
A Metric for Measuring the Abstraction Level of Design
Patterns

Atsuto Kubo
Waseda University

Japan

a.kubo@fuka.info.
waseda.ac.jp

Hironori Washizaki
Waseda University

Japan

washizaki@waseda.jp

Yoshiaki Fukazawa
Waseda University

Japan

fukazawa@waseda.jp

ABSTRACT
The abstraction level of the problem treated by a design
pattern has wide variety, from architecture to near imple-
mentation. There is no objective metric indicating the ab-
straction level of the problems addressed by patterns. Thus,
it is difficult to understand the abstraction level of each pat-
tern and to position a new pattern. In this paper, a metric
is proposed. It indicates the relative abstraction level of
a pattern’s problem. We propose a metric obtained from
inter-pattern relationships. We also propose a visualization
method for the metric. Using such metrics, we aim to help
developers easily understand the abstraction level of each
pattern and, therefore, to better decide about its usefulness
for the problem at hand.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Patterns

General Terms
Design

Keywords
Patterns, Interpattern Relationships

1. INTRODUCTION
A software pattern is a proven solution to a recurring

problem that appears in the context of software development
[1]. Describing the knowledge of experienced developers pro-
motes sharing and reusing their knowledge. Many authors
have published many patterns, and most of the patterns
have relationships to other patterns. A pattern collection is
a set of patterns that may or may not be related to each
other.

In the design phase, developers break the system down
gradually into components. Initially, the system has a higher

Preliminary versions of these papers were workshopped at Pattern Lan
guages of Programming (PLoP)’07 September 58, 2007, Monticello, IL,
USA. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. Copyright is held by the authors. ISBN: 9781605584119.
PLoP ’07, September 58, 2007, Monticello, IL, USA
Copyright 2008 is held by the author(s). ACM 9781605584119.

abstraction level, and is independent from details in design
and implementation. Near the end of development, the com-
ponents have lower abstraction level, and depend on a con-
crete language and environment. There are software pat-
terns addressing problems for each phase. The pattern to
use for development must have an abstraction level matches
the appropriate level in system development.

Developers should select patterns according to the devel-
opment phase because a pattern that doesn’t matched the
system’s abstraction level is not effective. Therefore, devel-
opers need to know the abstraction levels of patterns. In the
basic design phase, developers should not be aware of idioms,
and in the implementation phase, developers should not be
aware of architectural patterns. The patterns mismatching
current development phase may make developers confused.
However, abstraction levels of patterns are different even if
they belong to the same pattern catalog. Developers can-
not clearly classify some patterns into architectural patterns,
design patterns, or idioms.

For example, let’s consider Gang of Four (GoF)’s object-
oriented design patterns [3] and PoSA’s patterns [1]. The
GoF’s design patterns deal with the problems at the granu-
larity of class design, and PoSA’s patterns deal problem at
the granularity of system architecture design. However, for
example, GoF’s Interpreter pattern is near an architec-
tural pattern because it uses many other patterns directly
and/or indirectly in its solution. It can be thought that the
Model-View-Controller (MVC) pattern [4] [1] is near a de-
sign pattern because it treats individual applications. As
in the above situations, it can be difficult for developers to
select patterns fitting into considering level of abstraction.
If there is a metric that position the Interpreter pattern
near architectural patterns, developers can discuss whether
to use it or not. However, actually, there is no objective
metric capable to indicate that.

In this paper, we propose a metric that indicates the rel-
ative abstraction level of each pattern in a set of patterns.
The proposed metric is based on the partially-ordered rela-
tionships between two patterns, and aims to assist in: under-
standing of the pattern’s abstraction level, classifying pat-
terns, and selecting patterns to solve faced problems.

2. A METRIC MEASURING THE ABSTRAC
TION LEVEL OF DESIGN PATTERNS

There is a wide variation in software design abstraction
level from architecture to detailed design to implementation.
Developers focus on dividing a system into subsystems at

Table 1: A list of inter-pattern relationships

Kind of relationship Description Partially-ordered
Similar to [8, 6] Pattern X is similar to Pattern Y. No

Uses[8, 6, 7] Pattern X uses another pattern Y in its
solution.

Yes

Refines [1, 6], Specific [7] Pattern Y provides a more specific solu-
tion than pattern X.

Yes

Combinable [1] Pattern X and Pattern Y can be com-
bined.

No

Variation [1] Pattern Y is pattern X with some
changes to Y’s solution.

No

Provides context [7] Pattern X and Pattern Y can be applied
sequentially.

Yes

first. Next, they focus on the design of each subsystem,
modules, and implementation. There can be software pat-
terns in each abstraction level of software design.

Most patterns have one or more inter-pattern relation-
ships. Authors of patterns often describe these relationships
in the Related Patterns sections. Table 1 lists some examples
of inter-pattern relationships. The Partially-ordered column
shows whether each relationship is partially-ordered or not.
For example, the structure of the Interpreter pattern’s
syntax tree can be designed using the Composite pattern.
That is a Uses relationship. Some inter-pattern relation-
ships exist across different pattern catalogs. As another ex-
ample, the MVC pattern uses the Observer pattern.

In this metric, we use only Uses, Refines, and Provides
context relationships, i.e., the partially-ordered relationships
shown on Table 1. The proposed metric has two principles
below:

• Patterns that use other patterns, patterns which are
more generalized, and patterns that are applied before
other patterns have higher abstraction level.

• Patterns used by other patterns, patterns that are
more specific, and patterns that are applied after other
patterns have lower abstraction level.

We will present an intuitive explanation and a formal defi-
nition.

Only the partially-ordered relationships affect the abstrac-
tion level. For instance, the Similar to relationship repre-
sents the existence of common properties between two pat-
terns. Therefore, we use only the partially-ordered relation-
ships to calculate the abstraction levels of patterns.

2.1 Intuitive explanation of the proposed met
ric

The reference count of a pattern is the total number of
patterns that the pattern refers transitively. The backward
reference count of a pattern is the total number of patterns
that refers the pattern transitively. In Figure 1, ellipses
indicate patterns, arrows indicate partially-ordered inter-
pattern relationships. For example, the MVC pattern tran-
sitively refers six patterns, so the reference count of the MVC

patterns is six, and the backward reference count of the MVC

pattern is zero because no pattern refers the MVC pattern. In
the same way, the reference count of Composite pattern is
two, and backward reference count is one.

Patterns often delegate details into other patterns. Con-
versely, a pattern used by other patterns is delegated details

from other patterns. The metric score of a pattern is a dif-
ference between the reference count and the backward refer-
ence count of the pattern. In the example shown in Figure 1,
the metric score of MVC pattern is six, and of the Composite

pattern is one. Therefore, developers can see that the MVC

pattern is more suitable for architectural design.

2.2 Formal definition of the proposed metric
The reference count of a pattern is the total number of

patterns that the pattern can reference transitively on the
graph. The graph is composed of patterns (vertices) and
inter-pattern relationships (edges). The backward reference
count of a pattern is the total number of patterns that ref-
erences the pattern transitively on the graph.

P is the set of N patterns for which we want to calculate
the metric score.

P = {p1, p2, . . . pn}, n ∈ N.

The partially-ordered relationship between a pattern p1 and
another pattern p2, p1, p2 ∈ P , is represented as 〈p1, p2〉.
Therefore, the set of the relationships R is represented as

R ⊂ P × P.

(P, R) is a directed graph. R+ is a transitive closure on R.
R+ is defined as below:

R1 ◦ R2 = {〈p1, p3〉|∃p2 ∈ P (〈p1, p2〉 ∈ R1 ∧ 〈p2, p3〉 ∈ R2)}.
R1 = R.

Rn+1 = Rn ◦ R.

R+ =

∞
[

i=1

Ri.

In addition, the set of patterns that can be retrieved tran-
sitively from a certain pattern p is a descendant of p, repre-
sented as D(p). The set of patterns that a certain pattern p
can be retrieved transitively are ancesters of p, represented
as A(p).

D(p) = {p0|p, p0 ∈ P ∧ 〈p, p0〉 ∈ R+} ⊂ P.

A(p) = {p0|p0, p ∈ P ∧ 〈p0, p〉 ∈ R+} ⊂ P.

A pattern with many ancestors tends to be a part of other
patterns. A pattern that has many descendants tends to
use other patterns. Where |D(p)| denotes the number of
patterns included in D(p), and |A(p)| denotes same of A(p),
the abstraction level of a certain pattern p is defined as:

a(p) = |D(p)| − |A(p)|.

Figure 1: Inter-pattern relationships

Since the metric depends on the relationships between
patterns, the user should recompute the metric when the
set of patterns are changed.

2.3 Visualization
Developers cannot understand intuitively abstraction lev-

els only from numbers. In this section, we propose a visual-
ization technique that uses the abstraction level.

In this technique, patterns with larger values for a(p)
should be positioned above patterns with smaller values for
a(p) should be positioned below. Only the vertical axis
makes sence. In Figure 2, proposed visualization technique
positions GoF’s design patterns. Ellipses indicate patterns
and arrows indicate partially-ordered inter-pattern relation-
ships. The abstraction level a(p) is used to position each
pattern.

3. VISUAL DEMO OF THE METRIC
To experiment the metric and visualization techniques, we

built a tool that calculates and displays the abstraction level
of each pattern. The results are shown in Figure 2 and 3.

In Figure 2, we used “Uses”, “Refines” and “Provides
context” relationships. The Interpreter and the Abstract

Factory have high abstraction levels. The Interpreter ref-
erences many other patterns, such as Visitor, Iterator

and Composite, directly or indirectly. In the opposite side
of that, the figure also shows that Prototype pattern and
Singleton pattern have lower abstraction level. Actually,
the Prototype and Singleton patterns are referred directly
or indirectly by many other patterns. Using this proposed
visualization technique, shown in Figure 2, developers can
easier understand that some patterns are close to architec-
tural patterns, and other some patterns are close to idioms.

In Figure 3, we performed a similar analysis on GoF’s
design patterns and PoSA’s patterns. Some architectural
patterns, such as Layers and Pipes and Filters, are at the
top of the figure. This means they have highest abstraction
level in shown patterns. Interestingly, Interpreter pattern
(a kind of design pattern) is positioned above Broker pattern
(a kind of architectural pattern). In the middle of Figure
3, patterns belonging to each pattern catalog are mixed.

Patterns can be connected if there are relationships of at
least two patterns from each pattern catalog.

The abstraction level and its visualization cannot be ob-
tained without the proposed metric. Moreover, the devel-
oper can apply the proposed metric to a set of patterns,
possibly from different catalogs, as we have illustrated.

4. RELATED WORK
Buschmann et al. proposed a classification of patterns:

architectural patterns, design patterns, idioms [1]. This clas-
sification is based on abstraction level, however, we think it
is too coarse-grained. Our metric can classify patterns into
spectrum.

Martin proposed two metrics on packages [5], such as Af-
ferent Couplings (Ca) and Efferent Couplings (Ce). Our
metric and Martin’s OO-metrics is similar in the abstract
structure of patterns/packages, however, our metric is for
software patterns. Though our metric is defined as a simple
subtraction, Martin’s metrics use a more complex calcula-
tion.

Cutumisu et al. have proposed four metrics for pattern
catalogs: usage, coverage, utility and precision [2]. Those
metrics use the number of patterns in a pattern catalog and
the number of adapted/unadapted instances of patterns. In
contrast, our metric uses partially-ordered inter-pattern re-
lationships.

There are researches about inter-pattern relationships [8,
6, 7, 1]. Noble has surveyed inter-pattern relationships and
has roughly classified into three categories, such as Use, Re-
fine, Conflict. The Use and Refine relationships are partially-
ordered, but the Confrict relationship is unordered. Since
our metric is based on partially-ordered relationships, the
metric works on Use and Refine relationships.

5. CONCLUSION
In this paper, we proposed a metric to measure the ab-

straction level of a pattern, based on partially-ordered inter-
pattern relationships. The advantages and disadvantages of
the proposed metric are the following:
Advantages:

8

5

3

2

1

0

-1

-2

-3

-4

-5

-6

-12

Abstract Factory

Bridge

Facade

Factory Method

Prototype

Singleton

Adapter

Builder

Composite

Chain of Responsibility

Command

Memento

Decorator

Flyweight

Interpreter

Iterator

VisitorMediator

Observer

ProxyState

Strategy

Template Method

Figure 2: GoF design patterns where vertical position depends on the score a(p), the abstraction level

• The metric can be applied across pattern catalogs be-
cause the method only uses inter-pattern relationships.

• The metric scores can be used as a hint to position
patterns in a pattern map.

Disadvantages:

• The metric score is a relative value, so it is not possible
to compare scores from different sets of patterns.

• Before applying the metric, the user has to obtain
inter-pattern relationships on the targeted set of pat-
terns.

We plan to perform experiments to validate that our met-
ric makes the user experience involved.

6. REFERENCES
[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and

M. Stal. Pattern Oriented Software Architecture: A System
of Patterns. Wiley, New York, 1996.

[2] M. Cutumisu, C. Onuczko, D. Szafron, J. Schaeffer,
M. McNaughton, T. Roy, J. Siegel, and M. Carbonaro.
Evaluating pattern catalogs: the computer games
experience. In Proceeding of the 28th international
conference on Software engineering (ICSE2006), pages
132–141, 2006.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[4] E. Krasner and S. T. Pop. A cookbook for using the
model-view-controller user interface paradigm in
smalltalk-80. Journal of Object-Oriented Programming,
1(3):26–49, 1988.

[5] R. Martin. OO design quality metrics, 1994. http://www.
objectmentor.com/resources/articles/oodmetrc.pdf.

[6] J. Noble. Classifying relationships between object-oriented
design patterns. In Proceedings of 1998 Australian Software
Engineering Conference (ASWEC’98). IEEE CS Press,
1998.

[7] M. Volter. Server-side components - a pattern language. In
proceedings of EuroPLoP ’2000, 2000.

[8] W. Zimmer. Relationships between design patterns. In
Pattern Languages of Program Design Vol.1, pages 345–364.
Addison-Wesley, 1995.

Appendix
× means the direct product of two sets.

∧ means “and”.

∈ means inclution of the left-side argument by the right-side
arugument.

S∞
i=1 means the union of the following sets.

|S| means the number of elements included in set S.

A
bs

tr
ac

t F
ac

to
ry

B
ri

dg
e

Fa
ct

or
y

M
et

ho
d

Pr
ot

ot
yp

e

Si
ng

le
to

n

Fa
ca

de

B
ui

ld
er

C
om

po
si

te

C
ha

in
 o

f
R

es
po

ns
ib

ili
ty

C
om

m
an

d

M
em

en
to

D
ec

or
at

or

In
te

rp
re

te
r

Fl
yw

ei
gh

t

It
er

at
or

V
is

ito
r

M
ed

ia
to

r

O
bs

er
ve

r

Pr
ox

y

St
at

e

St
ra

te
gy

Te
m

pl
at

e
M

et
ho

d

L
ay

er
s

C
om

po
si

te
 M

es
sa

ge

M
ic

ro
ke

rn
el

PA
C

B
ro

ke
r

R
ef

le
ct

io
n

M
V

C

V
ie

w
-H

an
dl

er

Pi
pe

s
an

d
Fi

lte
rs

Fo
rw

ar
de

r-
R

ec
ei

ve
r

C
lie

nt
-D

is
pa

tc
he

r-
Se

rv
er

A
cc

ep
to

r
C

on
ne

ct
or

M
in

i-
B

ro
ke

r

W
ho

le
-P

ar
t

C
om

m
an

d
Pr

oc
es

so
r

17 13 8 6 5 4 3 2 1 0 -1 -3 -4 -5 -6 -1
0

-1
3

-1
9

Figure 3: GoF’s design patterns and PoSA patterns. vertical position depends on the score a(p)

