const std :: string name_;

17 // Separate list types - thus double dispatch is not necessary

18 typedef std ::list < Directory > dir_list ;

19 typedef std ::list < File > file_list ;

20 public :

21 explicit Directory (const char name []) : name_ (name) {}

22 template < typename Visitor > void accept (Visitor &v) {

23 v.visit (* this);

24 dir_list dir;

25 file_list file;

26 DIR *const dirp=opendir (name_ );

27 dirent *direntp =0;

28 while (( direntp =readdir (dirp ))) {

29 stat s;

30 stat(direntp ->d_name ,&s);

31 if(S_ISDIR (s.st_mode ))

32 dir.push_back (static_cast < Directory >(direntp ->d_name ));

33 else if(S_ISREG (s.st_mode ))

34 file.push_back (static_cast < File >(direntp ->d_name ));

35 }

36 closedir (dirp);

37 for(dir_list :: iterator in(dir .begin ()); dir.end ()!=in;++ in)

38 in ->accept (v);

39 for(file_list :: iterator in(file.begin ()); file.end ()!=in;++ in)

40 in ->accept (v);

41 }

42 std :: size_t size () const {
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43 stat s;

44 stat(name_ ,&s);

45 return s.st_size ;

46 }

47 };

Listing 2.5 shows two visitors. Both do not modify the instances visited.
AccumulateSize sums up the sizes of all nodes encountered. Count simply
counts all nodes regardless of their type. Both visitors carry some state. This
state can only be fed back to the client because the accept<>()member function
templates in the listing before pass the visitor by reference. Another implemen-
tation option of the accept<>() member function templates was to return the
visitor taken by value as the algorithms of the C++ Standard Library do.

Listing 2.5: Two examples for visitors

1 class AccumulateSize {

2 std :: size_t size_ ;

3 public :

4 AccumulateSize() : size_ (0) {}

5 void visit(const File &f) {

6 size_ +=f.fileSize ();

7 }

8 void visit(const Directory &d) {

9 size_ +=d.size ();

10 }

11 std :: size_t size() const {

12 return size_ ;

13 }

14 };

15

16 class Count {

17 std :: size_t number_of_elements_;

18 public :

19 Count () : number_of_elements_ (0) {}

20 template < typename FileSystemElement >

21 void visit(const FileSystemElement &) {

22 ++ number_of_elements_ ;

23 }

24 std :: size_t getNumber_of_elements () const {

25 return number_of_elements_;

26 }

27 };

Implementing visit() as a template member function as with Count ad-
ditionally breaks the dependency of the visitor class from the classes of the
elements visited. However, this only works if the visitor does not really access
the elements as in the example or if the element classes all model the same
concept which is not the case in the example, because the member functions
returning a size have different names in File and Directory.

2.2.9 Variants

A particularly attractive variant is the combination with a variation of Acyclic
Visitor [Mar98], [Ale03, pp 322–328]. It moves the dependency of the declaration
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Figure 2.6: Class diagram illustrating Yet Another Acyclic Visitor

of Visitor from the class hierarchy to the definition of Visitor. To accomplish
this the Visitor uses dynamic cast<>() to convert a reference to a common
superclass to a reference to one of the classes the hierarchy consists of. Com-
bining Static Visitor with this variant of Acyclic Visitor can further reduce the
dependencies between the interfaces of the visitor classes and the classes visited.

Figure 2.6 and Listings 2.6 and 2.7 sketch this variant.

Listing 2.6: Static Visitor enabling the use of Acyclic Visitors

1 struct PolymorphObject {

2 virtual ~PolymorphObject() =0 {}

3 };

4

5 class File : public PolymorphObject {

6 ...

7 public :

8 template < typename Visitor > void accept (Visitor &v);

9 ...

10 };

11

12 class Directory : public PolymorphObject {

13 ...

14 public :

15 template < typename Visitor > void accept (Visitor &v);

16 ...

17 };

The details of File and Directory do not matter here. They are similar to
the implementation shown above in Listing 2.4. The difference is that both
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specialize the nearly trivial class PolymorphObject now. This is done for the
sole purpose of enabling polymorphism, as in C++ there is no standard root
class or interface of all classes like e.g. java.lang.Object in Java [AGH01, pp
47,110–112].

The modified visitor class example exploits this property to move the de-
pendencies from concrete file system element classes from its header file to its
implementation file only.

Listing 2.7: An example for an Acyclic Visitor

1 // Header file

2 class AccumulateSize {

3 std :: size_t size_ ;

4 public :

5 AccumulateSize();

6 void visit(const PolymorphObject &);

7 std :: size_t size() const;

8 };

9

10 // Implementation file

11 AccumulateSize:: AccumulateSize() : size_ (0) {}

12

13 void AccumulateSize:: visit(const PolymorphObject &o) {

14 if(const File *const f=dynamic_cast < const File * >(&o)) {

15 size_ +=f-> fileSize ();

16 return ;

17 }

18 if(const Directory *const d

19 =dynamic_cast < const Directory * >(&o)) {

20 size_ +=d->size ();

21 return ;

22 }

23 // Ignore instance of unknown file system element type

24 }

25

26 std :: size_t AccumulateSize::size () const {

27 return size_;

28 }

Without establishing the relation between the classes representing file system
elements and the common base class with at least one virtual member function
the visitor classes could not benefit from dynamic cast<>().

Compared to the original Visitor design pattern the virtual visit() member
functions and the interface VisitorIf, which declares them, became replaced
by static polymorphism in terms of the template member functions accept<>(),
that now take any visitor that is a model of a visitor concept. The overloading
of the visit() member functions became replaced by dynamic polymorphism
in terms of dynamic cast<>(). So the original pattern is nearly turned upside
down—runtime polymorphism becomes static polymorphism and vice versa—
leading to a vast reduction of bidirectional dependencies between the visitor
interface and the class hierarchy visited.
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2.2.10 Known Uses

Examples of Static Visitor can be found in existing software.

Boost.Variant

Boost.Variant [FM] represents a C++ container that holds exactly one value of
arbitrary type. This kind of classes is often used when interfacing a strongly
typed language like C++ with a scripting language or with a remoting library
like MS COM. Boost.Variant provides both a runtime type checked access and a
compile time type checked access to the value stored. The latter uses the Static
Visitor pattern by means of the apply visitor<>() member function template
that fulfills the purpose accept<>() fulfills above.

Boost Graph library

The Boost Graph library [SLL, SLL02] defines several Visitor Concepts. There
is no need for a common Visitor base class for each concept, because the Static
Visitor pattern is used. For example the template function boost::depth -

first search<>() accepts all Visitor classes that are models of the DFSVisitor
concept and plays the role of the accept<>() member function template in the
description above.

2.2.11 Related Patterns

The Static Strategy pattern (see Section 2.1) also inverts control flow.
The Static Visitor is an Internal resp. Passive Iterator [GHJV96h, pp 339–

340,348–352] executing different Static Strategies depending on overloading.
The Visitor design pattern uses (runtime) polymorphism to allow for sub-

stitution of a concrete visitor by another implementation. The Static Visitor
pattern is its static counterpart.

2.3 Static Adapter

A class based pattern to map types to behavior. The Static Adapter pattern
helps decouple an application from a single platform. It ensures that all adapters
reliably model the same concept.

2.3.1 Also known as

Wrapper Facade [SSRB02f, pp 66–67]

2.3.2 Intent

Adapt a series of different interfaces to a common interface. The decision which
interface is actually to be adapted can be done at compile time. It has to be
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ensured that regardless of which interface is going to be adapted each adaptation
results in the same interface not to break client code.

2.3.3 Example

Consider that a library will be built to abstract from different concurrency
control primitives on different platforms. For example there will be a class
ReadersWriter Mutex providing the member functions readAcquire(), write-
Acquire(), and release(). The implementation of the class translates plat-
form specific interfaces—most likely imperative and not object oriented ones—
into an object oriented interface common to a variety of platforms. The con-
structor will perform initialization of the platform specific primitive if necessary,
and the destructor will free resources again if required.

Traditionally such code would either use the Adapter design pattern
[GHJV96b], or the original Wrapper Facade pattern is used with conditional
compilation, i.e. the interface and especially the implementation is interspersed
with preprocessor instructions as shown in Listing 2.8.

Listing 2.8: Using conditional compilation to adapt platform specific readers /
writer locks to a uniform interface

1 class ReadersWriter_Mutex {

2 #if defined (_WIN32 )

3 CRITICAL_SECTION lock_;

4 #elif defined (UNIX)

5 pthread_rwlock_t lock_;

6 #else /* defined(_WIN32 ) */

7 #error ReadersWriter_Mutex: Fatal error : Platform not supported .

8 #endif /* defined(_WIN32 ) */

9 // No copy allowed , therefore private and declared only

10 ReadersWriter_Mutex(const ReadersWriter_Mutex &);

11 // No assignment allowed , therefore private and declared only

12 ReadersWriter_Mutex &operator =( const ReadersWriter_Mutex &);

13 public :

14 ReadersWriter_Mutex () {

15 #if defined (_WIN32 )

16 InitializeCriticalSection (& lock_ );

17 #elif defined (UNIX)

18 if(pthread_rwlock_init (&lock_ ,NULL))

19 throw std :: runtime_error(

20 "Call to \" pthread_rwlock_init ()\" failed ."

21 );

22 #endif /* defined( _WIN32 ) */

23 }

24 ~ReadersWriter_Mutex () {

25 #if defined (_WIN32 )

26 DeleteCriticalSection (&lock_ );

27 #elif defined (UNIX)

28 assert (! pthread_rwlock_destroy (&lock_ ));

29 #endif /* defined( _WIN32 ) */

30 }

31 void readAcquire () {

32 #if defined (_WIN32 )

33 EnterCriticalSection (& lock_ );
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34 #elif defined (UNIX)

35 if( pthread_rwlock_rdlock (& lock_ ))

36 throw std :: runtime_error(

37 "Call to \" pthread_rwlock_rdlock ()\" failed ."

38 );

39 #endif /* defined(_WIN32 ) */

40 }

41 void writeAcquire() {

42 #if defined (_WIN32 )

43 EnterCriticalSection (& lock_ );

44 #elif defined (UNIX)

45 if( pthread_rwlock_wrlock (& lock_ ))

46 throw std :: runtime_error(

47 "Call to \" pthread_rwlock_wrlock ()\" failed ."

48 );

49 #endif /* defined(_WIN32 ) */

50 }

51 void release () {

52 #if defined (_WIN32 )

53 LeaveCriticalSection (& lock_ );

54 #elif defined (UNIX)

55 if( pthread_rwlock_unlock (& lock_ ))

56 throw std :: runtime_error(

57 "Call to \" pthread_rwlock_unlock ()\" failed ."

58 );

59 #endif /* defined(_WIN32 ) */

60 }

61 };

For every member function and for the attribute conditional compilation is used
here.

Preprocessor instructions are somewhat outside of the programming lan-
guage used, however. This solution is not very elegant, the compiler can not
assist much in detecting errors, and maintenance likely becomes a nightmare.
So the goal is to reduce conditional compilation to a minimum.

2.3.4 Context

Different platforms potentially adhere different standards. A mapping was de-
fined to provide a common programming interface, sometimes referred to as a
portable runtime or a Wrapper Facade.

2.3.5 Problem

How can the compiler(s) guarantee, that all implementations for different plat-
forms model the same concept (e.g. provide the member functions readAc-

quire(), writeAcquire(), and release())? The Wrapper Facade pattern
suggests a way to provide a common abstraction of platform specific interfaces
to user code, but does not discuss in detail how to adapt this abstraction to
more than one platform [BK03].
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Table 2.3: Class–Responsibility–Collaboration Cards

Client
Instantiates
template

PlatformType,
Static Adapter,
Specialization
of Member
Functions

(a) Client

PlatformType
Binds template
argument of

Static Adapter

Fixed for a single Client
Provides inter-
face to

Specialization
of Member
Functions

(b) Platform Type

SpecializationOfMemberFunctions
Adapts PlatformType
Statically imple-
ments

Static Adapter

(c) Specialization of Member Functions

StaticAdapter
Provides plat-
form agnostic
interface to

Client

(d) Static Adapter

2.3.6 Forces

• The more platforms to be supported and the more degrees of freedom
static configuration by means of the domain specific language available,
ensuring that each variant compiles and works becomes a nightmare with-
out processes and tools that help.

• Explicit representation of (static) configurability makes the code more
understandable.

• Dynamic configuration by means of the Adapter design pattern is not an
option for code that would benefit from early binding and inlining.

2.3.7 Solution

Static polymorphism can be used to statically configure the Wrapper Facade to
choose the correct, platform specific implementation. The configuration has to
be restricted to the member functions and not to the whole class to ensure that
the interface remains identical on all platforms.

A first sketch of the solution is shown in Table 2.3.

Participants

Client Client code instantiates the Static Adapter template for a Platform
Type.

PlatformType A low Layer [BMR+00a], likely with an imperative interface.
The interfaces handling different Platform Types might differ significantly.
Platform Types often represent entities that can be acquired and then
released again. Such entities are referred to as resources. A Platform
Type remains fixed during runtime of the application and most likely for
even much longer periods.
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Figure 2.7: Class diagram illustrating Static Adapter

SpecializationOfMemberFunctions For each Platform Type all member
functions of the Static Adapter are specialized and defined.

StaticAdapter A class template declaring the platform independent static in-
terface of the Wrapper Facade. The member functions are declared, but
not defined. Therefore the template parameter is not restricted to a cer-
tain concept.

Figure 2.7 sketches the participants and their relations to each other.

Dynamics

The Client binds the template parameter of Static Adapter to an appropriate
Platform Type. Most often it does so by a typedef. The resulting class will be
instantiated then. Within the same translation unit there are declarations of
Specializations of Member Functions. During binding of template parameters
the compiler records the respective symbols to the object code, and during
link editing the linker will take the appropriate definitions of Specialization Of
MemberFunctions.

Rationale

If runtime efficiency is critical dynamic configuration would lead to systems with
virtual calls and less opportunities for inlining. Given that there is no need to
let the configuration depend on e.g. user input or configuration files, then static
configuration can solve these efficiency problems. Static polymorphism is used
to let take Static Adapter possibly totally different implementations from one
Platform Type to another.

This pattern uses explicit specialization of member functions, not of the
whole class template. This ensures that the interface of the Wrapper Facade is
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the same for each Platform Type. By some sense Static Adapter is a concept
the Client can trust in, and the instantiated template which binds a Platform
Type to the template argument of Static Adapter and implements the member
functions by means of their Specializations is a model of the concept.

This design pattern is not restricted to the implementation technique pro-
moted. Other techniques are elaborated on in Sections 2.3.10 and 2.3.11, re-
spectively.

2.3.8 Resulting Context

For each Platform Type there is a Wrapper Facade. The compiler guarantees
that these Wrapper Facades do not differ regarding to their interfaces.

Pros and Cons

The Static Adapter pattern has the following benefits:

1. Runtime efficiency. As with Wrapper Facade this pattern tries to keep
the platform abstraction Layer as thin as possible.

2. Cross platform contract. Static Adapter provides a cross platform con-
tract. The Client can trust in the concept defined by the Static Adapter.

The Static Adapter pattern has the following liability:

1. Static configuration itself must be portable. The Static Adapter pattern
presumes a portable technique for static configuration. The more plat-
forms have to be supported the more restrictions this requirement will
impose.

Additionally to these general pros and cons the following implementation
specific ones were identified.

The implementation technique of the Static Adapter pattern shown has the
following benefits:

3. More than one specialization per platform. This special technique allows
for more than a single specialization for specific platforms, while on other
platforms there might be only a single specialization. See Section 2.3.9 for
an example. Providing a toolset from which a tool can be chosen by means
of a simple typedef supports delaying irreversible decisions, an Agile and
lean principle [PP03d, Zan02].

4. One language only. An implementation based on metaprogramming tech-
niques of the programming language used anyway means that all can be
done within a single environment. There is no need to use another tool to
perform static configuration.

The implementation technique of the Static Adapter pattern shown has the
following liability:
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2. For some compilers everything must be inlined. Then this technique re-
veals implementation details in header files. This might not be appropri-
ate. There are notable exceptions among the compilers where in the case
of explicit specializations the definitions do not have to be inlined any-
more and can go into separate implementation files because of increasing
support of [Ame03, 14.7.3/5], however.

2.3.9 Implementation

Static polymorphism is implemented using specialization of member function
templates.

Example Resolved

Listing 2.9 shows two different implementations of a Wrapper Facade. The
implementation for CRITICAL SECTIONs works on MS Win32 and does not make
a difference between reading and writing. The implementation for pthread rw-

lock t works on POSIX 1003.1c compliant systems and treats reading and
writing differently.

Listing 2.9: Statically adapting platform specific readers / writer locks to a
uniform interface

1 // Header file

2 template < typename Lock > class ReadersWriter_Mutex {

3 Lock lock_ ;

4 // No copy allowed , therefore private and declared only

5 ReadersWriter_Mutex (const ReadersWriter_Mutex &);

6 // No assignment allowed , therefore private and declared only

7 ReadersWriter_Mutex &operator =( const ReadersWriter_Mutex &);

8 public :

9 ReadersWriter_Mutex ();

10 ~ ReadersWriter_Mutex ();

11 void readAcquire ();

12 void writeAcquire();

13 void release ();

14 };

15

16 // Specializations of member functions

17 #ifdef _WIN32

18 template <>

19 ReadersWriter_Mutex < CRITICAL_SECTION >

20 :: ReadersWriter_Mutex ();

21

22 template <>

23 ReadersWriter_Mutex < CRITICAL_SECTION >

24 ::~ ReadersWriter_Mutex ();

25

26 template <>

27 void ReadersWriter_Mutex < CRITICAL_SECTION >:: readAcquire ();

28

29 template <>

30 void ReadersWriter_Mutex < CRITICAL_SECTION >:: writeAcquire();
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31

32 template <>

33 void ReadersWriter_Mutex < CRITICAL_SECTION >:: release ();

34 #endif /* defined(_WIN32 ) */

35

36 #ifdef UNIX

37 template <>

38 ReadersWriter_Mutex < pthread_rwlock_t >

39 :: ReadersWriter_Mutex ();

40

41 template <>

42 ReadersWriter_Mutex < pthread_rwlock_t >

43 ::~ ReadersWriter_Mutex ();

44

45 template <>

46 void ReadersWriter_Mutex < pthread_rwlock_t >:: readAcquire ();

47

48 template <>

49 void ReadersWriter_Mutex < pthread_rwlock_t >:: writeAcquire();

50

51 template <>

52 void ReadersWriter_Mutex < pthread_rwlock_t >:: release ();

53 #endif /* defined(UNIX) */

54

55 // Implementation file

56 #ifdef _WIN32

57 ReadersWriter_Mutex < CRITICAL_SECTION >

58 :: ReadersWriter_Mutex () {

59 InitializeCriticalSection (&lock_ );

60 }

61

62 ReadersWriter_Mutex < CRITICAL_SECTION >

63 ::~ ReadersWriter_Mutex () {

64 DeleteCriticalSection (& lock_ );

65 }

66

67 void ReadersWriter_Mutex < CRITICAL_SECTION >:: readAcquire () {

68 EnterCriticalSection (& lock_ );

69 }

70

71 void ReadersWriter_Mutex < CRITICAL_SECTION >:: writeAcquire() {

72 EnterCriticalSection (& lock_ );

73 }

74

75 void ReadersWriter_Mutex < CRITICAL_SECTION >:: release () {

76 LeaveCriticalSection (& lock_ );

77 }

78 #endif /* defined(_WIN32 ) */

79

80 #ifdef UNIX

81 ReadersWriter_Mutex < pthread_rwlock_t >

82 :: ReadersWriter_Mutex () {

83 if( pthread_rwlock_init (& lock_ ,NULL ))

84 throw std :: runtime_error(

85 "Call to \" pthread_rwlock_init ()\" failed ."

86 );

87 }
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88

89 ReadersWriter_Mutex < pthread_rwlock_t >

90 ::~ ReadersWriter_Mutex () {

91 assert (! pthread_rwlock_destroy (&lock_ ));

92 }

93

94 void ReadersWriter_Mutex < pthread_rwlock_t >:: readAcquire () {

95 if(pthread_rwlock_rdlock (& lock_ ))

96 throw std :: runtime_error(

97 "Call to \" pthread_rwlock_rdlock ()\" failed ."

98 );

99 }

100

101 void ReadersWriter_Mutex < pthread_rwlock_t >:: writeAcquire() {

102 if(pthread_rwlock_wrlock (& lock_ ))

103 throw std :: runtime_error(

104 "Call to \" pthread_rwlock_wrlock ()\" failed ."

105 );

106 }

107

108 void ReadersWriter_Mutex < pthread_rwlock_t >:: release () {

109 if(pthread_rwlock_unlock (& lock_ ))

110 throw std :: runtime_error(

111 "Call to \" pthread_rwlock_unlock ()\" failed ."

112 );

113 }

114 #endif /* defined(UNIX) */

With this code in place the configuration consists of a simple typedef Readers-

Writer Mutex< platformLock > rw mutex t; where platformLock is one of
the locks the template is specialized for as the class template lacks a default
implementation. As you can see the MS Windows implementation does not
use readers / writer locking in its implementation; with the above approach
it is also possible to add another specialization for the UNIX platform family
for pthread mutex t which does not use readers / writer locking in its imple-
mentation, too. Providing multiple specializations for a single platform can be
beneficial in cases where special implementations have side effects not appropri-
ate in certain situations. An example for this was an MS Windows emulation
for real readers / writer locks that allocates handles. Each use of such locks in
fields of unknown size must be avoided not to run out of handles, so in this case
you are better off using CRITICAL SECTIONs.

This technique results in a great reduction of preprocessor instructions com-
pared to Listing 2.8. The remaining conditional compilation code serves for two
purposes: First, the correct typedef has to be selected. This could alterna-
tively be done by the Static Abstract Type Factory pattern proposed in Section
2.4 as shown in Listing 2.10. The second purpose is to hide platform specific
types from the compilers on all other platforms—otherwise compilation errors
are likely.
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2.3.10 Variants

In languages which have the distinction between header and source files one
header and as many source files can be defined as platforms have to be sup-
ported. The build mechanism, e.g. Make, then determines which of the source
files to compile. If more than one implementation exists for a Platform Type,
then the decision of which one to take can be deferred until link–edit time.

A macro processor like M4 can be used to generate platform specific code.

Instead of an Adapter style implementation [BK03] suggests the use of Static
Strategy (see Section 2.1) to solve the same problem.

2.3.11 Known Uses

Examples of Static Adapter can be found in existing software. Though none of
the following libraries uses the implementation technique presented in Section
2.3.9, nevertheless all of them solve the problem to statically adapt Wrapper
Facades to a variety of different platforms.

ACE

The ADAPTIVE Communication Environment (ACE) consists of multiple Lay-
ers. Wrapper Facades build the lowest Layer. ACE supports many platforms
and is written in C++. The Wrapper Facades are organized as one header and
one implementation file each. The platform differences are implemented using
conditional compilation within the bodies of the member functions. Configura-
tion is done by preprocessor constants defined in a central header file included
by all files. A header file appropriate for the platform given has either to be
manually declared as the central header file by the user before ACE is going to
be compiled or can be generated using GNU Autoconf.

APR

The Apache Portable Runtime (APR) consists of Wrapper Facades. It supports
BeOS, Novell Netware, IBM OS/2, UNIXes, and MS Windows and is written
in C. Each Wrapper Facade is declared in one header file. For each platform
supported there is a corresponding implementation file. Which implementation
file to compile and link is chosen by means of the Python script gen build.py

called from buildconf. After this static configuration step GNU Autoconf
configures remaining degrees of freedom. Then APR can be compiled, linked,
and installed using Make.

Boost.Threads

The Boost project contains a set of Wrapper Facades for multithreading [Kem].
It supports POSIX, Apple OS X and MS Win32 and is written in C++. Plat-
form independence is gained by conditional compilation within the bodies of
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member functions. The static configuration is done by Perforce Jam files, which
force appropriate preprocessor constants to be set.

GTK+ GLib

The GTK+ library forms the basic layer of Gimp and Gnome. Its GLib base
Layer is a counterexample for Static Adapter, as the Adapter pattern is used
instead.

Loki<library>

The Loki library contains a set of multithreading Wrapper Facades [Ale03, pp
391–402]. It supports POSIX and MS Win32 and is written in C++. The code
is completely inlined within a single header file. Conditional compilation deter-
mines which implementation to take. The configuration relys on preprocessor
constants set differently by the compilers on different platforms or set within
platform specific standard header files.

NSPR

The Netscape Portable Runtime consists of Wrapper Facades. It supports
POSIX and many other flavours of UNIX, Apple Mac and MS Win32 and is
written in C. NSPR is implemented using a mixed approach: First, for each
Wrapper Facade there are one header file and many implementation files for
different platforms. Second, further static configuration is established by means
of conditional compilation within an implementation file appropriate to the plat-
form. A GNU Autoconf script both sets preprocessor constants for conditional
compilation and Make variables to compile and link the correct implementation
file.

SAL

Open Office System Abstraction Layer (SAL) consists of Wrapper Facades. It
supports both UNIX systems which adhere to the POSIX standards and MS
Windows. Each Wrapper Facade is splitted into two halfs. The lower level
C Layer consists of one header and two implementation files each. A Perl
build mechanism determines which of the implementation files is compiled and
linked. On top of this a thin and completely inlined C++ Layer establishs
object oriented abstractions.

2.3.12 Related Patterns

The Wrapper Facade pattern proposes a way to abstract from a specific plat-
form by defining an interface common to all platforms. The implementation
translates imperative application programming interfaces into an object ori-
ented representation and unifies return values and the signalization of error
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conditions. The description of Wrapper Facade states the need for such an ab-
straction layer, but it does not discuss ways to ensure that exactly the same
interface is implemented for each platform.

The Adapter design pattern uses (runtime) polymorphism to allow for chan-
ges of concrete adapters. The compiler guarantees that each adapter implements
the same interface. The Static Adapter pattern is its static counterpart.

2.4 Static Abstract Type Factory

A class based pattern to map types to types.

2.4.1 Also known as

Generator [CE00, pp 397–501]
Type Selection [Ale03, pp 65–67]
Type Traits [Ale03, pp 74–83], [VJ03c]

2.4.2 Intent

The Static Abstract Type Factory provides an extensible means to associate
expressions on the level of the domain specific language with application data
types.

2.4.3 Example

Different platforms provide different data types for basically the same entity.
Mutual exclusion locks are represented by the type pthread mutex t on a
POSIX 1003.1c compliant UNIX, on MS Win32 CriticalSection can be taken.
Depending on an expression in the domain specific language the correct type
should be chosen while at the same time hiding it from application code behind
a unified type name.

A traditional approach was to implement one header file for each platform,
each defining the same type names. Either before compilation one of these
header files has to be renamed to a predefined file name that is used in the
include preprocessor directives, or conditional compilation is used to include
the appropriate header file into the application code. This approach has the
disadvantage that it only works if there is no overlap between the platforms,
as only a single header file can be included at the same time to avoid multiple
definitions of the same type name. Otherwise it results in duplication of large
parts of these header files.

2.4.4 Context

A domain specific language is given. The application to be build for a special
static configuration will consist of types, data, and behavior.

37



CHAPTER 2. METAPROGRAMMING PATTERNS

Table 2.4: Class–Responsibility–Collaboration Cards

Configuration
Determines a
static configura-
tion

(a) Configuration

Client
Instantiates
template

StaticAbstract-
TypeFactory,
Specializa-
tionOfClass-
Template,
Configuration

(b) Client

SpecializationOfClassTemplate
Is model of StaticAbstract-

TypeFactory-
Concept

Specialized for Configuration
Specializes StaticAbstract-

TypeFactory
Defines unified
name for type

(c) Specialization of Class Template

StaticAbstractTypeFactory
Exists just to en-
able specializa-
tions

(d) Static Abstract Type Factory

StaticAbstractTypeFactoryConcept
Declares inter-
face to

Client

(e) Static Abstract Type Factory Con-
cept

2.4.5 Problem

How to associate application data types to the different static configurations?
How to encapsulate variation in types?

2.4.6 Forces

• The association of a certain static configuration to application properties
is unidirectional.

• The domain specific language should be agnostic about these associations.

• The association mechanism should be extensible.

2.4.7 Solution

Static polymorphism can be used to statically configure typedef members of a
class template. For this to happen specializations of the class template are de-
fined representing the associations resulting from different static configurations.

A first sketch of the solution is shown in Table 2.4.
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Figure 2.8: Class diagram illustrating Static Abstract Type Factory

Participants

Configuration An expression in the domain specific language to represent a
special static configuration.

Client Client code instantiates the Static Abstract Type Factory template for
a Configuration. It then uses one of its member types or type definitions.

SpecializationOfClassTemplate For each Configuration supported one spe-
cialization of Static Abstract Type Factory exists. As a model of Static
Abstract Type Factory Concept it defines member types and provides
them under a unified type name to the Client.

StaticAbstractTypeFactory A class template just for the sake to define spe-
cializations.

StaticAbstractTypeFactoryConcept Every Specialization of Class Temp-
late must define the same type names given by this concept to offer a
consistent interface to the Client.

Figure 2.8 sketches the participants and their relations to each other.

Dynamics

The Client binds the template parameter of Static Abstract Type Factory to an
appropriate Configuration. Most often it does so by a typedef. Within the same
translation unit there are Specializations of Class Template. During binding
the compiler takes the appropriate specialization instead of the more general
Static Abstract Type Factory template. The Client then uses the member types
defined within Specialization of Class Template to instantiate them.
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Rationale

As all Specializations of Class Template provide the same member type name
for potentially different types which depend on Configuration, the implications
of a certain configuration can be hidden from the Client. Static Abstract Type
Factory associates a static configuration to a configuration specific type. This
association is extensible in two ways: First, further specializations can be added
to support more configurations. Second, this pattern allows to associate any
number of configuration dependend types with a static configuration by adding
either another StaticAbstractTypeFactory and appropriate specializations or
another member type or type name to all existing specializations of a StaticAb-
stractTypeFactory.

2.4.8 Resulting Context

The Client can ask the Static Abstract Type Factory for a type passing an
expression in the domain specific language and does not need to care about the
details. The Static Abstract Type Factory maps these configuration expressions
to appropriate types.

Pros and Cons

The Static Abstract Type Factory pattern has the following benefits:

1. Arbitrarily complex mappings at compile time. This pattern allows to
perform arbitrarily complex mappings from a representation of a static
configuration to types at compile time.

2. Extensibility. It is easy to add new specializations for new static configu-
rations.

3. Parallel usage possible. It is possible to use multiple specializations for
different configurations in parallel in the same file.

Additionally to these general pros and cons the following implementation
specific ones were identified.

The implementation technique of the Static Abstract Type Factory pattern
shown has the following liabilities:

1. Inheritance relations among Configuration not considered. Say you orga-
nize your domain specific classes in a hierarchy. A Linux and a SunSolaris
class may inherit from a Unix class. If a template specialization exists for
Unix, but not for Linux, then the lookup of template specializations for
configuration Linux will result in the non specialized class template, not in
the specialization for Unix. The need to also specialize the class template
for Linux and SunSolaris will probably result in double work.

2. No concept of Specialization of Class Template. The specializations of
StaticAbstractTypeFactory have to be models of the same concept: They
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all have to provide the same member types or type names. Such concepts
cannot currently be expressed in C++. There are matured proposals to
overcome this issue, e.g. [DRS06, GS06].

2.4.9 Implementation

Here the whole class template is going to be specialized. In fact the default class
template can be trivial. This Abstract Factory [GHJV96a] depends on static
configuration and creates types.

Example Resolved

Listing 2.10 proposes the class template Multithreading<> that can be in-
stantiated for either MSWin32 or Unix. Depending on the template instantia-
tion the member type Multithreading<>::rw lock is another name for either
CriticalSection or pthread rwlock t. Multithreading<> could be extended
to also hold type definitions for other types of the multithreading domain, e.g.
condition variables, thread identifiers, semaphores, and keys identifying thread
local storage.

Listing 2.10: Portable association of an operating system with certain platform
specific types combined with Static Adapter (see Section 2.3)

1 // DSL

2 struct MSWin32 {};

3 struct Unix {};

4

5 template < typename OperatingSystem > struct Multithreading {

6 };

7

8 // Specializations of class template

9 #ifdef _WIN32

10 typedef MSWin32 OS;

11

12 template <> struct Multithreading < MSWin32 > {

13 typedef CriticalSection rw_lock ;

14 // Other types ...

15 };

16 #endif /* defined(_WIN32 ) */

17

18 #ifdef UNIX

19 typedef Unix OS;

20

21 template <> struct Multithreading < Unix > {

22 typedef pthread_rwlock_t rw_lock ;

23 // Other types ...

24 };

25 #endif /* defined(UNIX) */

26

27 ...

28

29 typedef Multithreading < OS > multithreading_type ;

30
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31 ...

32

33 // Apply Static Adapter on a static type ,

34 // which real name is hidden from code

35 ReadersWriter_Mutex < multithreading_type :: rw_lock > rw_mutex ;

2.4.10 Variants

The technique of specialization of the class template can also be used to let a
class template define different values to a member enum for its specializations
and thus map types to integer constants. Often a standard value will then be
defined by the class template, which will be overridden for certain template
arguments by means of specializations. This is the most popular meaning of
a Trait. The technique can similarly be modified to map types to behavior;
std::numeric limits<> from the C++ Standard Library and Static Adapter
(see Section 2.3) are examples for this case; as pointed out in Section 2.3.7 the
mapping of types to behavior already lets you represent concepts in C++, which
is not the case with mappings to types or numbers.

The injection of members into class templates and its specializations can
also be performed by public inheritance instead of explicit definition.

Templates can also be defined with integral template parameters instead of
type parameters. Using specializations on certain values integers can be mapped
to types, numbers, or behavior, respectively.

2.4.11 Known Uses

Examples of Static Abstract Type Factory can be found in existing software.

Boost.TypeTraits

Boost.TypeTraits [AAC+] provide both class templates to get meta information
on types and class templates to transform types. The first kind of templates
works with explicit specialization and returns integral constants, while the sec-
ond kind works with partial specialization and contains member type definitions.

C++ std::iterator traits<>

The C++ way of Iterators [GHJV96h] provides a mechanism to statically gather
information on e.g. the type an Iterator points to by means of the class template
std::iterator traits<>. For most Iterator types the default implementation
of this class template will fit. If not, std::iterator traits<> can be explic-
itly or partially specialized on the type of the uncommon Iterator. The C++
standard provides such a partial specialization for pointers to arbitrary types.
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The Matrix Template Library

The Matrix Template Library [Sie99], [CE00] uses Type Generators to provide
tools for linear algebra. The matrix types are the result of static configuration
with many degrees of freedom. The client can request e.g. full or sparse matrix
types to be generated at compile time.

2.4.12 Related Patterns

The Abstract Factory design pattern uses runtime polymorphism to allow for
the substitution of a concrete instance factory by another one. The Static
Abstract Type Factory pattern uses compile time polymorphism to allow for
the substitution of a type factory by another one.
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It may well be that in principle
we cannot make any machine the
elements of whose behavior we
cannot comprehend sooner or
later. This does not mean in any
way that we shall be able to
comprehend these elements in
substantially less time than the
time required for operation of the
machine, or even within any given
number of years or generations.

Norbert Wiener [Wie60,
p 1355]

Chapter 3

Static Framework

Ready–made software artifact designed reusable with help of static patterns

3.1 Intent

The purpose of writing portable code is not only to provide an application for
a variety of platforms, but to do so in a way that on each platform certain
requirements concerning performance are met. Static Frameworks assist you in
writing code that can be adapted more easily to multiple platforms while making
sure that on each platform the application can fulfill its original purpose.

3.2 Example

Server design involves decisions on how to deal with concurrent service requests
issued by clients. This decision depends on the target platform. Some plat-
forms are good at multiprocessing, some perform better if multithreading is
used instead, and other platforms might show their full potential with event
based designs. Therefore it does not suffice to treat platform dependencies on
a low level Wrapper Facade [SSRB02f] Layer only. Instead experience is made
available in terms of Frameworks [RJ98] that use design patterns to allow for
adaptation to certain environments. Listing 3.1 shows a simple class that frees
the user from the burden of portable thread handling.

Listing 3.1: Black–Box Framework [RJ98]

1 // Header file

2 extern "C" {

3 void *svc_run (void *);

4 }

5
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6 struct Method_Request {

7 virtual ~Method_Request();

8 virtual void call () =0;

9 };

10

11 class MQ_Scheduler {

12 friend void *svc_run (void *);

13 struct Impl;

14 typedef std ::auto_ptr < Impl > impl_type ;

15 impl_type impl_;

16 public :

17 explicit MQ_Scheduler(size_t );

18 ~MQ_Scheduler();

19 // Transfers ownership

20 void insert (Method_Request *);

21 };

22

23 // Implementation file

24 struct MQ_Scheduler::Impl {

25 volatile bool isActive_ ;

26 Activation_List act_queue_ ;

27 static impl_type createImpl (size_t );

28 explicit Impl(size_t high_water_mark)

29 : isActive_ (true), act_queue_ ( high_water_mark) {}

30 virtual ~Impl() {}

31 virtual void createUE (MQ_Scheduler &) =0;

32 virtual void joinUE () =0;

33 };

34

35 MQ_Scheduler:: MQ_Scheduler(size_t high_water_mark)

36 : impl_(Impl:: createImpl (high_water_mark )) {

37 impl_ ->createUE (* this);

38 }

39

40 MQ_Scheduler::~ MQ_Scheduler() {

41 impl_ ->isActive_ (false );

42 impl_ ->joinUE ();

43 }

44

45 void MQ_Scheduler:: insert (Method_Request * method_request) {

46 impl_ ->act_queue_ .insert (method_request);

47 }

48

49 void *svc_run (void *arg) {

50 assert (arg );

51 MQ_Scheduler:: impl_type *impl

52 =static_cast < MQ_Scheduler * >(arg)->impl_ ;

53 while (impl -> isActive_ ) {

54 Method_Request *mr;

55 // Block until the queue is not empty

56 impl ->act_queue_ .remove (&mr);

57 try {

58 mr ->call ();

59 }

60 catch (...) {

61 }

62 delete mr;
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63 }

64 return 0;

65 }

66

67 #if defined (_WIN32 )

68

69 class Win32Impl : public MQ_Scheduler:: Impl {

70 HANDLE thread_ ;

71 // No copy allowed , therefore private and declared only

72 Win32Impl (const Win32Impl &);

73 // No assignment allowed , therefore private and declared only

74 Win32Impl &operator =( const Win32Impl &);

75 public :

76 Win32Impl (size_t high_water_mark)

77 : MQ_Scheduler::Impl(high_water_mark), thread_ (0) {}

78 void createUE (MQ_Scheduler &sched) {

79 thread_ =reinterpret_cast < HANDLE >(

80 _beginthreadex(0,0, svc_run ,&sched ,0,0)

81 );

82 if(! thread_ )

83 throw std :: runtime_error(

84 "Call to \" _beginthreadex ()\" failed ."

85 );

86 }

87 void joinUE () {

88 if(thread_ )

89 if(WAIT_FAILED == WaitForSingleObject(thread_ ,INFINITE )) {

90 throw std :: runtime_error(

91 "Call to \" WaitForSingleObject ()\" failed ."

92 );

93 thread_ =0;

94 }

95 }

96 };

97

98 MQ_Scheduler:: impl_type

99 MQ_Scheduler::Impl :: createImpl (size_t high_water_mark) {

100 return static_cast < MQ_Scheduler:: impl_type >(

101 new Win32Impl ( high_water_mark)

102 );

103 }

104

105 #elif defined (UNIX)

106

107 class UNIXImpl : public MQ_Scheduler:: Impl {

108 pthread_t thread_ ;

109 // No copy allowed , therefore private and declared only

110 UNIXImpl (const UNIXImpl &);

111 // No assignment allowed , therefore private and declared only

112 UNIXImpl &operator =( const UNIXImpl &);

113 public :

114 UNIXImpl (size_t high_water_mark)

115 : MQ_Scheduler::Impl(high_water_mark) {}

116 void createUE (MQ_Scheduler &sched) {

117 if( pthread_create(&thread ,0, svc_run ,& sched ))

118 throw std :: runtime_error(

119 "Call to \" pthread_create ()\" failed ."
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120 );

121 }

122 void joinUE () {

123 if(pthread_join(thread_ ,0))

124 throw std :: runtime_error(

125 "Call to \" pthread_join()\" failed ."

126 );

127 }

128 };

129

130 MQ_Scheduler:: impl_type

131 MQ_Scheduler:: Impl:: createImpl (size_t high_water_mark) {

132 return static_cast < MQ_Scheduler:: impl_type >(

133 new UNIXImpl (high_water_mark)

134 );

135 }

136

137 #endif /* defined(_WIN32 ) */

The thread function and an opaque argument structure are passed Strategy
[GHJV96k] like to the constructor of Thread Operation.

MQ Scheduler is used as an illustration of the Active Object architecture pat-
tern [SSRB02a, p 425]. The client hands ownership over instances of Method -

Request over to the Active Object, i.e. it passes a pointer to a Command
[GHJV96c] to an instance of MQ Scheduler. The scheduler asynchronously ex-
ecutes the Command and deletes it afterwards.

The portability is gained using the Bridge design pattern [GHJV96e]. Even
the constructors of MQ Scheduler do not have to know concrete implementation
classes, because it delegates the creation of an appropriate implementation to a
Factory Method [GHJV96g].

More recent versions of the JAWS Adaptive Web System (JAWS) [SSRB02d,
pp 27,47–48], an application closely related to the ADAPTIVE Communication
Environment (ACE), is an example for this implementation technique. It uses
the Active Object design pattern combined with Bridge. The worker thread
design is prescribed by a Strategy. All possible Strategies are derived from a
single Abstract Class [Aue95, Woo00]. The base class provides for access to the
request processing.

The original MQ Scheduler additionally uses the Template Method design
pattern [GHJV96j] to make the loop executed by the worker thread adaptable.
In this case starting and stopping threads from within the bodies of the con-
structor and the destructor of the scheduler can lead to bad surprises that can be
solved using a helper class implementing Resource Acquisition is Initialization
[Str98, pp 388–393], [Str94, pp 495–497] as shown in [Bac05].

Neither the operating system nor the thread function will change during the
life time of MQ Scheduler. In fact, especially the operating system will remain
constant during the whole time the application is installed on the particular
computer. So there is an option to move the configurability up to the meta
level.
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3.3 Context

A series of applications share implementation similarities not only on a basic
Layer [BMR+00a], but also regarding the interaction of objects. An example of
this are TCP/IP servers for different protocols, that likely have similar solutions
to the problem how to react upon incoming connections.

3.4 Problem

From analysis through architecture and design to the implementation of the
initial system ideas central to the design might have been lost in the final code;
these ideas are the reason why the code is how it is, but they might not explicitly
be represented within the code. This can make reuse of code hard, if it has to
be adapted to a different environment.

3.5 Forces

• Code duplication has to be avoided.

• Sometimes higher Layers must be adaptable.

• Future adaptations might be requested by a customer.

• The code base needs to remain maintainable.

• Some configuration remains fixed during a period often much longer than
the runtime of an application.

• Experience should be transformed into ready–made software artifacts, if
reuse is likely.

3.6 Solution

Cast the real intent of a software construct into a code representation. Make
the abstractions explicit. Raise the level of abstraction from a pure series of
commands to a function or a function object, potentially an Active Object
[SSRB02a]. Develop a Framework that is configurable in two ways: Enable
static configurability of user code supplied as a function or function object by
means of a Static Strategy (see Section 2.1) or Static Visitor (see Section 2.2).
Allow for configuration of the code that deals with platform specific interfaces
by means of e.g. Static Adapter (see Section 2.3).

A first sketch of the solution is shown in Table 3.1.
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Table 3.1: Class–Responsibility–Collaboration Cards

Client
Requests service Static Frame-

work

(a) Client

Platform
Grants access to
resources to

StaticAdapter

(b) Platform

StaticAdapter
Adapts im-
plementation
of

StaticFramework

to Platform

(c) Static Adapter

StaticFramework
Prepares envi-
ronment

StaticAdapter

Passes service
request from

Client

to StaticAdapter

(d) Static Framework

StaticStrategy
Finally processes
service request
on behalf of

StaticFramework

(e) Static Strategy

3.6.1 Participants

Client The Client requests a service from Static Framework. Many clients may
request the same service in parallel. Response time is important for each
Client.

Platform An interface to a Layer the Static Adapter communicates with. The
interfaces of different Platforms might differ significantly. Platforms often
provide access to entities that can be acquired and then released again.
Such entities are referred to as resources. A Platform remains fixed during
runtime of the application and most likely for even much longer periods.

StaticAdapter Mediates between Static Framework and Platform to allow for
easier reuse of Static Framework on many Platforms.

StaticFramework A Framework like representation of the idea of the imple-
mentation of the server reacting upon service requsts from Clients. Re-
source usage should be minimized. Static Framework delegates imple-
mentation details specific to a certain Platform to Static Adapter and the
implementation of a specific service to Static Strategy.

StaticStrategy A user supplied function pointer or function object which
plugs into a Hot Spot [RJ98, pp 478–479] of the Static Framework. Con-
forms to the Static Strategy or the Static Visitor design pattern.

Figure 3.1 sketches the participants and their relations to each other.
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Figure 3.1: Class diagram illustrating Static Framework

Figure 3.2: Sequence diagram illustrating Static Framework

3.6.2 Dynamics

Instead of interweaving user code with Framework code this pattern advocates
the introduction of Static Framework. The Client directs a service request to
Static Framework. With help of Static Adapter and indirectly of Platform the
latter prepares an environment necessary to fulfill the request. From within this
environment it delegates work to the Static Strategy. The dynamics is shown
in Figure 3.2.

3.6.3 Rationale

Increasing the level of abstraction and explicitly representing the intent of im-
plementations means to generalize the code. Separating Framework code from
user code helps to substitute the Static Adapter by another implementation
that better conforms to a new platform, i.e. instead of the code the intent will
be the starting point of porting this application. Otherwise adaptation means
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three steps at once:

1. The original intent must be reconstructed from the implementation which
is mixed up of Static Framework, Platform specific code and the Static
Strategy, if the intent did not have been clearly documented.

2. An analysis of the target environment results in a new implementation of
this intent.

3. The new implementation has to be merged with the Static Strategy.

This potentially has to be repeated for every new situation. Because this is
hard work, most of the time a short cut will be taken: The original code will be
ported one by one, even if the result is an incorrect application.

Because different service implementations can be injected into the Static
Framework in terms of a Static Strategy, it can be reused in a lot of different
situations, that share the same orchestration of objects with each other.

3.7 Resulting Context

The level of abstraction represented in the code became increased. The imple-
mentation is split into Platform specific code, and code that does not depend
on a specific Platform. The Platform dependent code is organized such that
it can be replaced easily by another implementation for another Platform. For
this to work only the Static Adapter has to be replaced. There are at least as
many Static Adapters available as there are supported Platforms. The Platform
independent code is splitted up in a Static Strategy and the Static Framework.
The latter orchestrates the interplay of the other participants.

3.7.1 Pros and Cons

The Static Framework pattern has the following benefits:

1. Design reveals essence of problem. Splitting an application into several
components often contributes to a better understanding of the overall
business problem. In theory this understanding was the result of the anal-
ysis phase. Understanding requirements more often will be an iterative
process, and trying to find key components necessary to fulfill these re-
quirements yields better systems.

2. Keeping the architecture healthy. Introducing Static Frameworks con-
tributes to an important intent of Agile approaches. Architectures need
continuous Refactoring [Fow99] to keep them healthy [PP03c, pp 141–142].

3. Reusability. Frameworks designed this way facilitate reusability regarding
both different Platforms and different services represented by the user
supplied Static Strategies.
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4. Shifting the point of variation upwards. The point of variation got shifted,
thus the system is adaptable to a wider range of Platforms. Large parts
of the orchestration of objects performed by Static Framework can be
made configurable. This increases adaptability even further and leads to
a larger Static Adapter and a thinner Static Framework or advocates the
additional use of Template Method Based on Parameterized Inheritance
[CE00, pp 231–234].

5. Preserves performance as if optimized for a single Platform only. Each
Static Adapter can carfully be optimized for its Platforms. Because the
configuration is performed statically, the final application is assembled by
the compiler, and there will be no overhead induced by virtual calls or
missing opportunities for inlining.

The Static Framework pattern has the following liability:

1. Building Frameworks is hard. It requires much experience to decide what
has to go into Static Framework and what into Static Strategy. Some of
the difficulties result from the fact that both Static Framework and Static
Strategy reify behavior—there are no real world entities that parallel the
object oriented abstractions. As with Frameworks in general finding a
good balance might require Three Examples [RJ98, pp 472–474].

3.8 Implementation

As this is a very general design pattern, there can hardly be a detailed suggestion
for an implementation that fits all cases. Probably the most difficult step during
implementation is to decide how to split the code into Static Framework, Static
Strategy, and Static Adapter. As a rule of thumb code that depends on Platform
more likely belongs to Static Adapter than to Static Framework and vice versa.
Service specific code that is likely to change between different instantiations of
Static Framework should go into Static Strategy.

3.8.1 Example Resolved

Listing 3.2 shows the class template MQ Scheduler<>. MQ Scheduler<> carries
the intention of the example presented in Section 3.2.

Here the use of the Command design pattern was substituted by a static
variant similar to Static Strategy, and the Adapters used in conjunction with
Bridge were replaced by Static Adapters, that determine how to deal with spe-
cific Units of Execution [MSM04, pp 217–221].

Listing 3.2: A Unit of Execution executing a function object

1 // Header file

2 extern "C" {

3 void *svc_run (void *);

4 }

52



3.8. Implementation

5

6 class Impl {

7 Activation_List act_queue_ ;

8 volatile bool isActive_ ;

9 public :

10 struct command_adapter {

11 virtual ~ command_adapter();

12 virtual void call() =0;

13 };

14 explicit Impl(size_t );

15 };

16

17 template < typename UE > class MQ_Scheduler : public Impl {

18 typedef UE unit_of_execution_type ;

19 template < typename Command > class command_proxy

20 : public command_adapter {

21 Command &command_ ;

22 public :

23 explicit command_proxy(Command &command ) : command_ (command ) {}

24 void call () {

25 command_ .call ();

26 }

27 };

28 unit_of_execution_type thread_ ;

29 void createUE ();

30 void joinUE ();

31 public :

32 explicit MQ_Scheduler(size_t high_water_mark)

33 : Impl(high_water_mark) {

34 createUE ();

35 }

36 ~MQ_Scheduler() {

37 isActive_ =false ;

38 joinUE ();

39 }

40 template < typename Command >

41 void insert (const Command &method_request) {

42 act_queue_ .insert (new command_proxy < Command >( method_request));

43 }

44 };

45

46 // Specializations of member functions

47 #ifdef _WIN32

48 template <> void MQ_Scheduler < HANDLE >:: createUE ();

49

50 template <> void MQ_Scheduler < HANDLE >:: joinUE ();

51 #endif /* defined(_WIN32 ) */

52

53 #ifdef UNIX

54 template <> void MQ_Scheduler < pthread_t >:: createUE ();

55

56 template <> void MQ_Scheduler < pthread_t >:: joinUE ();

57 #endif /* defined(UNIX) */

58

59 // Implementation file

60 void *svc_run (void *arg) {

61 assert (arg );
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62 Impl *impl=static_cast < Impl * >(arg );

63 while (impl ->isActive_ ) {

64 Impl:: command_adapter *mr;

65 // Block until the queue is not empty

66 impl -> act_queue_ .remove (&mr);

67 try {

68 mr ->call ();

69 }

70 catch (...) {

71 }

72 delete mr;

73 }

74 return 0;

75 }

76

77 Impl:: command_adapter::~ command_adapter() {

78 }

79

80 Impl:: Impl(size_t high_water_mark)

81 : act_queue_ ( high_water_mark), isActive_ (true) {}

82

83 #ifdef _WIN32

84 void MQ_Scheduler < HANDLE >:: createUE () {

85 thread_ =reinterpret_cast < HANDLE >(

86 _beginthreadex(0,0, svc_run ,this ,0,0)

87 ));

88 if(! thread_ )

89 throw std :: runtime_error(

90 "Call to \" _beginthreadex ()\" failed ."

91 );

92 }

93

94 void MQ_Scheduler < HANDLE >:: joinUE () {

95 if(WAIT_FAILED == WaitForSingleObject(thread_ ,INFINITE )) {

96 throw std :: runtime_error(

97 "Call to \" WaitForSingleObject ()\" failed ."

98 );

99 }

100 #endif /* defined(_WIN32 ) */

101

102 #ifdef UNIX

103 void MQ_Scheduler < pthread_t >:: createUE () {

104 if(pthread_create(& thread_ ,NULL ,svc_run ,this))

105 throw std :: runtime_error(

106 "Call to \" pthread_create ()\" failed ."

107 );

108 }

109

110 void MQ_Scheduler < pthread_t >:: joinUE () {

111 if(pthread_join(thread_ ,0))

112 throw std :: runtime_error(

113 "Call to \" pthread_join()\" failed ."

114 );

115 }

116 #endif /* defined(UNIX) */

MQ Scheduler<> can be instantiated using either HANDLE or pthread t. Not
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all template instantiations are possible on all platforms. It was also possible
to add an explicit specialization e.g. for pid t on UNIX platforms—doing so
would offer the possibility to switch between threads and processes to the user.

Of course Commands with statically bound types here look somewhat artifi-
cial, because they are converted into Commands with dynamically bound types
by means of Impl::command adapter. The latter is a technical implementation
detail, however, as the operating system does not deal with user defined types,
but with opaque pointers instead.

3.9 Variants

Template Method Based on Parameterized Inheritance can further increase the
adaptability of Static Framework. That way MQ Scheduler<> could be extended
to support designs like One Child per Client [Ste98, pp 732–736] and One Thread
per Client [Ste98, pp 752–753] which do not map well to Active Objects.

3.10 Known Uses

Examples of Static Framework can be found in existing software.

3.10.1 Apache httpd 2.x

For a long time Apache httpd is one of the most popular webservers. It is
available for a big variety of different hardware architectures and operating
systems. With Apache 2.0 multiprocessing modules (MPMs) were introduced.
The code was divided into an aspect concerned with the management of Units
of Execution and another aspect responsible for request processing. The first
aspect was factored out into an MPM with a general interface thus allowing for
exchanging a concrete MPM with another implementation. Each MPM poten-
tially daemonizes the webserver and then starts Units of Execution, distributes
and balances work among them, adapts the number of Units to the load, listens
to asynchronous requests to terminate the webserver, and then shuts the Units
down again. The currently available MPMs are grouped into platformspecific
sets. The interface is general enough to allow for both threads and processes as
Units of Execution. For the UNIX family of operating systems there exist mul-
tiprocessed modules similar to the Apache 1.3 design, but also multithreaded
and hybrid ones implementing either the Half–Sync / Half–Async [SSRB02b] or
Leader / Followers [SSRB02c], [Ste98, pp 754–756] design pattern. Each Apache
webserver runs with exactly one MPM. The configuration is done statically be-
fore compilation by means of an appropriate command line option on calling the
GNU configure script. The request processing code is called from the Units
of Execution spawned in the MPM configured.

Though Model–View–Controller [BMR+00b], Presentation–Abstraction–
Control [BMR+00d], and Separation of Powers [RZ95, pp 24–26] relate to user
interfaces, hence another domain than Static Framework, all these patterns
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separate software into classes with higher likelyhood to change and into classes
that likely remain stable. User interfaces change because of both technology
changes and because Perceived Integrity is a competitive advantage on the mar-
ket [PP03b], whereas the Static Framework allows for adaptation to multiple
platforms. By some sense it is a user interface, too.

As Platforms often give access to resources, Static Framework will be imple-
mented using techniques like Resource Acquisition is Initialization in languages
like C++ [Str98, pp 388–393], [Str94, pp 495–497], [Bac05, Car96, SSRB02e]
or the Dispose pattern in C# [Mic05] and Java [AGH01, pp 228–230], [rel], see
further [Hen00, pp 6–7].

56



Acknowledgements

Without the invaluable feedback of Peter Sommerlad, who was the PLoP shep-
herd of this work, this paper would not have been the way it is now.

I thank Frank Buschmann and Douglas C. Schmidt for their openness to
discuss the Wrapper Facade pattern back in spring 2002. The respective email
correspondance motivated me to write down the Static Adapter pattern.

Last but not least my thanks and love go to Cornelia Kneser, my wife, for
her constant support throughout the writing of the paper.

This work was supported by the Institute for Medical Informatics and Bio-
statistics, Basel, Switzerland.

57



Bibliography

[AAC+] Adobe Systems Inc., David Abrahams, Steve Cleary,
Beman Dawes, Aleksey Gurtovoy, Howard Hinnant,
Jesse Jones, Mat Marcus, Itay Maman, John Mad-
dock, Thorsten Ottosen, Robert Ramey, and Jeremy
Siek: Boost.typetraits. <http://www.boost.org/doc/html/-

boost typetraits.html>.

[AG05] Abrahams, David and Aleksey Gurtovoy: C++ Template
Metaprogramming. Concepts, Tools, and Techniques from Boost
and Beyond. C++ In–Depth Series; ed. by Bjarne Stroustrup.
Addison Wesley Professional, Boston, Massachusetts. . . , January
2005.

[AGH01] Arnold, Ken, James Gosling und David Holmes: Die Pro-
grammiersprache Java. Deutsche Übersetzung von RederTrans-
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[RZ95] Riehle, Dirk and Heinz Züllighofen: A pattern language for
tool construction and integration based on the tools and materials
metaphor. In Coplien, James O. and Douglas C. Schmidt
[CS95], chapter 2, pages 9–42.

[Sie99] Siek, Jeremy G.: A modern framework for portable high per-
formance numerical linear algebra. Master’s thesis, Graduate
School of the University of Notre Dame, Department of Com-
puter Science and Engineering, Notre Dame, Indiana, April
1999. <http://osl.iu.edu/download/research/mtl/papers/-

thesis.pdf>.

[SLL] Siek, Jeremy, Lie-Quan Lee, and Andrew Lumsdaine: The
boost graph library. <http://www.boost.org/libs/graph/doc/-

table of contents.html>.

[SLL02] Siek, Jeremy G., Lie-Quan Lee, and Andrew Lumsdaine:
The Boost Graph Library. User Guide and Reference Manual. Fore-
word by Alexander Stepanov. C++ In–Depth Series; ed. by
Bjarne Stroustrup. Addison Wesley Professional, Boston, Mas-
sachusetts. . . , 2002.

[SSRB02a] Schmidt, Douglas, Michael Stal, Hans Rohnert und
Frank Buschmann: Active Object, Kapitel 5: Nebenläufigkeit,
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