
Network Congestion Control at the Application Layer

Paul Adamczyk
Department of Computer

Science
University of Illinois at
Urbana-Champaign

padamczy@uiuc.edu

Federico Balaguer
LIFIA

Universidad Nacional de La
Plata

La Plata, Argentina

fede@sol.info.unlp.edu.ar

Munawar Hafiz
Department of Computer

Science
University of Illinois at
Urbana-Champaign

mhafiz@uiuc.edu

Craig L. Robinson
Department of Industrial and

Enterprise Systems
Engineering and

the Coordinated Science Lab
University of Illinois at
Urbana-Champaign

clrobnsn@uiuc.edu

ABSTRACT
Application-layer protocols play a special role in network
programming. Typical programmers are more familiar with
them and more likely to implement them. Well-designed
application-layer protocols follow many patterns that im-
prove the performance of applications using these protocols.
We present a subset of these patterns that focuses on the
congestion control at the application layer.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Patterns; D.2.7 [Distri-
bution, Maintenance, and Enhancement]: Documen-
tation; C.2.2 [Network Protocols]: Applications

General Terms
Software Patterns, Communication Protocols, Congestion
Control, Bandwidth Usage

Introduction
Congestion is one of the main problems of networks. Con-
gestion can lead to bottlenecks, which result in packet drops.
Under the current paradigm of reliable network communica-
tion, dropped packets force applications to retransmit mes-
sages. Typically, congestion is battled at the network layer
by adding more hardware or implementing better algorithms
for handling individual packets.

However, low-level communication protocols have limited
knowledge of the applications they serve. They are opti-
mized for all types of traffic and cannot take advantage of

Preliminary versions of these papers were workshopped at Pattern Lan-
guages of Programming (PLoP) ’07 September 5-8, 2007, Monticello, IL,
USA. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.
PLoP ’07 Monticello, IL, USA
Copyright is held by the authors. 978-1-60558-411-9 ...$5.00.

characteristics specific to certain types of applications. Some
tasks can be accomplished only at the application layer. The
end-to-end argument [23] states that only the end-points of a
communication can perform all functions related to the com-
munication. This argument also applies to network conges-
tion. While much of the improvement comes from low-level
infrastructure, only the application can determine when to
make a high-level adjustment to the communication proto-
col it is using. Because they understand the details of the
application, application developers can design messages that
use fewer resources thus lowering network congestion.

This paper presents a collection of patterns for reducing
network congestion of point-to-point messages at the ap-
plication layer. All the patterns address the same general
problem: Network bandwidth is a scarce resource. It
needs to be preserved also by application develop-
ers. What can be done at the application layer to
limit network congestion?

Recently, the interest in designing application-level pro-
tocols, e.g. for Web services, has increased. Unfortunately,
some designers of new protocols who are unaware of ex-
isting solutions tend to rediscover their inferior substitutes.

This paper presents the best practices distilled from existing
application-layer protocols and other systems for the benefit
of the designers and implementers of new application-level
protocols.

Network congestion affects both client-server and peer-
to-peer systems. We use the terms sender and receiver to
describe the two parties involved in a message exchange,
because they are more general. Moreover, since every mes-
sage requires a confirmation/response, both the client and
the server act as a sender and a receiver at some point, so
thinking about them as senders and receivers is simpler.

We refer to the data available at the application layer
as messages. When referring to the data transmitted by
the underlying communication protocols (the payload with
headers, envelopes, etc), we use the term network packets.
Sending messages over the network involves both channel

coding and source coding. Since this paper is concerned with
application-level protocols, only source coding solutions are
considered.

Network programming requires effective use of the under-
lying infrastructure, including other protocols used by the
application-level protocols. Network communication results
in overhead, both in data (additional message headers) and
in messages (connection setup and teardown). Some data
and messages are considered overhead by one protocol, but
not by the underlying protocols. Limiting network conges-
tion requires some understanding of the underlying proto-
cols. For example, sending a message over TCP (without
timestamp) over IPv4 and Ethernet without 802.1q pro-
duces 78 bytes of overhead per packet [8] as shown in Table
1. An application developer trying to make sure that data
fits in one network packet must take into account the size of
the overhead added by the underlying layers.

Protocol Header Size Max. Payload
(in bytes) (in bytes)

Ethernet 38 1500
IPv4 20 1480
TCP 20 1460

Table 1: Network Overhead Example

Selecting the most appropriate solution requires taking
into account many conflicting forces and finding a balance
between them. The key forces to consider while selecting the
most efficient manner of congestion control are the run-time
changes (understanding how the protocol changes, changes
in message sequencing, timing, latency, and throughput as
well as the resulting change in the system’s performance),
possible future changes to the protocol, and the design/re-
implementation effort required to introduce the pattern.

Protocol Efficiency The solution cannot needlessly com-
plicate the communication protocol. Replacing an ex-
isting protocol with too few large messages or too many
small messages is likely to make the new protocol less
efficient.

Sequencing Any optimization must guarantee that data is
processed in the same order as before. This must hold
true regardless of whether the data is sent or received
in the same order as before; the sender and the receiver
must cooperate to ensure the proper processing order.

To mitigate net- How? (pattern number)
work congestion:
Send fewer messages combine multiple messages (1)(2)

short-circuit protocols (1)(3)
piggybacking (5)
use message throttling (6)

Send fewer overhead long-lived sessions (4)
messages
Send less data eliminate duplicate data (2)

compress the data (7)(8)
send only changes from the
previous value of the data (8)
send data only if needed (3)

Send less overhead combine message payloads (1)
per message send only changes from previous

headers (8)

Table 2: Summary of network congestion solutions.
Numbers of corresponding patterns are listed in
parentheses.

Timing/Latency The solution cannot affect the timing of
message exchanges. For example, it is not acceptable
to delay sending a message until there is enough data
to fill up the packet’s payload to its limit. As multiple
message exchanges are collapsed into fewer or one, the
latency of a single exchange may increase.

Performance Congestion control is a valid concern of the
application developers only if it improves the appli-
cation’s performance. An altruistic application would
need to cease sending any messages, because this would
result in lowest congestion, but this is not reasonable.
The primary goal of every application is to perform its
tasks as best as it can. A congestion-battling mecha-
nism that diminishes the application’s overall perfor-
mance is not acceptable.

Extensibility Protocols grow. Everybody wants more fea-
tures: more data formats, more supported standards.
Customers want more features, because they add func-
tionality; developers like to add features as well. While
more seems to be better, it conflicts with the goal of
curbing network congestion. Additional effort is re-
quired to grow protocols in a bandwidth-friendly way.

Code Simplicity Typically, optimizations produce more
complex solutions than the simplest possible imple-
mentation. Any solution must consider the complex-
ity of the code required to implement it. If the code
for producing and consuming messages is overly com-
plex, which may result in slow or erroneous execution,
the sender and receiver rather than the network, will
become the bottleneck.

The solution is to simply send less stuff : fewer messages
and less data. Sending fewer and/or shorter messages that
accomplish the same tasks is likely to decrease network con-
gestion. To send fewer messages, it is necessary to define
less verbose communication protocols to lower the number
of overhead messages. To send less data, the duplicate and
unnecessary data needs to be eliminated.

Table 2 lists some of the possible techniques. The re-
mainder of this paper presents patterns that explain these
techniques in more details. The patterns discussed in this
paper include:

1. Message Bundle

2. Message Dispatcher

3. Conditional Message

4. Persistent Connection

5. Piggybacking

6. Self Throttling

7. Data Compression

8. Delta Encoding

A note on the synthesis of form:

The patterns described in this paper share many elements.

To avoid repetition, the context, the general problem, and

the forces are described once. The description of each pat-

tern begins with a specific problem and a summary of the

key forces, followed by the solution, the resulting context, an

extensive list of known uses, and related patterns.

1. MESSAGE BUNDLE
You are sending and receiving many small mes-

sages that fill only a portion of a single network
packet. You want to limit the number of packets
sent.

Sending small messages decreases the likelihood of packet
fragmentation by the underlying network, which should lower
congestion. However if only a small portion of the packet
payload contains useful data, the remaining space in the
packet is wasted.

From the implementation perspective, it is easier if a sin-
gle message corresponds to a single system task. However, if
a group of messages (or commands) could be executed in a
sequence by the receiver, the only way to produce sequenc-
ing with this approach is to send the commands one-by-one
in subsequent messages.

Therefore,
Combine a sequence of messages to the same recip-

ient into a single message. This increases the payload-
overhead ratio, thus decreasing the use of network band-
width.

Make each client encode multiple messages (or commands)
into the same network package. The sender sends a collec-
tion of messages to the receiver using one network packet.
Messages inside a network packet are separated by a ter-
minating character. The receiver processes each message
individually and responds accordingly. Figure 2 shows the
Message Bundle architecture. Note that the functionality to
produce messages is separate from the functionality to send
or receive them.

Implementing the Message Bundle pattern requires mod-
ifying the receiver, the sender, and the message structure.

• Sender. The sender packs multiple messages together
into a single packet. It must ensure that they are

Figure 1: The car pool lane is for cars with multiple
passengers

placed in order and fit within the allowable packet
size. Tight packaging of messages poses a problem
when message producers on the server stop generat-
ing new ones. If messages are not promptly available,
less-than-full package should be sent. A “send it now”
command should be available to command producers
to “flush the buffer”, i.e. to indicate that no more
commands will be generated until the last ones are
sent.

• Receiver. The receiver implementation has to con-
sider that one network packet can contain multiple ap-
plication messages and that some messages may span
multiple packets. This requires implementing a mes-
sage parser which has the capacity to split and join
commands as appropriate. The parser must ensure
that commands are delivered one at a time and in the
order intended by the sender. One way to view this
new design is to decouple the processing of commands
from the mechanism that consumes messages.

• Message Structure. Multiple messages are com-
bined into one larger packet and separated by a de-
limiter token.

Figure 2: Message Bundle Architecture

This solution is applicable under the following conditions:

• You have the authority to modify the protocol (i.e.
the ordering and structure of exchanged messages).

• The time restrictions for delivering and processing mes-
sages are not strict (i.e. it is not a real-time system).

• The size of a network packet is at least twice the ex-
pected size of a typical message.

Resulting Context
Protocol Efficiency Payload-to-overhead ratio in the net-

work packets is reduced, and fewer packets are sent.

Sequencing Commands are executed by the receiver in the
same order they were encoded by the sender.

Timing/Latency Delays are incurred while composing and
parsing a packet with messages. Message transmission
latency is reduced due to channel loading. Once the
packet has arrived, processing of messages contained
in a packet is faster than if they were received one
message per packet.

Performance The performance will improve if the over-
head time (to construct packets of messages and pro-
duce results) is smaller than the time to build and re-
construct the same messages individually. If the net-
work is not the bottleneck, this solution is likely to
increase the time to execute the commands.

Extensibility The ability to bundle messages encourages
growth of the protocol. The more types of messages
there are, the more possible sequences of messages that
fit into one network packet can be produced. But more
types of messages means more possible duplication of
functionality and data between them.

Code Simplicity Packaging ability must be added to the
sender and parsing ability to the receiver. Additional
buffer space may be required to store commands wait-
ing to be processed.

Known Uses
This pattern has been observed in the domain of relational
databases (where database queries are messages), in mail
protocols, and in lower-level communication protocols.

Relational Databases
Two database managers provide solutions based on the Mes-
sage Bundle: Informix [2] and Sybase.

The documentation usually refers to this solution as ”Mul-
tiple Statements” or ”Statement Batches”. One of the prob-
lems found in the area of databases is that not all vendors
support this feature and not all drivers support the handling
of multiple SQL statements in one string.

Extended SMTP [9]
One of the extensions to the Simple Mail Transport Protocol
is “command pipelining” defined by RFC 2920 [12]. Some
SMTP commands, such as RSET, MAIL FROM, SEND FROM,
SOML FROM, SAML FROM, and RCPT TO, can appear anywhere
in a pipelined command group. In this manner, multiple
commands can be contained in a single packet.

Other commands: EHLO, DATA, VRFY, EXPN, TURN, QUIT, and
NOOP can only appear as the last command in a group since
their success or failure produces a change of state, which the
client SMTP must accommodate. These commands repre-
sent the “send it now” functionality of the sender.

TCP connection termination [17]
The connection termination phase of TCP uses a four-way
handshake, with each side of the connection terminating in-
dependently. When an endpoint wishes to stop its half of

the connection, it transmits a FIN packet, which the other
end acknowledges with an ACK. Therefore, a typical tear-
down requires a pair of FIN and ACK segments from each
TCP endpoint. It is possible to terminate the connection
by a three-way handshake. Host A sends a FIN and host B
replies with a FIN & ACK (combining two steps into one
message) and host A replies with an ACK.

Related patterns
Message Dispatcher (2) also combines multiple messages
into one. Moreover, it shows how to eliminate duplicate data
within the ”bundle”.

2. MESSAGE DISPATCHER
You have multiple communicating systems. Each

system sends messages notifying all the other sys-
tems about its current state. There is a lot of du-
plication in the exchanged messages.

The key argument for having such an architecture is sim-
plicity – every system can be considered (implemented, test-
ed, extended, profiled) in complete isolation.

Such architecture might negatively affect the performance
of all the communicating systems as a whole, but it is sim-
ple to grow – one system at a time. Much of the processing
time of each system is spent on building, sending, receiv-
ing, unpacking (and discarding) messages, but that code is
reusable and needs to be written only once.

Such architecture also decreases the global understanding
of all the systems (e.g. the causality of exchanged messages),
but an individual message can be traced easily. Moreover,
there is no central authority to coordinate similar efforts
of different systems, instead there is a highly distributed
collection of autonomous systems.

Therefore,
Define a separate entity that sends and receives

messages on behalf of these multiple communicating
systems. This entity is called Message Dispatcher.
Have systems subscribe to the Message Dispatcher and spec-
ify their communication requirements. Dynamically com-
pose messages with a minimal information set so as to meet
the requirements of all registered systems. Minimize the
communication overhead by sending only one instance of the
same data and packaging data more efficiently. At the re-
ceiving Message Dispatcher, interpret and demultiplex mes-
sages for distribution to subscribed systems.

The design is naturally decomposed into an ontology of
data fields that are to be transmitted, and stipulating how
the fields are to be composed into a message. Undefined
data fields can be incorporated into the message by using
an XML type schema. Information can also be requested
by one Message Dispatcher from another so as to meet the
requirements of its subscribed systems.

Consider for example two pieces of data that are often
sent at the same time by different applications. Rather than
defining each one of them as a separate data field, define a
single combined complex field, thus eliminating the overhead
of multiple data headers. The dispatcher may also modify
the data it sends. Rather than send all the data, send only
small updates regarding the amount of change in the data
from the previous message. This is more compact, thus
reducing network congestion.

Figure 3: As in Noah’s ark, Message Dispatcher has
only one instance of each data type (male and female
are different).

Implementing the Message Dispatcher pattern requires
adding the receiver and sender Message Dispatchers, and
defining new message structure.

• Sender. Systems register with the Message Dispatcher
and submit their data requirements. The requirements
may include latency and frequency of transmission.
The sender Message Dispatcher may obtain data in a
variety of ways such as polling applications, maintain-
ing a cache or generating the data by itself. The sender
Message Dispatcher composes a message that meets all
the requirements of the subscribed systems. It removes
duplicate data fields and combines related data into a
single data field. The message is dispatched.

• Receiver. Systems expecting to receive data register
with the receiver Message Dispatcher. On reception of
message, the receiver Message Dispatcher creates mul-
tiple messages, one for each subscribed system. The
messages are then delivered to each system.

• Message Structure. Messages in transmit contain a
union of the multiple sender system requirements. The
receiving system does not know which application on
the sender side produced the data.

This solution is applicable under the following conditions:

• Multiple systems send and receive messages.

• Distributed coordination between multiple systems on
the sender and receiver is prohibitively complex.

• Data is not unique to a particular system, but rather
to the collection of systems on the sender or receiver.

• There is some duplication of transmission and data
requirements between systems.

The Message Dispatcher is best applicable when messages
are exchanged frequently in a broadcast fashion and when
it is necessary to support adding new types of data and new
systems. Moreover, it is best when the Message Dispatcher
obtains the data independently of the subscribed systems.

Resulting Context
Protocol Efficiency Communication overhead is reduced,

because information can be encoded in a single mes-

sage in which duplicate fields are sent only once. Con-
sequently, fewer messages are exchanged making the
protocol simpler.

Sequencing The order of messages exchanged by Message
Dispatchers does not change. But each Message Dis-
patcher can create local messages for its subscribers in
arbitrary order thus, from the perspective of any single
subscribed system, sequencing is non-deterministic.

Timing/Latency The overall time for a complete exchange
can fluctuate, depending on the size of exchanged mes-
sages. The latency of each message increases, because
each message needs to pass through two Message Dis-
patchers.

Performance If the time to (de)multiplex messages is low,
the performance increases significantly, because less
data needs to be transferred. The throughput of each
message increases, because all the duplicate data is
eliminated from the transmission. The performance
gain increases as more communicating systems with
overlapping data requirements register with the Mes-
sage Dispatcher.

Extensibility Disparate systems on a different peers can
communicate through a standard communication in-
terface. In this way the Message Dispatcher acts as
Facade [14] for multiple communicating systems. This
enables new systems to be developed without depen-
dence on existing systems and without requiring addi-
tional messages be created. In other words, the me-
chanics of the applications are separated from the com-
munication and information sharing concerns.

Code Simplicity The code required to implement the Mes-
sage Dispatcher is not complex and amounts to finding
a minimal set of information to be composed into a
message. The Message Dispatcher sits above the com-
munication stack and thus the channel is managed by
lower levels. Hence, implementing the Message Dis-
patcher only affects the systems which are registered
with it. The potential complexity is to modify exist-
ing systems so as to register and stipulate information
requirements with the Message Dispatcher.

Known Uses
This pattern has been observed in two very different do-
mains: automotive and social networking.

Collaborative Inter-vehicle Wireless Safety Applica-
tions [21]
In this example, vehicles communicate with each other using
the wireless channel. They share information about road,
vehicle and driver conditions. Several applications have been
developed including emergency brake warnings, traffic light
violation warnings or detecting collisions. Although the ap-
plications are different, many of the data fields required are
common, e.g. vehicle position and speed (see Figure 4).
With the potential for many vehicles to be transmitting si-
multaneously (and the difficulty associated with coordinat-
ing transmissions), reducing channel load so as to reduce
interference is important.

The Message Dispatcher has been deployed on several test
vehicles at the Toyota Technical Center in Ann Arbor, Mi.

The concept has also been adopted in the Society of Auto-
motive Engineers (SAE) standard for inter-vehicle wireless
communication. It has been found to be particularly useful
in adapting to the changing specifications and requirements
of the deployed applications by essentially decoupling the
mechanics of the communication policies.

Dispatcher
Message

Position, Speed
Brake Status

Brake Status
Speed, Position

Application 1

Application 4

Application 5

Position, Speed,
Brake Status,

Acceleration.

Position,
Acceleration.

Standardized Vehicle / OEM Specific

Figure 4: The Message Dispatcher assimilates data
requirements from all the on-board applications and
compiles a single message using a dictionary of
defined data elements and standardized message
construction guidelines. A receiving Message Dis-
patcher is responsible for separating and dissemi-
nating data elements from the received message to
all on-board applications as well as managing data
requirements for surrounding vehicles.

Facebook [facebook.com]
This social networking website keeps subscribers informed
of their associates’ activities. When two colleagues perform
a similar action, (e.g. both join a group or become friends
with someone) a single notification is provided to their asso-
ciates. For example, instead of two separate notifications –
“Craig wrote a patterns paper” and then “Paul wrote a pat-
terns paper” – a single notification “Paul and Craig wrote
a patterns paper” would be shown to all subscribed parties.

Related patterns
Message Bundle (1) combines multiple messages, but it
does not eliminate duplicate data from multiple messages.
Message Dispatcher described in the Enterprise Integra-
tion Patterns book [16] differs from this pattern. It provides
only message dispatching based on the recipient. It does
not consider the contents of the message and cannot recre-
ate multiple messages for different recipients from a single
message.
Publisher-Subscriber [6] is an alternative way of dissemi-
nating a changed information for the benefit of a large num-
ber of recipients. The Publisher sends out an announcement
that some information has changed or the actual changed
information. The Subscribers-recipients are notified of that
fact. The Message Dispatcher plays the role of the Publisher

when it is sending out a new message to other Message Dis-
patchers. It also plays the role of the Subscriber when it
receives a message, updates its own state, and passes the
newly acquired information to the local communicating sys-
tems that are registered with it.
The main benefit of Message Dispatcher over Publisher-
Subscriber is that it minimizes the number (and size) of
messages sent between communicating systems.

3. CONDITIONAL MESSAGE
Your system exchanges many messages with other

systems to negotiate the proper course of action.
This process is time-consuming and it wastes re-
sources.

To ensure that both the sender and the receiver agree on a
specific course of action (e.g. selecting a particular response
from several alternatives), they often need to exchange mul-
tiple messages. Sometimes, for example when setting up a
connection (i.e. handshaking), such long exchanges are nec-
essary. But once a connection is established, the subsequent
message exchanges should be simplified whenever possible.

Therefore,
In each request, provide enough information and

context so that the recipient can quickly determine
what data to send back. Provide enough relevant infor-
mation (typically metadata) in the initial request so that
the sender may be able to reduce the number of exchanges
(ideally, down to one). Similarly, the receiver can reduce the
number of exchanges by guessing the expected result based
on its knowledge of the sender.

First analyze the negotiation protocol. Identify typical
exchanges between the sender and each receiver. Try to
shorten the most popular exchanges to one message ex-
change by including all relevant data in the initial request.

Figure 5: Traffic signs: conditions that limit traffic

Implementing the Conditional Message pattern requires
modifying the receiver, the sender, and the message struc-
ture.

• Sender. The sender constructs a message and consid-
ers the likely information expected in a subsequent re-
sponse from the receiver. This information is included
in the request as long as the additional data overhead
is not prohibitively large. This, a conditional message
is generate based on the receiver’s expected response
and a message construction policy of the sender (e.g.
maximum likelihood).

• Receiver. The receiver considers contents of entire

received message as well as its own capabilities and
prior knowledge of the sender (if available) to construct
a response. It dispatches the response to the sender.
If more specific data is required from the sender, the
missing information, instead of the proper response, is
sent first.

• Message Structure. The message contains a set of
conditional statements (or equivalently an ordered list
of preferences) related to the receiver’s expected re-
sponses.

This solution is applicable under the following conditions:

• The next step in the protocol is determined based on
the current state of the sender and receiver.

• The replaced message exchange is not used for estab-
lishing the communication between the sender and re-
ceiver, i.e. there is already an active connection be-
tween them.

Resulting Context
Protocol Efficiency The number of message exchanges is

reduced. The initial request message may be signifi-
cantly larger (to account for all likely outcomes). The
response may be as short as “no change.”

Sequencing By reducing the length of the negotiation se-
quence, the complexity due to sequencing is reduced.

Timing/Latency The time of the complete exchange de-
creases, because fewer messages are exchanged. How-
ever the latency of an individual response increases.
This is because the conditional message is longer and
requires greater generation and processing time. The
recipient may also need to perform extra processing to
determine how to respond.

Performance If there are many conditions to consider in a
sequence, the performance may be greatly enhanced,
because this approach decreases the communication
time, the processing time, and the size of exchanged
data. As a result, the message throughput may de-
crease.

Extensibility Conditional Message does not scale. Adding
more conditions is likely to complicate the implemen-
tation of the receiver. To understand what the sender
needs, the receiver needs to take into account increas-
ingly more conditions. As conditions become more
complex and take more time to process by the receiver,
the sender is less likely to use them. One example of an
erosion of the use of Conditional Message is described
at the end of the Content Negotiation known use.

Code Simplicity The resulting code is more complex at
possibly both sender and receiver side, because they
must consider all combinations of possible outcomes.

Known Uses
This pattern has been observed in the domains of Internet
protocols and in virtual network computing.

HTTP’s Conditional GET [11]
HTTP supports three ways to check if a representation of
a resource stored by a client is still up to date. The client
could send a HEAD to request the metadata of the resource
from the server. If the server returns newer metadata than
what the client has, the client sends a GET to get the new
contents. This means that two messages are exchanged. Al-
ternatively, the client could request data by sending a GET
request. The server would respond with the current resource
representation, which may be the same as the data already
held by the client. A better solution is to send a conditional
GET message – the same as regular GET, but with a condi-
tional header (e.g. If-Modified-Since, which contains the
timestamp of the client’s current version of the resource). If
the server has a newer version, it sends the data; otherwise,
it responds with the status code “304 Not Modified.” Only
one message exchange is needed.

HTTP Content Negotiation [11]
Content negotiation enables clients and servers to determine
the optimal format of a resource (e.g. GIF, JPG or PNG
for a picture). The server stores the resource internally in
a specific format. Each client (called agent in HTTP spec-
ifications) prefers certain formats. HTTP defines two types
of content negotiation – server-driven and agent-driven.

The server-driven negotiation means that the algorithm
for selecting the best representation of a resource is located
on the server. The client specifies the preferred format of a
resource in HTTP headers (e.g. Accept, Accept-Language,
Accept-Encoding) of the original request. The server de-
cides what is the optimal format by taking into account
the preferences of the client. Only one message exchange is
needed.

The agent-driven negotiation gives the agent more control
over the representation. First the agent submits a request
for a resource (with or without a list of preferences). The
server responds with the status code “300 Multiple Choices”
that includes a list of available representations. The agent
selects, either automatically or with user intervention, the
most appropriate format and requests it again from the
server. This approach results in sending the best possible
match to the agent, but it requires two message exchanges.

As the number of data formats increases while the number
of user agents (esp. browsers) remains small, listing all of
them in the request is not an efficient solution. Negotiation
stopped being used in practice. Instead, Web servers use
a variety of quick hack techniques, such as browser sniffing

and agent sniffing to determine the type of agent requesting
the data. These methods consider the contents of various
HTTP headers to guess what type of browser is used (other
user agents are not even considered in practice). The server
then serves the resource in the format most applicable to
that browser. This illustrates that conditional message is
not an extensible solution.

VNC
VNC (Virtual Network Computing) protocols support many
data formats transmitted between the client and the server.
For example, in the RFB (remote framebuffer)[20] protocol,
the data passed between the client and the server represents
pixels on the client’s screen. RFB supports many formats,
so each client-server pair can negotiate their own preferred
format. Rather than suggest one format per message, the
client includes the list of all encodings it supports, in the
order of preference, in a SetEncodings message. The server
can use any of the requested formats, but it may also ignore
client’s preferences and select a raw format of the response,
which is the default that all RFB clients must support.

Related patterns
Message Bundle (1) combines a sequence of messages into
one, but the number of commands executed by the receiver
does not decrease. The receiver applies the commands se-
quentially. In the Conditional Message, the next message in
the protocol depends on the context (e.g. the results of the
previous messages).

4. PERSISTENT CONNECTION
To send a message to a remote entity, the sender

must first create a connection. This process requires
exchanging multiple messages up front. You want to
minimize the cost of this setup.

Both connection setup and teardown require multiple mes-
sage exchanges between the sender and receiver. Sending
these exchanges is expensive (they take time and use up
bandwidth), but it is necessary to facilitate the exchange of
application messages, so they cannot be eliminated.

However, in most cases, an alive connection is not tied
to the application message for which it was created. It is
merely a link between the sender and receiver, indicating
that they are connected.

Therefore,
Establish the connection only once and do not tear

down the message channel[16]. Keep an open con-
nection and reuse it for sending subsequent appli-
cation messages. This connection is a dedicated channel
between the sender and the receiver that can serve multiple
message exchanges.

To ensure that the connection remains open while no ap-
plication messages are exchanged, the sender can optionally
send a heartbeat message to the receiver to indicate that it
wants to keep the connection alive. While this extra message
produces additional traffic, it is less costly than establishing
a new connection for each application message.

The only difficult question regarding persistent connec-
tions is how long to keep them alive. Typically, the sender
knows whether more messages will be sent, so it should de-
cide when to close the connection. To inform the receiver,
it includes a special indicator for terminating a connection
(e.g. a special message header).

The receiver can also choose to terminate a connection to
preserve its resources or to prevent the sender from sending
too many messages. To inform the sender (in the polite
way), it includes a special indicator. Alternatively, it stops
serving the connection without informing the sender.

Persistent connections can also support pipelining, i.e. the

ability to send multiple requests without waiting for re-
sponses to previous requests.

Figure 6: Drivers with special transmitters can pay
tolls without stopping (i.e. breaking the connection)

Implementing the Persistent Connection pattern requires
modifying the receiver, the sender, and (in some cases) the
message structure.

• Sender. The sender initiates connection setup. Once
the connection is established, the sender monitors its
state to determine if the connection is still open when a
new request is to be sent. The sender monitors the sta-
tus of the connection and closes it when it’s no longer
required.

• Receiver. The receiver acknowledges to the sender
as soon as the persistent connection is established. If
it determines that no more communication will oc-
cur on this connection, the receiver may optionally
include an indication that the connection is closing
in the response, and then close the connection once
the response is sent. If message pipelining is used,
the receiver is responsible for keeping track of all the
outstanding requests and for sending responses to all
of them (but not necessarily in the order they were
received).

• Message Structure. In many cases, the message
structure is exactly the same as if it were a standalone
message with its own connection. However, when the
sender or the receiver decides to close the persistent
connection, the message will include an indicator of
the connection state after this message is consumed.
A new message type (i.e. a heartbeat message) may
be needed for maintaining the connection status.

This solution is applicable under the following conditions:

• Establishing a communication channel between a sen-
der and a receiver requires some negotiation or hand-
shaking

• The communication between the sender and the re-
ceiver consists of more than one application message
exchange

• Maintaining the connection causes less overhead than
establishing a new connection every time

Resulting Context
Protocol Efficiency After the connection is established,

subsequent exchanges do not require overhead mes-
sages, hence fewer overhead messages are sent. How-
ever status update messages do require some overhead,
but may be mitigated using piggybacking (see next
pattern). The application protocol does not change.

Sequencing The ordering of application messages does not
change. If pipelining is used, multiple requests will be
sent without waiting for the response.

Timing/Latency Once the connection is established, sub-
sequent responses are received faster than before, since
there is no individual connection setup overhead. The
latency of a single message is unchanged.

Performance The benefits of persistent connections are
proportional to the number of exchanged messages. If
a typical message exchange consists of only one request-
response pair, having a persistent connection unneces-
sarily waste resources.

Extensibility No change, because the application protocol
does not change.

Code Simplicity Code changes can be localized both on
the sender and the receiver. In its simplest form, a sin-
gle conditional check is required. It checks whether an
active connection for the sender-receiver pair already
exists.

Known Uses
This pattern has been observed in the domain of Internet
protocols, relational databases, and in networking.

HTTP/1.1 [11]
HTTP messages are transmitted over TCP. To send a HTTP
message, it is necessary to set up a TCP connection (which
requires 4 messages). In HTTP/1.0 [5] the connection is
closed after each message exchange (closing the connection
requires sending at least 3 more TCP messages) 1. This
is very inefficient as shown by many performance studies
(e.g. [19]). Downloading a Web page consisting of 10 re-
sources requires 90 TCP messages (setup: 4, payload: 2,
teardown: 3, repeated 10 times). By keeping the TCP con-
nection open, downloading 10 resources requires 27 TCP
messages (setup: 4, payload: 2 * 10, teardown: 3).

In HTTP/1.1 all connections remain open unless explicitly
closed. The HTTP server indicates that the connection is
closed by including the “Connection: close” header in the re-
sponse. HTTP/1.1 supports message pipelining – the agent
(i.e. sender) can send multiple requests without waiting for
the prior responses.

ODBC
Open Database Connectivity (ODBC) supports persistent
connections, with and without pipelining. For example,
Microsoft SQL Server (starting with version 6.0 [3]) uses
server-side cursors to support multiple outstanding requests
on a single connection handle. Each cursor operation in the

1The TCP connection termination known use of Message
Bundle (1) explains why 3 or 4 messages may be used.

ODBC driver generates one cursor command, which is sent
to the SQL Server. When the resulting set for each cursor
command is received by the client, the SQL Server accepts
another command from another statement handle over that
connection handle.

ATM
ATM (Asynchronous Transfer Mode) networks use persis-
tent connections. Resource reservation is done once and
then no subsequent control messages are sent.

Related patterns
Message Channel [16] describes the details of implement-
ing a dedicated channel between two communicating net-
work elements.
Piggybacking (5) can be used to pass the status of a con-
nection in existing application messages.

5. PIGGYBACKING
You have a system, where exchanges of small mes-

sages are intertwined with exchanges of large mes-
sages destined to the same receiver. Sending and re-
ceiving of messages corresponding to different mes-
sage exchanges is decoupled. As more messages are
generated this way, this produces network conges-
tion.

A long message exchange is often called a conversation.
When multiple conversations between the same systems oc-
cur concurrently, there are benefits to keeping them sepa-
rated, but there are also benefits in combining them.

Since the messages are produced and consumed indepen-
dently, possibly by different subsystems, it makes sense to
keep their implementation simple and independent. How-
ever, this results in lower efficiency of the system as a whole.

At the lower network layers, the messages for different
conversations come intertwined, but this complexity is not
visible at the application layer. The lower layers might be
able to combine these messages to reduce congestion, but
they do not know how the messages are related. Only the
application layer code has this knowledge.

Therefore,
If two network elements are already engaged in

message exchange, include data of a new conversa-
tion in the current message exchange. Include the new
data as an addendum to the exchanged messages rather than
sending a new message.

Use payload capacity in existing conversations to include
unrelated data. This is especially effective if the exchanged
messages have some spare space in the message payload
where the new data can be stored.

Implementing the Piggybacking pattern requires modify-
ing the receiver, the sender, and the message structure.

• Sender. When required to send a new piece of data
to a receiver, the sender examines existing communi-
cation with that receiver. If there is one, the sender
incorporates the data into the existing conversation.

• Receiver. The receiver monitors incoming messages
to determine if new data has been appended to mes-
sage associated with existing conversations.

Figure 7: Cars piggyback on the truck.

• Message Structure. Messages intended for a single
receiver may contain any number of unrelated data
elements in addition to the ongoing conversation data.

This solution is applicable under the following conditions:

• Sender and receiver frequently conduct independent
conversations

• The additional data to be sent is small in relation to
the volume of the existing communication

Resulting Context
Protocol Efficiency The message recipient receives data

from multiple conversations in one message, thus fewer
messages are exchanged.

Sequencing The relative sequencing of messages between
conversations is indeterminate. Typically this is not a
serious concern, because piggybacking usually involves
two independent conversations.

Timing/Latency Timing of receiving data which has been
piggybacked is less predictable, since this data is op-
portunistically included in existing communications.
Latency does not change for each individual message,
unless there is a significant time delay due to (de)multi-
plexing data for each conversation.

Performance Starting a new message exchange does not
require the connection setup time. As a result, the
data is exchanged faster. Additional message over-
head of the data that is piggybacked is also avoided.
The throughput of the data-carrying messages may in-
crease because of the piggybacked data. But if the ad-
ditional data can be included in the spare bits of the
original communication, it remains the same.

Extensibility Extensibility is likely to improve, because
adding more types of conversations may increase the
amount of traffic thus increasing the likelihood of pig-
gybacking. However, if rather than adding new types

of messages, messages participating in existing con-
versations are extended with new data, the number of
messages on which to piggyback may decrease.

Code Simplicity The improved performance comes at the
cost of more complex code for both sender and re-
ceiver. The sender needs to account for many possible
combinations of incorporating new data into existing
messages. The receiver needs to demultiplex the data
before passing the appropriate received data to differ-
ent processing units.

Known Uses
This pattern has been observed in the domains of telecom-
munications and Internet protocols.

SMS [13]
Cell phones use two dedicated channels for communication –
a low-bandwidth control (or signaling) channel and a traffic
channel for sending voice packets. Typically, simple com-
mands (e.g. start ringing, user pressed the * button) are
sent to/from the phone on the control channel, because it re-
quires fewer resources. Text messages (SMS) are exchanged
as new messages sent on the control channel. However, if
the user is already in a phone call, there is a traffic chan-
nel for sending voice packets. These packets have enough
spare bits to include the extra data (the text message). By
using the extra bits in the existing messages, no additional
resources are used to send text messages.

Mobile phone voicemail notification [13]
In the ANSI-41 protocol for mobile phone communication, a
notification message is sent from the system (specifically, the
home location register, or HLR) to the phone when the sub-
scriber receives a voicemail. But if the HLR and the phone
are already exchanging another control message (e.g. updat-
ing phone’s location, periodic authentication), the voicemail
notification field is added to that control message. Thus,
rather than sending another message, an existing message is
used with few extra bytes appended.

TCP [17]
To ensure reliable service in TCP (Transmission Control
Protocol), every request is acknowledged by the receiver
with an acknowledgment number. In a communication be-
tween two peers, where both send requests and responses,
the acknowledgment number of a prior message is included
in the following request from the other peer.

Related patterns
Message Dispatcher (2) presents more details on one way
to implement demultiplexing of data in a message exchange.
Message Bundle (1) can be viewed as a form of piggyback-
ing. The first message in the bundle is the main conversation
and all the subsequent messages are piggybacking on it.

6. SELF THROTTLING
If sending a message fails once, sending it again is

likely to fail too – more likely than sending a new
message. If a periodic message does not provide
new information, sending and processing it wastes
resources. You want to limit the number of repeated
messages sent.

To ensure good performance of a system, messages should
be sent as soon as they are created. However, this approach
does not work for resending messages or for periodic mes-
sages. In these cases, it’s better to delay sending the mes-
sage. By not sending it immediately, the performance of the
system improves, while network congestion decreases.

The key to solving this problem is striking a balance be-
tween expensive and interesting messages. If the sender does
not receive a response in the expected time, resending the

request becomes more “expensive,” because it is more likely
to time out again. If no new event occurs for a long period
of time, the message containing the unchanged data is less
“interesting” to the receiver, because it does not report any
new information.

Therefore,
Adapt the frequency of message sends based on

the significance of the transmitted message. Enable
the system as well as the users to set and modify guidelines
as to when such messages must be sent out.

Keep the history of previous attempts to be able to better
predict whether or not to throttle sending a specific message
type in the future. Have the application choose transmit
times based on the existing conditions and imposed guide-
lines. Enable the user to override the application’s decision
procedure.

Figure 8: The expressway self-throttles its traffic by
limiting the number of entering vehicles. Drivers
often ignore this red light thus overriding the ex-
pressway’s setting.

Implementing the Self Throttling pattern requires only
modifying the sender.

• Sender. The sender maintains some type of system
state which it uses before sending a message, to deter-
mine how “expensive” the message is to send, and how
“interesting” it is to the receiver. The sender decides
when to send the message. It then updates its history
of adaptive predictions accordingly.

• Receiver. No change. While not all expected mes-
sages will arrive (because of the sender’s screening), if
the receiver expects them, it will handle this situation
the same way it handles a message timeout.

• Message Structure. No change.

This solution is applicable under the following conditions:

• Sending a message is “expensive.”

• How “interesting” and “expensive” a message is varies.

• The application needs to adapt to changing network
conditions.

Resulting Context
Protocol Efficiency Although there is no change in the

protocol (the same messages are sent in the same or-
der), the resulting message exchange is more efficient,
because messages are sent only when required, based
on the current system state. Hence, fewer messages
are sent per unit of time.

Sequencing There is no change in the sequencing of the
messages, only in their frequency.

Timing/Latency Messages are sent less often, so the rel-
ative time between messages increases. But the mes-
sages are still sent often enough when they become
“interesting.” Message latency remains unchanged.

Performance Since there are fewer messages, and the pro-
cessing required to check whether to send a message
is typically minimal, the overall performance of self-
throttling systems increases. As less data is exchanged,
the throughput typically decreases.

Extensibility Extensibility is likely to improve. Because
the number of messages sent is decreased, it enables
the protocol designers and implementers to add more
functionality.

Code Simplicity Defining adaptive algorithms for adjust-
ing the throttling parameters is the most difficult part
of implementing this solution. System state must also
be maintained. Some effort is needed to add checks
of the throttling parameters when a relevant event oc-
curs. Some work is required to enable the user to mon-
itor and change the throttling parameters.

Known Uses
Various flavors of this pattern have been observed in the do-
mains of telecommunications, Internet protocols, automo-
tive, and content distribution.

Cellular telephony [13]
Messages that are sent out periodically are considered “ex-
pensive” in cellular networks. They are sent only when an
“interesting” event happens. For example, location updates
are sent only if a cellular phone has moved from one location
area (a group of cells) to another, or has not sent a location
update nor made a call within a relatively long time (e.g.
one hour). This helps to relieve congestion of the signal-
ing channels in both North American and European cellular
systems.

Ethernet [18]
In Ethernet, only one node can be sending frames at a time.
If a sending node senses that the communication channel is
idle, it starts to transmit the frame. While transmitting,
it monitors the presence of signal from other nodes. If the
node transmits the entire frame without detecting signals
from other nodes, the sending is complete. But if it de-
tects signal from other nodes while transmitting, it stops
transmitting the frame, and transmits a jam signal. After
aborting, the node enters the exponential backoff phase –
it waits to retransmit progressively longer as it encounters
more collisions with other nodes.

Collaborative Inter-vehicle Wireless Safety Applica-
tions [21]
Recall that the basic functionality of the Collaborative Inter-
vehicle Wireless Safety Applications was described in the
Message Dispatcher pattern. Individual applications sub-
scribed to the Message Dispatcher or the Message Dispatcher
itself perform self-throttling by selectively excluding the data
that is not sufficiently interesting. For example, an ap-
plication monitoring a vehicle’s location does not need to
send updates to surrounding vehicles if the vehicle is mov-
ing in the same direction at the same speed. The location-
monitoring applications of surrounding vehicles can calcu-
late this information by themselves. If a vehicle’s location
changes in an unpredictable way (e.g. if it exits from the in-
terstate), its location-monitoring application needs to send
a message with the new location. The new location becomes
“interesting” to the surrounding vehicles, because they can-
not calculate it from their own data.

Content Distribution
In Content Distribution systems, not all mirrors get updated
with the most recent version of the content simultaneously.
Update algorithms vary, but the processing of the updates
is throttled so that the mirror spends most of its process-
ing handling requests (which are more ”interesting”) rather
than updating its contents.

Related patterns
Message Bundle (1), Message Dispatcher (2), and Pig-
gybacking (5) present different ways of limiting the num-
ber of messages sent by combining multiple messages. In
contrast, Self Throttling shows how to avoid sending some
messages at all.

7. DATA COMPRESSION
You want to send as much data as possible at the

lowest possible cost to you.
You want the data you are sending to say everything once

and only once. Achieving this is a tradeoff between time
and space – the time to shrink the data to its minimum size
and the time to perform this operation.

Another important factor is the availability of data com-
pression software. When custom data formats are used,
compressing them may require additional development ef-
fort.

Compression is best suited for data with high entropy.
The entropy of a set of data measures the amount of ran-
domness in the data [7]. For example, a bit sting of ones
has an entropy of zero since there is no randomness – all the
bits are 1. However, a string of random ones and zeros (e.g.
outcomes of fair coin tosses) has entropy 1. In this way,
entropy represents a bound on the potential effectiveness of
data compression. For example, in order to uniquely iden-
tify 8 types of widgets, at least 3 bits are needed. More may
be used, but despite one’s best efforts to compress widget
description data (e.g. running a zip application twice), the
number of bits needed cannot be reduced below 3. Similarly,
in the coin toss example, which has entropy 1, a single bit
is required to describe each outcome of the coin toss.

However, data should be compressed whenever possible.

Therefore,
Apply a compression algorithm to the message

content before sending it. Compression applies to the
data as well as the message headers.

Popular data formats, such as XML and plain text can
be compressed very effectively. For example, one military
study [24] has found that XMill hybrid compression can re-
duce the size of large XML documents to 1% of the original
size.

Figure 9: Compressed ”data”

Implementing the Data Compression pattern requires mo-
difying the receiver, the sender, and the message structure.

• Sender. The sender compresses data before transmit-
ting.

• Receiver. The receiver uncompresses the data upon
receipt.

• Message Structure. The new message contains com-
pressed data. Unless the compression algorithm is
specified, the original data is not generally recoverable
from this representation.

This solution is applicable under the following conditions:

• The data type has a suitable compression algorithm

• The time to compress and decompress the data is less
than the time to transfer the data over the network in
the original, non-compressed format

Resulting Context
Protocol Efficiency There is no change to the protocol.

Sequencing No change.

Timing/Latency Timing does not change either. If the
compression shrinks the message to fit into fewer pack-
ets, then message latency decreases; otherwise it is un-
changed.

Performance Compression produces messages with smaller
payloads. If the original data spans multiple network
packets, there are fewer packets to send per message.
Hence, throughput is increased. Only if the (de)com-
pression time is long, compared to the network speed
does this solution degrade performance.

Extensibility The only concern is using unique data for-
mats, which don’t have easily available compression
algorithms. When typical data formats are used, ex-
tensibility is not affected.

Code Simplicity Adding the code to implement each new
data format is a one-time effort. Once implemented, it
can be reused in other applications. Generic compres-
sion algorithms may also be used, e.g. Ziv-Lempel.

Known Uses
This pattern has been observed in the domains of Internet
protocols, sensor networks and Web services.

HTTP [11]
HTTP/1.1 supports both end-to-end and hop-by-hop mes-
sage compression. The end-to-end compression is specified
in the Content-Encodings header. It describes what addi-
tional encoding of the message was performed by the sender
(e.g. “Content-Encoding: gzip”). The hop-by-hop com-
pression is specified in the Transfer-Encoding header (e.g.
“Transfer-Encoding: chunked”). It is applied by the net-
work elements transmitting the HTTP messages to speed
up the transmission.

Data Aggregation in Sensor Networks [15]
In LEACH (Low-Energy Adaptive Clustering Hierarchy),
wireless application-level protocol, nodes are organized in
clusters. Only the cluster-heads communicate with the base
station by sending and receiving messages. The data col-
lected by individual nodes is passed to cluster-heads, which
collects the data, analyzes it, and sends a single message
to the base station. Rather than sending individual data
points, the cluster-head sends a summary (e.g. a sufficient
statistic, such an average value of all the nodes).

Web services: SOAP compression
Apache Axis/1.x supports compression of SOAP messages
[4]. The metadata about the compression in use is sent
from the client to the server in HTTP headers. The client
compresses the SOAP request and indicates the compres-
sion algorithm in the “Content-Encoding” HTTP header.
If the client is willing to accept a compressed response, it
adds an “Accept-Encoding” header field indicating the ac-
ceptable encoding (typically gzip). If the response from the
server includes the “Content-Encoding” header, the SOAP
response is decompressed before being processed by the Web
service.

Related patterns
Delta Encoding (8) is a special case of Data Compression
where only the information that changed from the previous
message is included in the following message.
Message Dispatcher (2) performs a simple variation on
the data compression theme by eliminating duplicate in-
stances of the same data field.

8. DELTA ENCODING
You want to send as much data as possible at the

lowest possible cost to you.

Data that is constantly updated typically changes in steps,
not all at once. Subsequent data values are not replaced ran-
domly, but rather change with respect to previous ones ac-
cording to some patterns. By understanding these patterns
it is possible to lower the amount of data to pass for each
change. However, there is a cost associated with keeping
that info – storing more data on the sender and the receiver
and potentially more processing time.

Yet, in many case, the receiver has a cache of data and
merely performs small changes on its own data, rather than
copying the new data. The same approach could be used by
the sender.

Therefore,
Send only the values of the data that has changed

from the previously sent data values rather than all
the data. The content that changed is called the delta.
Delta encoding is applicable to the data as well as the mes-
sage headers.

Unlike Data Compression (7), effective use of delta encod-
ing requires custom implementation of the encoding for all,
but the most typical data types.

Figure 10: Sometimes replacement parts are enough

Implementing the Delta Encoding pattern requires modi-
fying the receiver, the sender, and the message structure.

• Sender. The sender calculates the changes of the data
to be transmitted from the most recently sent update.
It encodes the changes in the delta format and sends
the message containing only the changes. Periodically,
the sender sends the complete representation to enable
the receiver to verify that its representation is still cor-
rect.

• Receiver. Upon receiving the delta message, the re-
ceiver applies the deltas to the data it contains. Upon
receiving a full representation, the receiver checks it
against its copy. If the representations are not identi-
cal, it replaces its current copy with the one received
and (potentially) initiates some consistency checks to
determine the cause of the discrepancy.

• Message Structure. Most messages contain only the
changes from previous message. The original data is
not recoverable from this representation; only the re-
ceiver that stores the previous values of the data can
interpret the encoding.

This solution is applicable under the following conditions:

• The data transmitted in subsequent messages changes
slowly

• The changes can be described in a succinct format

• The time to recover the original data is shorter than
the time to transfer the data over the network in the
original format

Resulting Context
Protocol Efficiency There is no change to the application

protocol; only the contents of the message change.

Sequencing Sequencing does not change. It cannot change.
Messages contain only updates, so processing them out
of sequence may result in unpredictable behavior. En-
suring that messages are processed in the same order
they were generated is critical.

Timing/Latency Timing does not change. Since the delta
encoding shrinks the message to fit into fewer packets,
message latency decreases.

Performance With delta encoding, messages have smaller
payloads. If the data spans multiple network packets,
there are fewer packets to send per message. Hence,
throughput is increased. Because they only commu-
nicate with deltas, the sender and receiver need to
maintain the actual state of all exchanged data and
ensure that it is correct. If the storage requirements
for keeping the state are high, the performance may
decrease.

Extensibility No change, because there is no change to the
application protocol.

Code Simplicity As more advanced encoding algorithms
are used, the efficiency of delta encoding increases, but
the code complexity increases. Message data storage
management may also become complex.

Known Uses
This pattern has been observed in the domains of multime-
dia, communication protocols, and music protocols (where
it has been used to compress message headers).

MPEG-2 [1]
MPEG is an encoding and compression system for digi-
tal multimedia content defined by the Motion Pictures Ex-
pert Group (MPEG). MPEG-2 video compression algorithm
achieves very high rates of compression by exploiting tempo-
ral and spatial redundancy in video information. Temporal

redundancy indicates that successive frames of video display
the same scene. The content of the scene often remains fixed
or changes only slightly between successive frames. Spatial

redundancy occurs because parts of the picture are often
replicated (with minor changes) within a single video frame.

In addition to highly efficient compression, MPEG en-
ables random access to the video. To accomplish these
two tasks efficiently, MPEG-2 supports three main picture
types: I-Pictures, P-Pictures, and B-Pictures. Intra coded
pictures (I-Pictures) are coded without reference to other
pictures. They provide access points to the coded sequence
where decoding can begin, but are coded with only moder-
ate compression to take advantage of the spacial redundancy.

Predictive coded pictures (P-Pictures) are coded more effi-
ciently using motion compensated prediction from a past
intra or predictive coded picture. They can be used as a
reference for further prediction. Bidirectionally-predictive
coded pictures (B-Pictures) provide the highest degree of
compression, because their contents are based on differences
from both past and future reference pictures. The organi-
zation of the three types in a sequence is left to the encoder
and depends on the requirements of the application.

ROHC [10]
Robust Header Compression (ROHC) is a standard for com-
pressing RTP/UDP/IP (Real-Time Transport Protocol, User
Datagram Protocol, Internet Protocol), UDP/IP, and ESP/
IP (Encapsulating Security Payload) headers. The ROHC
algorithm is similar to video compression. The first packet
sent is the base frame that contains complete headers. It’s
followed by several difference frames that include only chan-
ges from prior packets, and an occasional base frame. This
enables ROHC to survive many packet losses in its highest
compression state, as long as the base frames are not lost.

MIDI [22]
The Running Status option of the MIDI (musical instrument
digital interface) standard illustrates another way to com-
press message headers. In MIDI, every message consists of
3 bytes – one status byte which contains the message type
(e.g. Note On, Note Off) and two bytes of the data. If the
subsequent messages have the same status byte, the status
byte is omitted and two-byte messages that contain only the
data are sent. The receiver understands implicitly that the
status byte is the same as in the previous message.

Related patterns
Data Compression (7) is a more general pattern. It ad-
dresses various ways of modifying the representation of data.
Delta encoding is one of the ways.

Conclusion

The subject of network congestion control is broad and while
it can never be solved completely, limiting the congestion is
an important goal. It requires work at all layers of the net-
worked communication stack. This paper focuses only on
the application layer, and even here there are many more
patterns than what we were able to discuss. The collec-
tion of patterns we present, although incomplete, presents
a solid starting point for battling congestion control on the
application layer.

Our collection focuses on existing solutions used in many
existing protocols specifications and in their implementa-
tions. We invite interested readers to study the implementa-
tions of these protocols in existing systems (e.g. the Apache
server to study HTTP). It was our intention to explore vary-
ing approaches to every solution – every known use we de-
scribe provides additional insights into implementing differ-
ent flavors of these patterns. We hope that designers and
implementers of new protocols will find these patterns use-
ful.

Acknowledgments
The authors would like to thank their PLoP shepherd, Amir
Raveh, for his watchful eye, patience, and constructive feed-
back during the shepherding process. Many thanks go to
Linda Rising and all the participants of the Girl with a Scarf

writers’ workshop at PLoP 2007.

9. REFERENCES
[1] Information Technology–Generic Coding of Moving

Pictures and Associated Audio Information: Video,
ISO/IEC 13818-2. Technical report, ITU-T, 1995.

[2] Executing Multiple SQL Statements.
http://publib.boulder.ibm.com/infocenter/idshelp/
v10/index.jsp.

[3] INF: Multiple Active Microsoft SQL Server
Statements. http://support.microsoft.com/kb/140896.

[4] Thomas Bayer. SOAP Compression for Apache Axis
1.X. http://www.thomas-bayer.com/axis-soap-
compression.htm.

[5] T. Berners-Lee, R. Fielding, and H. Frystyk.
Hypertext Transfer Protocol – HTTP/1.0. Technical
report, Network Working Group, 1996.

[6] Frank Buschmann, Regine Meunier, Hans Rohnert,
Peter Sommerlad, and Michael Stal. Pattern-Oriented

Software Architecture: A System of Patterns. Wiley,
1996.

[7] Thomas M. Cover and Joy A. Thomas. Elements of

Information Theory, 2nd Edition. Wiley-Interscience,
2006.

[8] Phillip Dykstra. Protocol Overhead.
http://sd.wareonearth.com/ phil/net/overhead/.

[9] J. Klensin (Editor). Simple Mail Transfer Protocol.
Technical report, The Internet Engineering Task Force
- IETF, 2001.

[10] C. Bormann et al. RObust Header Compression
(ROHC): Framework and four profiles: RTP, UDP,
ESP, and uncompressed. Technical report, The
Internet Engineering Task Force - IETF, 2001.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol HTTP/1.1. Technical report, The
Internet Engineering Task Force - IETF, 1999.

[12] Ned Freed. SMTP Service Extension for Command
Pipelining. Technical report, The Internet Engineering
Task Force - IETF, 2000.

[13] Michael Gallagher and Randall Snyder. Mobile

Communications Networking with ANSI-41. McGraw
Hill, 2002.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Programming. Addison Wesley, 1994.

[15] Wendi Heinzelman. Application-Specific Protocol

Architectures for Wireless Networks. PhD Thesis,
MIT, 2000.

[16] Gregor Hohpe and Bobby Wolfe. Enterprise

Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. Addison Wesley, 2003.

[17] University of Southern California Information
Sciences Institute. Transmission Control Protocol.
Technical report, The Internet Engineering Task Force
- IETF, 2.

[18] Robert M. Metcalfe and David R. Boggs. Ethernet:
distributed packet switching for local computer
networks. Commun. ACM, 19(7):395–404, 1976.

[19] V. Padmanabhan and J. Mogul. Improving HTTP
latency. Computer Networks and ISDN Systems, 1995.

[20] Tristan Richardson. The RFB Protocol.
http://www.realvnc.com/docs/rfbproto.pdf.

[21] C.L. Robinson, L. Caminiti, D. Caveney, and
K. Laberteaux. Efficient Coordination and
Transmission of Data for Cooperative Vehicular Safety
Applications. VANET’06, September 29, 2006, Los

Angeles, 2006.

[22] Joseph Rothstein. MIDI: A Comprehensive

Introduction. A-R Editions, Inc., 1992.

[23] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-End
Argument in System Design. ACM Transactions in

Computer Systems 2, 4, pages 277–288, November,
1984.

[24] Dan Winkowski and Mike Cokus. XML Sizing and
Compression Study For Military Wireless Data. XML,
2002.

